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Second sound, osmotic pressure, and Fei-iraqi-liquid parameters in 3He-4He solutions
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Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values

for the Landau compressibility parameter Fo in He- He solutions. Data are presented as a function

of pressure and He concentration, and are compared to theoretical predictions. The square of the
second-sound velocity at finite temperature is found to be accurately proportional to the internal en-

ergy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk

theory, the square of the velocity is found to separate into two parts: a temperature-dependent part
characterized completely by ideal Fermi-gas behavior and a temperature-independent part contain-

ing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic

pressure.

I. INTRODUCTION

In most respects He- He solutions at low. temperatures
behave like a weakly interacting Fermi gas. The known
Landau Fermi-liquid parameters are small. At zero pres-
sure, only Fo arid F'i are known; both are of order O. l or
less in magnitude, depending on concentration. The one
exception to this rule is the quasiparticle compressibility,
which is predicted' to show large deviations from ideali-
ty. This is reflected in the Landau parameter Fo, given by
Fermi-liquid result

X1+Fs Id'
K

where E is the compressibility of the Fermi component of
the mixture, and K;d ~

is the compressibility of an ideal
Fermi gas having the same effective mass as the Fermi
liquid. Bardeen et al. ' and Owen have predicted that Fo
will be negative and as large as —0.4. This is substantial,
since Fo Q —1 must be true to assure mechanical stability.

Experimental values of Fo can be obtained from the
velocity of second sound, which, at low temperatures, is a
compressional wave in the He quasiparticles which leaves

the total pressure of the solution constant. It therefore
measures the quasiparticle compressibility alone, with no
contribution from that of the He. For this reason second
sound is a much more sensitive measure of this compressi-
bility in mixtures than is first sound. The mode is analo-
gous to first sound in pure liquid He, which is the most
accurate way to obtain Fo in that system. Independent
values of this parameter can also be obtained from Eq. (1)
if the osmotic pressure is known as a function of concen-
tration at T=0. This paper presents the first experimen-
tal values of Fo, obtained using both techniques, as a
function of concentration and pressure.

The temperature dependence of the velocity of second
sound in He- He solutions at low temperatures has been
analyzed previously by Brucker et al. in terms of an ef-
fective interaction theory, and also by Bashkin. The
close similarity between the behavior of the second-sound
velocity and that expected for first sound in an ideal Fer-
mi gas was first pointed out by Greywall and Paalanen,
for concentrations below l%%uo. This similarity is shown to
extend over the full range of accessible concentrations and
pressures, and takes a particularly simple form for inertial
effective masses given by the Landau-Porneranchuk
theory.

II. ANALYSIS OF DATA

A. Compressibility parameter F0

Khalatnikov has derived an expression relating Fo and the velocity of second sound at T=0:

2 S

u, (T=O)= (1+F', ) 1+~F g F1
3 3

n 3@i SmI— CXl 1+ +
(p —n3ms)(1+F'i/3) 3 m*

where vF is the Fermi velocity, m* is the He effective
mass, m3 and m4 are the atomic masses of He and He,
aim'/m& ——u3/u4, the ratio of He and He atomic

volumes, p is the total density, n3 is the He quasiparticle
number density, and 5m=m' —m3(1+Fi/3). To first
order in the He mole fraction x, this can be written
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2 S
s Fj

u2(T=O)= (1+Fp) 1+
3 3

TABLE I. Some parameters used in the analysis of second-
sound velocity.

m4 mi ~3
X 1 —x 1+ex+

PEi Pl 4

'2

(2)
P (atm)

cm 3

4
mol Vl3

where the Bardeen-Baym-Pines parameter a=v3/v4 1,
and m;, the so-called "inertial" He effective mass, is
equal to m*/(1+F'I/3)=p„/ns He. re p„ is the normal
fluid density. With the exception of the quantity in
square brackets, this is the same relation that is obtained
in pure liquid ~He between I'p and the square of the first-
sound velocity u I at T=O. The quantity in square brack-
ets reflects the fact that the He and He atomic volumes
are different, and that most of the He effective mass is
due to the inertia of the He through which it moves.

Second-sound velocities obtained in this laboratory
have been analyzed as a function of temperature to obtain
limiting values at T=0 for use in Eq. (2). Values pub-
lished previously by Brubaker et al. , Greywall,
Greywall and Paalanen, and de Voogt and Kramers, '

have been similarly analyzed. With the exception of de
Voogt and Kramers, who used heater and bolometer for
second-sound generation and detection, all the data were
obtained using porous-membrane capacitance transducers.
The square of the second-sound velocity was plotted as a
function of the internal energy U of an ideal Fermi gas
having the same Fermi temperature as the solution, as
tabulated by Stoner. " This yields a remarkably accurate
linear fit, shown in Fig. l. In calculating the Fermi tem-
perature T~ fi (3/ns) ——/2m k~, data for a and the
He molar volume V4 were taken from Watson et al. '

Specific-heat effective masses were taken at I' =0 from an-
average of the data of Anderson et al. ' and preliminary
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independent of statistics, where U(T) is the internal ener-

gy, N is the number of particles, and m is the particle
mass. Second, a similar linear behavior has been observed
in the osmotic pressure n(T) by Lan. dau et al. ' Because
the second-sound velocity and ~ are related by a deriva-
tive, "

1 Bm
Q2=

p„/nz Bnz

values of Mueller et al. ,
' linearly interpolated as a func-

tion of concentration; and at P=10 and 20 atm from
Mueller et al. and the measured and extrapolated values
of Polturak and Rosenbaum. ' In Eq. (2), the inertial ef-
fective mass m; was taken to be given, within the varia-
tion of published values, ' ' by the Landau-
Pomeranchuk assumption m; =rn o. Here m o is the
specific-heat effective mass (obtained from the sources
above) extrapolated to x =0. Values used for a, V4, and
mp for three of the pressures analyzed here are given in
Table I.

At temperatures above approximately 0.5 K, u2 falls
systematically below the straight-line fit, due presumably
to phonon excitations taking part in the wave. This is
visible in the data plotted for x =0.'05. Below 0.5 K the
linearity of these data is not unexpected, for two reasons.
First, it is what one would expect to see in the case of a
perfect gas, where the velocity of sound can be expressed
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FIG. 1. Square of the second-sound velocity u2 plotted as a
function of the internal energy U of an ideal Fermi gas with the
same Fermi temperature as the solution. The data shown are
from Refs. 5, 7, and 8. T=O corresponds to U=0. 6N3e~.

one might expect this linearity to persist in u 2.
To obtain experimental values of Fp, u 2 was extrapolat-

ed to T=0 ( U=0.6N&ez, where Ni is the number of He
quasiparticles and eF is the Fermi energy), using a least-
squares fit, and the resulting intercepts were employed in
Eq. (2). The results are shown as a function of He con-
centration x in Fig. 2. The solid curve for P=O is the
original prediction of Bardeen, Baym, and Pines (BBP),
multiplied by ( —,

' )' to reflect subsequent corrections to
the calculated spin-diffusion coefficient which they
used. zp According to BBP, Fp ——2N(0) Vp+Fp where
N(0) is the density of states at the Fermi surface and Vp

is the effective He- He interaction at k=0. For small
concentrations x, this formula predicts that Fo is propor-
tional to x' . The solid curves for P=10 and 20 atm are
similar predictions based on the BBP theory, using spin-
diffusion data obtained previously in this laboratory at
elevated pressure. '

The uncertainty in Fo, shown in Fig. 2 by the error



30 SECOND SOUND, OSMOTIC PRESSURE, AND FERMI-LIQUID. . . 3737

0.4

-F S
0

O. I
S

-FO
O. I

0 0
G Murdock 8 Corruccini
O Brubaker et al.
& Greywall 8 Paalanen
0 de Voogt 8 Kramers
V Greywall
~ Landau et al.

(Osmotic Pressure)
-0 I

-.
(,)

I I I I I I I

0 O.OI 0.02 0.05 0.04 0.05 0.06 0.07
Xp

I I I I I I I 1 I

0 O.o l 0.02 0.05 0.04 0.05 0.06 0.07 0.08 0.09 O. IO

X~

0.4—

0.2

-FS
0

0. I

()-O. I

I I I I I I I t I

0 0.0 I 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
X~

FIG. 2. Fermi-liquid compressibility parameter I 0 as a function of He concentration x for three pressures. The values were ob-
tained by extrapolating u2 to T=0, as shown in Fig. 1, and using these values in Eq. (2). The values based on osmotic pressure were
obtained as described in the text. The solid lines are predictions based on the BBP theory, Ref. 1, fitted to the spin-diffusion data of
Refs. 13 and 21.
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bars, is due at higher concentrations primarily to the vari-
ation in published values of m; (for uz values), and to a
lesser extent the published uncertainty in m', n, and V4.
At the lowest concentrations below 1%, the error is typi-
cally much larger and is due primarily to uncertainty in
the extrapolation to T=O, from scatter in the uz data.
Within the experimental uncertainty, all the Fp are nega-
tive, as predicted by BBP, but are generally smaller in
magnitude than that theory predicts. They are at least
35% smaller than the recent predictions of Owen. As a
function of pressure, Fo declines slowly about 25% in
magnitude from P=O to P=20 atm. This is explained
by the BBP theory as a consequence of the weakening
with pressure of the effective He- He interaction,
Vo-= am4—s /n4, where s is the velocity of sound in
He, and n4 is the number density of pure He. The nega-

tive sign of Fo is a reflection of the attractive nature of
Vp.

With some loss in accuracy, this parameter can also be
obtained from measured values of the osmotic pressure m,

directly from the Fermi-liquid result

2 U(T)
~idcai(T) =—

3 V

2 xU(T)
3 Ã3v4(1+ax)

or

X6'F
m;d i(T=O)=- (= ', n3—e„) .

5 v4(1+ax)
The Fermi energy e~ is equal to A k~/2m *, and
kz (3v——r n3)' . For purposes of calculating the deriva-
tive Bm;„,/Bnq in Eq. (5), m;„,(T=O) was empirically fit
over the concentration range of interest to a simple power
law, m;„,(T=O)=An~3, where A and y are constants.
Then Bvr;„,/Bn3 ——ym;„,(T=O)/n3. The accuracy of this
fit was better than 3% at P=0.26 and 10 atm, and for
x )0.0504 at 20 atm; for x (0.0504 at P=20 atm, the
accuracy was only 10%. Least-squares values of y at
P=0.26, 10, and 20 atm were found to be 2.22, 2.39, and
2.51 (+0.05), respectively. Combined with the Fermi-gas
result

Here

1BV 1E=——
V dnn3 B.m.

Bn;d,,i( T=0)
Bn3

Eq. (5) yields

5
E3 F

3 Pl 3

Following Landau et al. ,
'

m may be separated into parts
due to the kinetic pressure of a perfect Fermi gas and the
(attractive) interactions between He quasiparticles:

~ideal+~int '

Therefore

(4)

1+Fo=
(m.;d,,i+m;„,)

Bn3 T=O

~~ideal

T O

FS
~~Ideal

T=O
(5)

T=O

To obtain Fo from experimental values of ~ one must
interpolate an equation of state for m;„,(T=O) as a func-
tion of n3. This was done as follows. When the osmotic-
pressure data of Landau et al. are plotted against, the
ideal internal energy U, calculated using the same
specific-heat effective masses used for u2, they again fall
on a linear curve and can be accurately extrapolated to
T=O. Least-squares values of m.(T=O) obtained in this
way differ by less than l%%uo from those of Ref. 18. They
were used in Eq. (4) to obtain n.;„,(T=O), along with
values of the ideal kinetic Fermi-gas pressure

~ideal T =p

Experimental values of m;„,(T=O) were used in (7) to
obtain Fp. These values are shown with those obtained
from second-sound velocities in Fig. 2. As a check, they
were also compared with values obtained by a point-by-
point differentiation of m;„,; within experimental scatter,
they agree. Landau et al. ' used a slightly different form
for m;d i, and different effective masses, to derive values
of m;„,. If these values of m;„,(T=O) are used instead in
this analysis, the resulting values of Fp are increased in
magnitude over the osmotic-pressure values shown in Fig.
2. The amount of increase is approximately 22% at
P =0.26 atm, and approximately 30%%uo at both P = 10 and
20 atm. These values are outside the experimental uncer-
tainty in the values obtained from second-sound velocity.
Because determination of Fo from m involves the deriva-
tive of the difference between two quantities of compa-
rable size, this method is rather sensitive to the form
chosen for n;d i, and should probably be considered less
reliable than determination from u 2.

The osmotic-pressure values of Fp shown in Fig. 2 are
all somewhat larger in magnitude than those obtained
from second-sound velocity. If the inertial effective
masses of Sherlock and Edwards' are used in the analysis
of u2, rather than mo, the second-sound values of Fo are
all increased in magnitude and most of this discrepancy is
removed. This is, perhaps, to be expected, since these
inertial masses were obtained in the first place by a self-
consistent analysis of the second-sound velocities of Bru-
baker et al. and the osmotic pressures of Landau et al. '

A list comparing various experimental quantities in
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He- He solutions is shown in Table II, for x =0.013 and

x =0.05 at P =0, where a large body of data exists.
One consequence of the negative sign of Fp is that zero

sound is unlikely to exist in He- He mixtures. In mix-
tures zero sound is high-frequency second sound (first
sound in the quasiparticle gas) with d'or »1. The approxi-
mate condition for its existence is

Fs

1+Fi/3

The large relative magnitude of Fp indicates the mode
probably will not propagate. It is interesting that this
conclusion is also predicted by the viscoelastic theory of
zero sound, both as proposed by Rudnick and as modi-
fied by Bedell and Pethick. Rudnick's prediction is

up ——(Kp+ 3 Kv)/p,

where Kp is the bulk modulus and Ez~——q, the viscosity.
It is not quantitatively correct in the limit of weak in-
teractions, as discussed in Ref. 29; nevertheless, it yields a
velocity for He- He mixtures which is real but less than
vF, implying overdamping from quasiparticle excitations.
The modifications of Bedell and Pethick lead to an
imaginary velocity, as in the Fermi-liquid theory.

Mermin has established that any Fermi liquid must
support either longitudinal zero sound or longitudinal
spin waves. The fact that Fp &0 would then indicate that
Landau spin waves should propagate in mixtures at zero
magnetic field.

B. Temperature dependence of u2

In analyzing the second-sound data of Sec. IIA, it is
striking that all the velocities, for all concentrations and
pressures, can be accurately fit to a finite-temperature
generalization of the Khalatnikov formula (2). This was
deduced as follows. Equation (2) can be rewritten in the
ofm

TABLE II. Measured and derived quantities for He-"He
solutions at x =0.013, 0.05, at P=0. D, x, and g are, respec-
tively, the coefficients of spin diffusion, thermal conductivity,
and viscosity. C~ denotes specific heat. X 1 —x

2
m4 mi m31+++

m4mI

-u 2( T=0)= (1+F'p)10 Up

9 N3m;

(8)

m*/m3 (Cp)

Fo

0.013

2.38+.04'
2.40+ 05'

—0.10+.05
—0.12+.05'

0.05

2.46+.04'
2.47+.02b

2.45+. 12'

—0.26+.05'

where X& is the number of He quasiparticles, and

Up ———,%36'" is the internal energy at T=0. This may be
compared with Eq. (3), the result for first sound as a func-
tion of temperature in an ideal Fermi gas. The correspon-
dence suggests that for an ideal gas of He dissolved in
He, the correct expression for u2(T) is

u2(T=Q) (m/sec)

F'

9.79+0.1

9.69+0.1'

0.09+.03'

12.95+0. 1

0.08+.03'
0.03+.02

u d„i(T)= 1 —x
.10 U(T)
9 N3mi

m4 mi m31+a+
m; m4

(9)

1 . 1

1+Fo 1+Fi /3
Dy (]Q cm K /sec)

AT (erg/sec cm)

qr'(~P K.')

'Reference 13.
Reference 14.

'Reference 15.
This work; data from Ref. 7.

'This work; data from Ref. 8.
Reference 22.

~Reference 23.
"Reference 24.
'Reference 21.
'Reference 25.
"Reference 26.
'Reference 27.

18+3'
17.2+ 1.7

11+1.1'

0.034+.003"

Q.Q28+. QQ3g "

74.9+8'
90+9'

24+2.4j

0.28 y.02"'

The least-squares slopes of the experimental ui2 as a func-
tion of U were compared wilh the ideal gas slope predict
ed by Eq. (9), and the ratios were unexpectedly found to
equal one within experimental error. The numerical aver-
age for 29 values of x at three pressures, from five experi-
mental groups, is

B(up)
aU =0.9986+0.02 .

B(up)

jdeg$

The scatter in this ratio is plotted in Fig. 3. This remark-
able result implies that, within experimental error,

up(T) =u;g„i(T)+ b, '

(10)

where b is a constant term containing all the Fermi-liquid
corrections. From Eqs. (8) and (9),
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FIG. 3. Experimental least-squares slopes of u2 vs U (as
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of Eq. (9). The average of all the data shown is 0.9986+0.02.
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As discussed previously, all the experimentally determined

Fo are negative within experimental error. This is exhib-
ited as a negative intercept, according to Eq. (11), when

uq is extrapolated back to the zero of internal energy.
This is shown in Fig. 4. In particular, at least for the
larger concentrations, these curves show that uz(T) does
not differ from the ideal prediction by a simple multipli-
cative constant, a model which has been used to fit data
for x &0.01. Equation (10) agrees with the observation
of Greywall that, for concentrations below 1%, the ef-
fects of quasiparticle interaction show up only in the con-
centration dependence of u2, not in the temperature
dependence.

It should be emphasized that the conclusions above de-
pend on the value of inertial effective mass I; used to

analyze the data. The simple result of Eqs. (10) and (11)
is obtained only for m; =m o, where I0 is the specific-
heat effective mass extrapolated to x =0. The use of oth-
er published values ' ' of m; lead to slope ratios

a(u,')
expt

B(u;d ))
BU

where C„ is the (Landau-Pomeranchuk) specific heat of
an ideal Fermi gas with mass m*. An integration of this
result to yield the internal energy U,„~, of the solution
shows that U,„~, deviates from the ideal Fermi gas U(T)
by only about 1% at T=0.5 K, and less at lower tem-
peratures, over the entire concentration range of interest.
This deviation is comparable to the experimental uncer-
tainty in most of the measurements. Therefore it appears
that the temperature dependence of u2 in solutions is a
much less sensitive measure of deviations from the
Landau-Pomeranchuk spectrum than the specific heat.

There is a close parallel between Eqs. (10) and (11) and
the behavior observed previously in the magnetic suscepti-
bility of dilute solutions. Over an extended range of tem-
perature and concentration, Anderson et al. ' and Husa
et al. both found that the experimentally measured in-
verse susceptibility 7 was a linear function of the in-
verse susceptibility 7;d„~ of an ideal Fermi gas, calculated
with a mass equal to the specific-heat effective mass m
The following empirical relation was closely obeyed:

which change with concentration and temperature, and
differ from one by as much as 12%; they therefore predict
an interaction term b which depends on temperature. At
present there exist no theoretical expressions for the ve-
locity of second sound over the temperature and concen-
tration range studied here. Thus there is no fundamental
reason why this ratio of slopes should equal one, or why
the interaction term (11) should be so independent of tem-
perature. The fact that Eq. (10) holds so well may place
new constraints on the form of the quasiparticle interac-
tion in He- He solutions.

Recent measurements by Greywall of the specific
heat, 3' and second-sound determinations of p„, ' appear
to indicate that above about 0.25 K these properties can-
not be reconciled with predictions based on the quadratic
Landau-Pomeranchuk excitation spectrum for the dis-
solved He quasiparticles. Neutron scattering measure-
ments also appear to indicate negative deviations from
e(k) =iii k /2m' for k & 1 A '. Therefore it seems
surprising that the square of the second-sound velocity
should produce such linear curves when plotted against
the internal energy of an ideal Fermi gas with a purely
quadratic spectrum. Closer examination shows that the
deviations to be expected from linearity (from this cause)
are not very large, at least below 0.5 K where phonon con-
tributions can be ignored. Greywall has provided a con-
venient empirical form for his measured specific-heat
data.

C, =C„" (T&0.245 K),
C„=C„+—', N k(0.20 K ')(T—0.245 K)

( T & 0 245 K), .
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=const &(

X( T) X;d„i(T) X;4„i(T=0)

This may be compared with Eq. (10):

u 2(T) =u;d, ,i(T)+Fou;d„i(T=O) .

(12)

5.05

&.QQ

0.95

CH 0
OO

o P 0
o P=10 atm
0 P =20 atm

o
o

1 air
mi an 3

PB4 I]—m31+++I; Pl 4
(13)

to first order in x, where f=1+a—m3/m4, g=n3U4,
and p, is the density of the superfluid component. In the
limit x &~ 1, this reduces to

2Q2=
s,r

analogous to the relation

To date, only relative measurements of susceptibility have
been obtained, so the constant appearing in Eq. (12) was
assumed equal to one. Values of Fo have been obtained
only by extrapolating I/X to zero. In the case of second-
sound velocity, this ambiguity is removed because abso-
lute measurements of u 2 are available.

The second-sound velocity is related to the osmotic
pressure m by a derivative

am 1 fk-
m4 aine s,z P /Ps+f

2

( ( ( 1 ( ( ( I

0 0,0I 0,02 0.05 0.04 0.05 0.06 0.07 0.08 0.09 O.IO

Xg
FIG; 5. Experimental least-squares slopes of the osmotic-

pressure data of Landau et al. (Ref. 18}vs the internal energy
U, normalized by the ideal Fermi-gas prediction of Eq. (6). The
average of these data is 0.9971+0.016.

Eq. (10). A straightforward calculation shows that an
equation of the form of (10) follows directly from Eqs.
(13) and (6) using the relationaU, au

~ideal = Pl3a& s,p, iv, an3

where u( T) is the internal energy per quasipatticle.
These conclusions differ somewhat from those of Lan-

dau et al. , who found a weak temperature dependence to
This may be related to the different (non-specific-

heat} effective masses which they employed, or to the fact
that they chose a slightly different form for m.;d„i.

2Ql= P 2 xU Pa
IdC81 3 ~ +

3U4

for first sound. It is interesting to look for an explanation
of the simple temperature dependence of u2, described by
Eq. (10), in the behavior of m(T) with temperature. This
has been analyzed previously by Emery, by Disatnik and
Brucker, and by Bashkin. As first observed by Emery,
the temperature dependence of the osmotic pressures mea-
sured by Landau et al. can be attributed completely to
~;d~l in the relation

~ideal+ ~int

That is, the least-squares slope of ir as a function of U is
the same as that predicted by Eq. (6). Numerically, the
average slope for 13 values of x is found to be

am;„p, /a U =0.9971+0.016 .
award i aU

The experimental scatter in these ratios is shown in Fig. S.
The implication of this result is that w;„, is a constant
with no temperature dependence at aB. This provides a
natural explanation for the separation of the second-sound
velocity into an ideal and a constant interactive part, in

where p~ varies between ,x kT+(I ———',a) at T=O and

,'x kT(l —a—)at T»Tz.

III. SUMMARY

Values of the Landau parameter Fo have been obtained
from both second-sound velocity and osmotic-pressure
data. They agree qualitatively with theory but appear sys-
tematically smaller in magnitude than theory predicts, at
least for most concentrations.

Previous investigators have noted the close similarity
between second-sound velocity in He- He mixtures and
that expected for sound in a perfect Fermi gas. For iner-
tial effective masses equal to m 0, this connection has been
shown to be very simple and suggestive, with u 2(T) given

by

u 2( T) = ti,'d,.i( T)+Foti;d..i( T=0»
where g,d i(T} is the velocity of second sound in an ideal
Fermi gas of He dissolved in He.
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