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We employ the minimum principle for the Helmholtz free energy to develop a self-consistent vari-
ational theory of liquid He at nonzero temperatures. Using the fact (demonstrated here) that the
equilibrium density matrix of a boson system has non-negative matrix elements in coordinate repre-
sentation, the trial density matrix in coordinate space is chosen to be an exponentiated sum of two-

body functions. Adopting the separability assumption in conjunction with the hypernetted-chain ap-
proximation, we determine these functions optimally by a coupled set of Euler-Lagrange equations
for the structure function S(k, T) and the energy e(k, T) of the elementary excitations. In a
phenomenological study we analyze the variation of S(k, T) and e(k, T) with temperature, and dis-
cuss the relationship by employing experimental data on these functions at long wavelength and
around the roton minimum.

The inicroscopic theory of the ground state of a strong-
ly correlated boson fluid, i.e., liquid He at zero tempera-
ture, is well understood. The successful application of the
"exact" Green's-function Monte Carlo method' to the
simulation of the ground-state wave function by
Whitlock, Ceperley, Chester, and Kalos provides com-
puter experimental information about the equation of
state, liquid structure function S(k), condensate fraction,
and other useful quantities obtainable from the ground
state. The parallel development of a functional represen-
tation of the ground state by a correlated wave function of
the general form
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where the two- and three-body terms u2 and u3 are deter-
mined by Euler-Lagrange equations, '
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has provided a variational procedure capable of yielding
quantitative agreement with the numerical results of the
Green's-function Monte Carlo method of Ref. 2. More-
over, the analytic structure of the quantities u2 and u3
may be interpreted in terms of the zero-point motion of

the elementary excitation spectrum of the fluid.
Our present objective is to generalize the variational

theory of liquid "He to finite temperatures in such a way
as to take advantage of the large body of work which has
been acquired in the Jastrow-Euler-Lagrange method and
its generalization. While most of the theoretical under-
standing of the temperature dependence of He has been
based on quasiparticle models of the Hainiltonian H, we
will preserve the exact form of H and instead coricentrate
on approximations for the density matrix in the
coordinate-space representation. Thermodynamic func-
tions of interest can then be calculated from the
Helmholtz free energy, while the density matrix will be
used to calculate such quantities as the liquid structure
function and condensate fraction at nonzero teinperatures.

At finite temperature, T=(kiiP) ', variational theory
appropriately begins with the Gibbs-Delbruck-Moliere
minimum principle for the Helmholtz free energy F,

F(Tr 8',H+ —W, ln8; =—F, ,
1

where W, is a trial statistical operator of suitable form on
the Hilbert space of the Hamiltonian H with appropriate
(Bose) statistics. The operator W, must be normalized,
Tr8', =1, and must be positive definite on the Hilbert
space. The equality sign in Eq. (3) is obtained only if 8',
is the equilibrium density matrix 8'=e ~ /Tre ~ . In
order that the thermodynamic and statistical mechanical
definitions of derived thermodynamic functions such as
entropy and internal energy be self-consistent, the trial
density matrix must be properly restructured to have no
explicit dependence upon temperature. '

To avail ourselves of the results and methods developed
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in the ground-state variational calculations of the helium

liquids, we express the right-hand side of expression (3) in
the coordinate-space representation. In that case,
W, (ri, . . . , r~, r i, . . . , r Iv) is the trial N-body density
matrix for a system of N particles. There are two useful

properties of the exact density inatrix which we require
for the trial functions: positive coordinate-space represen-
tation and product-cluster property. The latter is obtained
from the same property of many-body wave functions for
fluids, and implies, in particular, that the density matrix
can be written as

=4'(ri, . . . , rN)Q(ri, . . . , rz, r i, . . . , r Iv)

X@(r 'i, . . . , r Iv), (4)

where the incoherence factor Q contains no factor de-
pending only on primed or unprimed coordinates alone.
Of course, if W, is the density matrix of a single state,
then Q =1, and 4 is the wave function of that state. The
fact that the operator W, in the coordinate-space repre-
sentation has non-negative matrix elements depends only
on the Bose statistics of the system (see the Appendixes
for details). As a consequence of these two properties, the
density matrix may be represented as an exponentiated
sum of two-body, three-body, . . . , multibody real func-
tions in analogy to the Feenberg form of the boson
ground-state wave function (1).

In a first step within our approach based on the varia-
tional principle (3), we adopt a trial density matrix with
the components

N
4=%'u( r i, . . . , r& ) g exp —,

' hu (r, )J, (5)

N
Q= g expy( g —r,' [), (6)

which has the required structure discussed above. The
wave function Vo represents the ground state of liquid
He (or some approximation to it), the two-body function

b,u (r) describes the finite-temperature shift of the "pseu-
dopotential" u2(r), Eq. (1), and the quantity y(r) gen-
erates the incoherent part of the density matrix. The ex-
plicit forms (5) and (6) have been originally derived as an
approximation to the density matrix at temperatures far
below the A, point by approximately incorporating the ef-
fects of noninteracting phonons, "or Bijl-Feynman excita-
tions. ' Expressions (4)—(6) for the density matrix also
have been used in recent studies of the temperature depen-
dence of spatial correlations in He by Reatto and co-
workers. ' '

The Ansiitze (5) and (6) represent the simplest class of
trial density matrices appropriate for liquid He, particu-
larly when the wave function %0 is approximated by the
Jastrow form described by Eq. (1) with u„=O for n &2,
so that

g exp[ —,
' (,")]

N
X g expy(/r; —r'/)

N

X ff exp[ —,
' u(r;~)], (7)

with Z, being the associated trial partition function. It
should be noted that Ansatz (7) provides an admissible set
of trial density matrices possessing non-negative eigen-
values provided that the function y(r) has a semipositive
Fourier inverse (see the Appendixes for details). As a next
step we optimize the free-energy functional F„expression
(3), at a given nonzero temperature, thus determining the
functions u(r) and y(r) of Ansatz (7) from the corre-
sponding Euler-Lagrange equations:

5F, =0,
5y(r)
5F, =0.

5u (r)

(8)

(9)

u (r) =u(r) — V [u (r)+2y(r)] .
4m

We emphasize that the optimization procedure ensures
a self-consistent evaluation of thermodynamic quantities,
i.e., thermodynamic and statistical-mechanical definitions
of observables such as the entropy lead to the same formal
expressions. In this important aspect our approach im-
proves upon the earlier work of Refs. 11—14. The Euler-
Lagrange equations (8) and (9) constitute a coupled set of
equations for functions u (r) and y(r) Since .the entropy
term contributing to the trial free energy F, varies with
temperature, the optimal solutions of Eqs. (8) and (9) de-
pend on the temperature. It is straightforward to show
that in the limit T—+0 the phonon density matrix used in
Refs. 11—14 is a solution of the Euler-Lagrange equations
(8) and (9) with %0 corresponding to the optimum Jastrow
ground-state trial function. Deviations from the low-
temperature results must occur as quasiparticle correla-
tions become more important. These are accounted for in
part by the optimization procedure at a fixed nonzero
temperature based on the trial matrix (7), although it
might be necessary to use a more elaborate choice for Wt
in order to obtain quantitative agreement with the experi-
mental results on the elementary excitation energies as the
temperature increases.

Employing Ansatz (7) as input, the first term in expres-
sion (3), which represents the internal energy U„can be
evaluated in a standard manner. Using the Jackson-
Feenberg form for the kinetic energy, we obtain

k
U, =N+ f u'(r)g(r)dr+ 3 f y(k)dk,2 (2~)3p 2m

(10)
where
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Equation (10) involves the radial distribution function
g(r) associated with the "pseudopotential" u(r)+2y(r),
y(k) is the dimensionless Fourier inverse of the incoher-
ence function y(r), and p is the number density. The po-
tential U(r) in expression (11) describes the bare interac-
tion between two helium atoms. Standard hypernetted-
chain equations provide the relationship between the radi-
al distribution function g (r) and the quantity
u (r)+2y(r).

The entropy of the trial density matrix, defined as

S,= ktt T—r( IY, ln W, ), (12)

n(k)inn (—k) jdk . (13)

In this approximation the incoherence term y(k) of An-
satz (7) must be considered to be a functional of quantities
n (k) and S(k) through the relationship'

y(k) = n (k)[1+n (k)], (14)

where S(k), the liquid structure function at nonzero tem-
peratures, is 1 plus the dimensionless Fourier inverse of
g(r) —1. The same functional relationship has been em-

ployed in earlier references, for example, in Refs. 11 and
12, where function n (k) appears as the average boson oc-
cupation probability for temperature-independent quasi-
particle excitations. Empirical justification for the form
(13) of the entropy is obtained froin the thermodynamics
analysis of Bendt, Cowan and, Yarnell, ' who find that
quasiparticle statistical mechanics, together with the mea-
sured elementary excitation spectrum, provide a good
description of He to T=1.95 K. The usefulness of the
separability assumption, inherent in Eqs. (13) and (14), at
high temperatures, remains to be explored.

The variational calculation of expressions (8) and (9) at
a fixed temperature based on Eqs. (10), (11), (13), and (14)
is most conveniently done after the change of variables
from the pair y(r) and u (r) to the pair n (k) and g (r) or

provides a difficult challenge to calculate as a functional
of quantities u and y. However, we can evaluate S, if we
adopt a generalized separability approximation' or,
equivalently, a cumulant analysis in the density-
fluctuation operators. ' The introduction of an approxi-
mation, of course, invalidates the v'ariational theorem in
principle. However, our experience with this approxima-
tion in other calculations gives us confidence that it pro-
duces an excellent approximation to the exact Euler-
Lagrange equation. Furthermore, the result is exact if
y(r) contains only one Fourier coefficient and its inverse

(k and —k). Thus the approximation amounts to ignor-
ing interference effects between different momentum-
space components. The analysis of S, has been performed
in detail in Ref. 17 and obtains an approximation for the
entropy (12) as a single sum over wave numbers. The ex-
plicit form of the result is consistent with a change of
variables to produce an elementary excitation structure for
the entropy,

S,= 3
1+n ln l+nN

(2ir) p

S(k). Variation of the trial free energy F, = U, —TS„
with respect to quantity n(k) holding the distribution
function g (r) fixed, gives the optimization condition

Ak Pe(k) = coth —e(k)
2mS k

(15)

where we have introduced a function e(k) defined by

n( k)=(e~' ' —1) (16)

Variation of the functional F, with respect to the radial
distribution function at fixed quantity n(k) yields a
Euler-Lagrange equation of the form

T

fi V'+v(r) v'g (r) =0 .
m

(17)

Here, the effective potential U(r) is defined by

U(r) =u (r)+ w (r)+P(r), (18)

e( k, T)tanh
e(k, T)

B

i'' k 1

2m S(k, T)
(21)

It should be noted that this result is equivalent to that
obtained from a single resonance Ansatz for the density-
density response function, together with the f-sum rule
and the fluctuation-dissipation theorem, to produce a rela-
tionship between the excitation energy in the Ansatz and
the liquid structure function. This feature is well known
from the T =0' Jastrow Euler-Lagrange theory; the fact
that it generalizes to finite temperatures with our model
density matrix serves to emphasize the physical content of
the model, namely the absence of backflow contributions
to the density matrix. As in the T =0 case, the
equivalence of these two approaches requires that one use
the, Euler-Lagrange solution; a parametrized density ma-
trix would not produce the simple result of Eq. (21).

In the limit that T~O we recover from Eq. (21) the
familiar Bijl-Feynman result,

e(k, O) =

haik

1
(22)

In this case the function u (r} is long ranged, u (r) -r

with the components

—1
y

iri k [2S(k)+1][S(k)—1] t k. ,dik
i (2~)3p 4m S2(k)

(19)

—1 I flak n(k)[1+n(k)] '"''d k . (20)
(2n. ) p m S (k)

At zero temperature the function n(k) vanishes. Thus,
we have P(r)=0 and the Euler-Lagrange equation (17)
reduces to that found by Lantto and Siemens for the op-
timal structure function associated with a ground-state
wave function of Jastrow type. '

The solutions of the two coupled Euler-Lagrange equa-
tions (16) and (17) depend upon the teinperature T, which
will hereafter be included as an explicit argument for clar-
ity. In particular, the relation (15}between the solutions
e(k, T) and S(k, T) reads
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as r~ no, and the associated structure function vanishes

linearly with wave vector k, so that the elementary excita-
tion energy e(k, O) has the correct linear k behavior. At
finite temperatures the effective pseudopotential
u(r, T)+2y(r, T) is short ranged, falling off at least as
r ", thus generating a finite value of S(O, T) proportional
to the temperature,

10

S(0, T)=k~ T/mc (23)

Equation (23) defines a temperature-dependent quantity c
which is related to the isothermal compressibility KT by
mc =K~ '. This notation is motivated by noting that the
long-wavelength limit of relation (21) together with Eq.
(23) indicates that function e(k, T}is linear in the momen-

tum A'k with slope c,

e(k, T)~Ack as k~O . (24)

Result (24) and expression (16) with the optimal function
E', 1.e.,

1
wk nrk T—1

(25)

suggests that we may interpret the solution e(k, T) as the
temperature-dependent generalization of the Bijl-Feynman
excitation spectrum. Consequently, the factor c in Eq.
(24) may be viewed as the temperature-dependent velocity
of the long-wavelength excitations.

In the following we will concentrate on a phenomeno-
logical study of the relationship (21) between the excita-
tion energies e(k, T) and the liquid structure function
S(k, T). To study the variation with temperature, we
separately consider the behavior of the density fluctua-
tions at small momentum transfer and that of rotons.
Our phenomenological analysis of Eq. (21) at small wave
numbers is based on the experimentally measured struc-
ture functions S(k, T) of Hallock ' and Svensson, Sears,
Woods, and Martel. ' Employing those experimental
results for temperatures T & Ti =2.17 K and wave num-
bers k &0.4 A, Eq. (21}yields associated excitation en-
ergies e(k, T), which indeed agree very well with the ex-
perimentally determined excitation energies of Cowley
and Woods . at low momentum (Fig. 1). In contrast, the
theoretically inconsistent application of the Bijl-Feynman
relation (22) at nonzero temperature leads to an approxi-
mation for the excitation energies which violates the
linear dependence at small momenta and disagrees with
experimental results (curves 1—3 in Fig. 1). The differ-
ences between the predictions of Eqs. (21) and (22) in-
crease markedly with increasing temperature, as can be
noted by comparing the 3-K results in Fig. 1. Note also
that the temperature-dependent effects at 1 K are missing
beyond k & 0.3 A, where the results of Eqs. (21}
and (22) merge.

In Fig. 2 we display in detail the temperature depen-
dence of the excitation energies calculated from Eq. (21)
using the "smoothed" experimental data of Ref. 23 for
S(k, T) at saturated vapor pressure and k &0.5 A '. The
data are exhibited as the phase velocity (multiplied by i').
For reference we have included the experimental iso-
thermal sound velocity, which should be related to the
remaining data by

I) T= I K

2) T= I.97 K

S) T=5K

I

0.60 0.2 0.4
k(A)

FIG. 1. Energy e(k, T) of elementary excitations at small
wave numbers k. Curve E with the error bars represents experi-
mental data of Ref. 24. Our theoretical results based on Eq. (21)
and experimental structure functions for T & Tq are shown as a
dashed line at T =1 K, and by 0 at T =3.3 K. Curves 1—3
depict results on the inconsistent application of the Bijl-
Feynman excitation spectrum using finite-temperature structure
factors, thus violating the linear momentum dependence of
e(k, T).
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FIG. 2. Phase velocity e(k, T)/k of elementary excitations at
several wave numbers as a function of temperature, using Eq.
(21) with input structure functions of Ref. 23. The curve la&cled
zero is Sic, where c is the isothermal sound velocity as deter-
mined by the theory. The dashed curve is the experimental re-
sult from Ref. 28.

lirn [e(k)/k] =iric .
k~0

This relationship is clearly satisfied even at temperatures
well above T~. However, that will always be the case as
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long as Eq. (23) is satisfied, as it must be in the present
phenomenological application of the theory since S(k, T)
is actually taken from experiment. Similarly, in the case
of the low-temperature, lowest-wave-number results, the
fact that this limit seems to converge to a somewhat dif-
ferent constant than the thermodynamic value of Pic is evi-

dently a reflection of the fact that the combination of sys-
tematic and statistical errors in the small-k measurements
of S(k) is greater than the other values displayed, and is
sufficiently large to encompass the proper isothermal
sound-velocity result. '

The calculated phase velocity shown in Fig. 2 increases
slightly with increasing temperature up to about 1.9 K
and then decreases rather rapidly until the A, transition.
Some additional experimental support for this behavior is
given by the measurements of Cowley and Woods on the
mean energy of the scattered total neutron groups (see
Sec. III C and particularly Fig. 16 of Ref. 29).

Recent elaborate measurements on the structure func-
tion S (k, T) in the region of roton momenta have revealed
that the principal peak increases and sharpens as the tem-
perature approaches the A, temperature froin below. 29 M

At such wave numbers, Eq. (21} does not give an ap-
propriate description of the relationship between the
structure function and the excitation energies since back-
flow effects and quasiparticle-interaction effects are com-
pletely ignored in Ansatz (7). At wave numbers k &0.6
A ' and temperatures T & Ti„, Eq. (21) reduces to the
familiar Bijl-Feynman relation, yielding theoretical roton
energies which are 2—3 times larger than the observed en-
ergies. Nevertheless, the present approximation may give
some qualitative insight on the sharpening of the liquid-
structure-factor peak. We rewrite Eq. (21}as an equation
for the structure function in terms of the temperature-
dependent excitation spectrum,

0.03—

0.02—

0.01

I

0

M—-0.01
I—

-0.02

I I I

/
/

/
/
/

/

/

-0.03—

function at temperatures Ti ——1 K and T2 ——2. 15 K to-
gether with the experimental excitation energies at
Ti ——1 K to evaluate the form factor e(k, Ti )/e(k, T2).

The results of this analysis are shown in Fig. 3 by the
solid line. We find, indeed, a positive maximum at
k-2.05 A ' and a negative profile at k &1.95 A ' and
k &2.1 A ' for the relative shift e(k, Ti)/e(k, T2) 1. —
However, the peak is extremely small leading to an un-
realistically small roton-energy shift, E(k, Ti ) —e(k, T2 ), of
only 0.03 K. Using, instead, the experimental informa-
tion of Ref. 25 on the temperature dependence of the
maximum height of the principal structure-function peak

-0.04—

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

I( (A-I)

FIG. 3. Form factor e{k,Ti)/e{k, T2) —1 in the region of ro-
ton wave numbers. Solid curve gives results of Eq. (28) with in-

put data on S(k, T) at T~ ——1 K and T2 ——2. 15 K taken from
Ref. 23 and on S(k, T) at T =1 K of Ref. 24. Experimental
data of Ref. 25 yield a more pronounced profile, qualitatively
indicated by the dashed line.

e(k,O)S(k, O)
h

e(k, T)
coth

e(k, T) 2k' T
(26)

9.0—

Earher expressions for S(k, T) set, effectively, e(k, T)
=e(k, O), thus neglecting the temperature dependence of
the spectrum everywhere in Eq. (26},

S(k, T)-S(k,O)coth
e(k, O)

(27)
2 ii

8.5—

This approximation results merely in an increase in the
structure function at every value of momentum and thus
no sharpening. In contrast, Eq. (26) tells us that we may
trace some of the observed effect to an appropriate shar-
pening of the relative shift in the excitation energies by
varying the temperature.

Neutron-scattering experiments which give information
on the energy shift around the roton minimum have been
carried out at several temperatures. ' ' To learn
whether the experimental information gives some qualita-
tive support to the above discussion we cast Eq. (26) into
the slightly more general form

S(k, T2) e(k, T, ) tanh[e(k, Ti)/2k&Ti]
(28)

S(k, Ti ) e(k, T2) tanh[e(k, T2)/2k~ T2]

and employ the smoothed data of Ref. 23 on the structure

OJ

8.0—

75—
I.O

FIG. 4. Temperature dependence of the roton gap 5 as a
function of the structure-factor ratio as obtained from Eq. (28).
0 gives S2/Si from neutron scattering, Ref. 23; 0 gives S2/Si
from x-ray scattering, Ref. 29; Q gives the measured gap at
T=2.15 K, Ref. 31.
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at density p=150.3 kgm, the peak of the energy form
factor (minus 1) increases roughly about 1 order of magni-
tude (dashed line, Fig. 3). Consequently, the theoretical
roton-energy shift is about 0.3 K, which we may compare
with an experimental energy shift of about 1 K reported
by Mezei. This order-of-magnitude difference in the
predicted shift comes about because the percentage in-
crease in S(k) as one goes from 1 to 2.15 K is 3% in the
neutron-diffraction measurements, but is 6% in the x-
ray measurements. Since Eq. (28) depends only on the
ratio of S at the two temperatures, in Fig. 4 we show the
roton gap b, (T) as a function of this ratio as calculated in
Eq. (28). h(T&) is taken from Mezei's results at T&

——1.0
K. Shown on the curve are the experimental structure-
function ratios at 1.9 A ', ' and the experimental value
for 6 at Tz ——2. 15 K. Thus we see that, if Eq. (28) were
to account for the entire shift in the roton minimum, the
corresponding increase in the structure factor would have
to be 14%, more than twice the largest observed shift.
We do not suggest that such a large increase in S(k)
should have been observed. Instead, our results show that
the thermal occupation of rotons and the induced correla-
tions as manifested in the incoherence function y(r) can
only account for a fraction of the shift in the roton

minimum. The majority of the shift is certainly due to
roton-roton interactions, which is the usual interpreta-
tion. '

In conclusion, the approach we have presented here
should be considered as the initial step in a systematic
development of a variational microscopic theory of a
many-boson system at nonzero temperatures. To achieve
a satisfactory description of liquid 4He at T & 0 we must,
at least, (i) incorporate the effects of backflow and quasi-
particle interactions by generalizing the Ansatz (7), and (ii)
find better approximations for the entropy by improving
upon the separability assumption.
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APPENDIX A

g f r;"(t)'dt+ g f V[r,"(t) rJ"(t)]Ct &~r—"(t) .
i /, J =I

Here we wish to demonstrate one result used in the above analysis: that the density matrix for bosons in thermal
equilibrium has non-negative matrix elements in the coordinate-space representation.

The positivity of the coordinate-space matrix elements of the equilibrium boson density matrix follows by inspection
from the path-integral representation of that quantity. It is well known that the Boltzmann density matrix has this prop-
erty since it is the path integral of an exponentiated real function:

I
1 N

Waouzma~(RR"P)= '' exp—
P)

The corresponding expression for some other statistics is
obtained by projection on this operator with an appropri-
ate permutation sum. In particular, for boson statistics
this is just the sum over permutations of the primed (or
unprimed) coordinates:

Wg (R,R';P)=, g Wa,i„, (R,PR';P)
~ p

(see, for example, Eq. 10.77 of Ref. 34). Since this is the
sum of terms each of which is non-negative, it too is non-
negative.

W, (R,R') =4 (R) g e ' ' 4(R') . (B1)

To prove that this provides a set of trial density matrices
which satisfy the requirement that the eigenvalues be
non-negative, we demonstrate that

y»o (B2)

for any state P if the Fourier inverse of function y(r) is
non-negative. The proof follows immediately by intro-
ducing the Fourier transform into the incoherence factor:

APPENDIX 8

Here we will now demonstrate the second result: that
Ansatz (7) represents a trial matrix which possesses the re-
quired property of having non-negative eigenvalues if the
Fourier inverse of the function y(r) is non-negative.

The trial Ansatz (7) for the equilibrium density matrix
of identical bosons in the coordinate-space representation
is of the form

ff e ' ' =exp —g y(k)pk(R)pk(R')
y(~ r, —r,' ))

N
(B3)

ik ~ r;where the density-fluctuation operator pk =g,.e '. In-
serting this expression into (B2), expanding the exponen-
tial in the incoherence factor, and collecting the primed
and unprimed coordinates into separate factors, one ar-
rives at the series
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(1b I
W,

I
Q)= f d Rd R'Q*(R)W, (R,R')f(R')

1 1 2
y(ki) y(k„) f d Rp*(R)4 (R)pk, (R) pk (R)

a=0 ' ki, . . . , k„
(84)

Thus for any state g we find that (82} is satisfied if
y(k) &0.

Although this condition is sufficient, it has not been
shown that it is necessary. To demonstrate the latter in
our present calculation, we make a specific choice of g in
(82), namely

y, Is«) I'
1 —y'„Is(k) I']' ' (87)

where S(k} is a positive function for a positive semidefi-
nite choice of N as we require here, defined by

1b(R) =pk(R) . (85) s(k)= —f @(R) Ipk I

d R .
Since the density operator is a symmetric function, this

choice is applicable only to boson statistics. The expecta-
tion value we wish to examine is generated by the integral
of W, over primed and unprimed coordinates:

(pk I
Wt Ipk)= — f d' Rd' R'W, (R,R') . (86)1 d

3 k

If'one employs a Jastrow choice (or any of its generaliza-
tions) for 4, the integral can be evaluated using a cumu-
lant analysis. ' To apply this to the results in the text we
adopt the same truncation of the cumulant analysis which
was used above, namely the generalized separability ap-
proximation. ' In that case we make use of (86) to find
that

Clearly, the right-hand side of (87) has the same sign as
y(k), which completes the demonstration that y(k) must
be non-negative. Although this part of the proof is weak-
ened by the necessity to invoke an approximation, the im-
portant feature is that it is internally consistent with the
approximation used to obtain Eq. (13). While it may turn
out that interference effects produce a correction to (86)
which makes it positive for negative y(k), this would not
constitute a proof that such negative values are permissi-
ble. That would require an examination of all possible
choices of 1b.

' It is implausible that one cannot construct a
choice for g that would make (82) negative when y(k) is
negative.
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