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Analytical results on the periodically driven damped pendulum.
Application to sliding charge-density waves and Josephson junctions
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The differential equation eP+P —Ta sin(2$) =I++„"„A„5(tt„)—describing the periodically

driven damped pendulum is analyzed in the strong damping limit e(p 1, using first-order perturba-
tion theory. The equation may represent the motion of a sliding charge-density wave (CDW) in ac
plus dc electric fields, and the resistively shunted Josephson junction driven by dc and microwave
currents. When the torque I exceeds a critical value the pendulum rotates with a frequency co. For
infinite damping, or zero mass (@=0), the equation can be transformed to the Schrodinger equation
of the Kronig-Penney model. When A„is random the pendulum exhibits chaotic motion. In the
regular case A„=Athe frequency ~ is a smooth function of the parameters, so there are no phase-
locked subharmonic plateaus in the co(I) curve, or the I-V characteristics for the CDW or
Josephson-junction systems. For small nonzero e the return map expressing the phase P(t„+I) as a
function of the phase P(t„)is a one-dimensional circle map. Applying known analytical results for
the circle map one finds narrow subharmonic plateaus at all rational frequencies, in agreement with
experiments on CDW systems.

I. INTRODUCTION

The differential equation for the damped, driven pendu-
lum

eP+P F(P)=I+—V(t),

where F and V are periodic functions, is of interest in a
variety of problems in condensed-matter physics. For in-
stance, the equation may describe the resistively shunted
Josephson junction driven by a dc current I and a mi-
crowave current V(t) =A sin(to,„,t). ' In this case 2$ is
the phase across the junction and F(p)-sin(2$). The
damping I/e is given by e=R(2eCI, /h)'~, where R is
the resistance, C the capacitance, and I, the critical
current. The voltage across the junction is determined by
the Josephson equation V =2RI,P and the average volt-
age is thus proportional to the frequency with which the
pendulum rotates. When the current I (the torque on the
pendulum) is small the frequency is zero, i.e., the pendu-
lum remains near its downward position and there is no
voltage across the junction. When I exceeds a critical
value the pendulum rotates with a characteristic frequen-
cy ~)0, and there will be a nonzero average voltage
across the jv.nction,

V =2RI, ($)=2RI, to,

where (P ) is the average phase increase per time unit.
The equation also describes the motion of a single-

domain charge-density-wave system (CDW) in a dc elec-
tric field I plus an ac electric field V(t) Griiner et a.l. '

and Monceau et aI. hhve analyzed experiments on NbSe3

in terms of the equation, and it was suggested that the
strong damping limit e-0 applies. In CDW systems P(t)
is the position of the rigid CDW relative to a fixed "im-
purity" with potential F(P), which could simply be a con-
tact potential. The nonrotating solutions correspond to
pinned CDW states. The rotating solutions describe the
sliding of the CDW when I exceeds the critical depinning
field I„and the current carried by the CDW is given by
the simple expression

IcDw- ~0) =co .

Hence, the roles of fields and currents are the opposite
for the CDW systems and the Josephson junction: in the
Josephson junction a voltage V-co is induced by the driv-
ing current I; in the CDW a current I-co is induced by
the depinning electric field.

The equation (1.1) has been studied theoretically by
numerous authors. Numerical simulations have revealed
"subharmonic steps" in which the frequency co=(P)
"locks-in" at rational fractions of the driving frequency,
to=(p/q)co, „,. This explains the occurrence of steps in
the I- V characteristics which have been observed in the
Josephson junction in a microwave field, in particular by
Belykh et al. , and in the CDW system NbSe3 by Griiner
et al. , although more or less competing models for
CDW's have been suggested. In addition, numerical
simulations have revealed "chaotic" solutions where the
frequency spectrum has a broad background. 9' This
noisy behavior had previously been observed experimental-
ly' in Josephson junctions.
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Most of these phenomena can be understood, at least in
principle, by considering the underlying return map of the
equation (1.1). Suppose we watch the system with "stro-
boscopic light" at times t&, t2, . . . , t„,. . . with ~„=nr,
and w the periodicity of V(t). Since P and P contains all

. the information of the state of the system, the value of P
after n +1 cycles of the rf field, P„+&

——P(t„+&) is a (gen-
erally unknown) function of the values of P and P after n

cycles:

P„+)——h'(P„,p„).

However, it has been shown numerically" that for suf-

ficiently large damping the derivative P„becomes a
unique function of P„and the return map collapses to a
one-dimensional (1D) map after an initial transient period:

P, +( h'(P„——P (P„))=h(P„),

The advantage of using the 5-function potential is that
we can obtain exph'cit analytic solutions, probably without
loss of generality. Complete solutions can be outlined for
any distribution A„,not only for the periodic arrange-
ment A„=A. The solutions are most elegantly derived
through a transformation to the Schrodinger equation for
the Kronig-Penney model, where A„is the strength of the
potential at site n. In the periodic case we confirm for
general F(P) that there can be no subharmonic steps; in
the random case the problem can be related to a 1D locali-
zation model and the phase P(t) (not surprisingly) exhibits
chaotic behavior.

Our most interesting results, derived in Sec. III, are for
the strongly damped case 0&@&&1. Again we calculate
the return map P„+&(P„)for any distribution A„.The re-
turn map is indeed one dimensional, confirming previous
numerical results. For a periodic force, A„=A,the re-
turn map takes the form

where (1.2)

and g is periodic, g (P)=g (P+m ). The one dimensionali-
ty of the return map is trivial for e=0 where the differen-
tial equation is of first order. Once the transformation to
the circle map has been established one can apply theoreti-
cal results from the circle map; this permits a rather de-
tailed understanding of the subharmonic steps and the
transition to chaos. At the transition point h (P„)loses its
analyticity. "

Renne and Polder' and Waldram and Wu' have
analyzed the equation in the case e =0 with
F(P)=I,sin(2$). Renne and Polder found that the equa-
tion can be transformed into a Schrodinger equation for a
particle in a periodic potential. The wave vector k of the
Bloch solutions corresponds to the frequency co. The gap
functions corresponding to the pth gap give the periodic
solution P(t) at the pth "Shapiro step, " where co=@co,„,.
Since k is varying smoothly as a function of the parame-
ters (between the band gaps) there can be no subharmonic
plateaus where the frequency co locks-in. Waldram and
Wu constructed the return map for the differential equa-
tion with the sinusoidal potential. The return map takes
the trivial form

~here g is a complicated periodic function and
I ~n 0n ~

(~ A map of the form (1.5) is called a circle
map. The parameter e giving the strength of the non/inear
«rm of the circle map is thus essentially the coefficient of
the second order term-of the differential equation (i.i).
The phase diagram in 0-e space is shown in Fig. 1. For
nonzero e the frequency locks-. in at any rational value
(p/q)co, „,. The locked portions of the diagram do not fill
up the whole parameter space, ' i.e., there is a nonzero
probability that the motion is quasiperiodic (incommensu-
rate).

Hence, narrow subharmonic steps are expected in
damped systems with e« 1. Gruner et al. have
discovered very recently a multitude of steps in the CDW
system NbSe3. This indicates that NbSe3 is not in the
overdamped regime a=0 as was previously assumed. We
suggest that experiments on CDW systems and Josephson
junctions be analyzed in terms of the present theory.

TRANS ITI ON

0 CHAOS

~n+1=n+~ ~ (1.3)
&=7T P/q

where 8„is a function of P„and
~

P„—0„~&m, so to is
the frequency of the pendulum, which again is a smooth
function of I, I„etc.

The purpose of the present paper is to generalize and
extend previous work to the case e «1, and to "random"
applied forces V(t) To our kno.wledge, no analytical re-
sults for e&0 exist prior to the present work. Let us
briefly outline the paper. In Sec. II we consider the case
a=0.

F(y) =I+ g A„5(t t„). —
n = —00

0

FICi. 1. Phase diagram in Q-e space. For e&0 there is mode
locking at every single rational frequency, co —mp/q. The pa-
rameter Q is a complicated analytic function of the parameters
of the differential equation.
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II. THE OVERDAMPED CASE a=0

Let us first consider the overdamped case e=O:

F—(P)=I+ g A„5(t t„)—.
n =—oe

At t„i & t & t„where P =F(P)+I, one obtains

P(t) =f(t t„),—

(2.1)

(2.2)

P„+Q„Z„
2 Rn+SnZn

(2.10}

where P„,Q„,R„,and S„areknown numbers. The sub-

stitution

This equation gives a relation between Z(r„+i) and

Z(r„},and hence between P„+, —P(t„+0)and P„,and
Eq. (2.9) thus defines the return map for the equation.
Using the notation Z(r„)=Z„onereduces Eqs. (2.8) and
(2.9} to

where the choice of x is arbitrary, and r„is an integration
constant, x =p(t„).In the case F(p) = —,

' ttsjn(2$),

QZ„=—+Sn
2

with the proper s„,reduces Eq. (2.10) to

(2.11)

f(x)=tan Z(x)
I 2I (2.3}

or

~n —rn
" 1+r„u„ (2.12a)

where

CX
Q tan(Qx), q =I2 =Q2)—(}

Z(x)= —Qcoth(Qx), q = —Q2&0, iZ
~

)Q
—Q tanh(Qx), q = —Q2 & 0,

~

Z
~

& Q .
(2.4)

The tan solution describes a rotating motion for I suffi-
ciently large; the other solutions are oscillating modes
with zero rotation frequency.

We now match the solutions in two neighbor intervals:

(2.12b)
t Q —rn n

Qn+] =Wn
1 —rn~n

These equations may of course be studied "as is."
However, more insight into the structure of the solutions
can be achieved by transforming the recurrence relations
(2.12) to a linear Schrodinger equation (see Azbel and
Soven, Refs. 15 and 16). Consider, for instance, Eq.
(2.12a). The equivalent Schrodinger equation is that of
the Kronig-Penney model:

k —g v 5(x —x„)it =0 . (2.13)

P( t„+0) P(t„-—0)=A„
and thus

f(t„t„+,) f(t„—t„)=A—„.—
Introducing

&n+$ =tn tn+$/ &n tn n —1

one obtains from (2.3), (2.5), and (2.6)

(2.5)

(2.6)
/=exp(G„/2)cos[k (x —x„i)—@„/2].

The transfer matrix 0 „defined by the equation

(2.14)

The connection between the two problems is through the
transfer matrix relating the wave function in the interval
(x„ i &x &x„)to that in the interval (x„+i &x &x„}.

The currentless wave function of the Schrodinger equa-
tion in the interval x„i &x &x„(with energy E =0) is

and

Z(r„+r„)
P„+i=P(t„+0)= tan— I +A„2I

(2.7)

exp
Gn+] .C'n+1

2
'

2

Gn+ & .@'n+~
exp +i

Gn
exp

" —i
2 2

G„
exp +i

(2.15)aZ(r„+,)=I tang„+,+
2

I tanA„+Z(r„+r„)—«2——+ (2.8}
2 1 —(tanA„/I)[Z(r„+r„)—a/2]

where [by Eq. (2.4)]

is given by

sec(h„)exp( ika„ih„)—i tan(h„)e—xp(ika„)
i tan(ht, )exp( —ika„) sec(—h„)exp(ika„+ih„)

(2.16)

Z(r„+r„)= '

Z(r„}+Q tan(Qr„)
1 —[tan(Qr„)/Q]Z (r„) if q=Q

Z(r„)—Q tanh(Qr„)
(2.9)

1 —[tanh(Qr„)/Q]Z (r„) if q= —Q2.

with

h„=tan '(v„/2k), a„=x„—x„ (2.17)

The recursion relation can be reduced to (2.12a). The rela-
tions between the parameters in (2.15) and (2.16) and those
in Eq (2.12a) are



30 ANALYTICAL RESULTS ON THE PERIODICALLY DRIVEN. . . 3725

4„—h„u„=tan
2 4

T

hnw„=tan
4 2

(2.18)

h„+h„r„=tan ka„—
2

h„=——2 tan Qw„,7T

1l

h„+h„ka„= +tan '(r„),
2

(2.19)

Of course, one could forget about the Schrodinger equa-
tion and consider Eq. (2.18) as a corollary of Eq. (2.15)
and (2.16). Reversing (2.18) one finds

and Go=0, so that if uo is given then

Po
——ho+a. /2+tan 'uo .

Thus Eqs. (2.15)—(2.19) reduce the solutions of Eq. (2.1)
to the phase change of the E =0 wave function of the
Hamiltonian (2.13).

In the case of a random distribution of A„'s,(2.13) is a
Hamiltonian for electrons in a one-dimensional random
on-site potential. Such Hamiltonians have been studied in
the context of localization in one-dimensional systems.
The solutions to (2.15) are always chaotic (see Azbel and
Rubinstein, Ref. 17). Translating this result to our origi-
nal problem we conclude that, not surprisingly, the pendu-
lum perturbed by a random periodic driving force will ex-
hibit chaotic motion.

In the periodic case A„=A for all n one finds, since
0 =0,

exp

exp

G„+(—i4„+(

G.+i+«'. +~

2

imp
exp

2

imp
exp

2

(2.20)

Oi2
O. &

D 4—O22

&)—8)) Ar 0

02
02 O ii —~i

O22 ~2 O12
(2.21)

4„+i ——4„+2' (2.22)

The relation between the original phase p„and @„is
given by combining (2.18), (2.3), and (2.11):

4„—hu„=tan
2 4

where A, ~ and A,z are the eigenvalues of 0 and
D=A, jO»+A, 20» —2. In the pth "energy gap" where

l
cos(ka+h)

l
&

l
cos(h) l, A, ~ and A,2 ——I/A, t are real and

P„~constwhen n~oo, so

A,
&
——

exp(iso�),

k2 exp(——i co), —
cosco =sec(h)cos(ka + h),

the phase 4„is given by

A
&
cos(neo)+8& sin(neo)4„=2tan

A2cos(neo) +Basin(neo)

=2 tan '[Q tan(neo+a ~ )—a2]
or

fan —tan +@2 =&~+&~2

(2.25)

(2.26)

(2.27}

=—tan(P„)I
S

(2.23) where g ~, &~, A 2, Bz, Q, a
&

and a 2 are known numbers.
Defining

co= llm
4.—0o 4„—4p

77@ 0

211

In average, the pendulum performs p rotations between
two successive kicks. These solutions give the main
Shapiro steps in the Josephson-junction problem. The
width of the pth Shapiro step when I is varied is a com-
plicated function of p which is given by the condition

so
l
@„/2—Q„l

&m. and the frequency of the original
problem becomes 8„=tan —tan +a2

1 ll

2

Eq. (2.27) takes the form

0„+) ——0„+a), (2.28)

which is a trivial "circle map" mapping one point O„on
the circle onto another point 8„+&

on the circle.
Combining (2.23} and (2.27), O„can be expressed in

terms of the original phase P„:
l
cos(ka+h)

l
&

l
cos(h)

l O„=H(P„) (2.29)

for ka-p~, with ka and h given by Eqs. (2.19) and
(2.9)—(2.12).

In the allowed bands where

with
l
H (P„)—P„l

& m.. Hence, the frequency of the pen-
dulum is essentially equal to the frequency or winding
number co of the circl'e map (2.28) which constitute the 1D



3726 M. YA. AZBEL AND PER BAK 30

return inap of the differential equation. The simple re-

turn map (2.28) was first found by Waldram and Wu, '

for F(P)=sing.
The band edges give the transitions from locked to un-

locked solutions. Since co is a smooth function of the pa-
rameters of the original differential equation there can be
no subharmonic frequency-locked steps between the main

Shapiro steps. In the following section the result derived

here will be extended to the case 0 & e« 1 which is appl-
icable to CDW systems and Josephson junction in rf and

microwave fields.

III. THE STRONGLY DAMPED CASE

We now proceed to consider the nontrivial case e « 1

F0+8 F(8)=—g A„5(r t„). — (3.1)
n

Note that the function on the right may with arbitrary
precision be modified to represent any function A (r). By
allowing A„=rA(nr), t„=nr,and &~0, then

g A„5(r—r„) =fA (r')5lr r')dr—' =A (r) .

P„=F(P„). (3.10)

Therefore, finally one obtains from Eqs. (3.7) and (3.8)

A„/e=5/„+5X„=5/ —5X/e

=5F+5//a=5(eF +P)/e .

Thus, with exponential accuracy

5(eF +/) =A„,
which replaces (2.5) for E&0 and

P=F(P) =(a/2) sin(2$)+I

(3.11)

(3.12)

f (ran+ i) f (r—n+ ~a )+~F(ra+i) &F—(r. +ra ) =A. .

(3.13)

when t&t„,so P is given by the expressions (2.2) and (2.3)
as before. Hence, the effects of the e8 term can be
represented by a change in the matching condition at t„.

Introducing integration constants r„,etc. by Eqs. (2.6),
we find

We suppose e «1 and split the function 8 into two func-
tions P and X

(3.2)

where X is rapidly varying and always small, while P is
slow:

(3.3)

In the leading approximation

f (7.„+i)=F(7.„+r„)+A„,
and to first order in e

f(~„+i)=f(r, +r, )+A, +&[F(f«.+re»
F(f(7.„+r—„+A„)]

Since X is small, the winding number, or frequency de-

fined in terms of 8, is the same as the frequency defined

in terms of P:
For F(P) =(a/2)si Pn+I, (3.14) becomes

(3.14a)

co= lim = limp(r) —p(0)
f~ oo t t~m

8(t) —8(0) (3.4) f(r„+i)=f(r„+~„)+A„racos[f(r„—+r)]sin
2

so we need to calculate P only. Retaining terms of order

up to e we find by inserting (3.2) into (3.1)

F(P)+EX+X—= g A„5(r—r„). (3.5)

58„=8(r„+0)—8(r„—0)=A„/e,

58„=0,
which may be combined with (3.2):

(3.6)

The phases at t =t„+0and t =t„—0 are related by the
equations

(3.14b)

Equation (3.14) expresses f (7.„+i)versus f(7„)[and thus

P„+iversus P„through (2.3) and (2.4)] and defines a one-
dimensional return map for the equation. The nontrivial
one-dimensionality of the map, which has previously been
found numerically" has thus been established analytically
for e « 1 using perturbation theory to first order in e.

How does the result (3.14) modify the simple result
(2.28)? Expressing 7.„+iand 7„asfunctions of P„+&and
P„onefinds that the return map in the case of e=O,

0„+) ——8„+a),

5$„=—5X„,
5P„+5X„=A„/~.

Equation (3.5) iinplies

X=C exp( —t /e)

so

(3.7)

(3.8)

or, equivalently,

H(p„+i)=~(p„)+~,
or

0"+i=~ '(~(4. )+~)=&o(0n)

should be replaced by

4' +i=ho(4' )+~g(4' ) (3.15)

and

X„=—X„/e where eg(P„)is the last term in Eq. (3.14b) expressed in
terms of P„.Hence
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H(hp($ ) ) +EH'(A p(P ))g(f )

=8„+co+EH''(h p(y„))g(H (8„))
=8„+to+eg(8„). (3.16)

h(p/q)-eg~ . (3.17)

where g is a very complicated, but analytical periodic
function of 8„,g (8„)=g(8„+sr).The original trivial re-
turn map has been replaced by the more complicated cir-
cle map (3.16). Solutions are generated by iterating the
circle map. The function g can be expressed explicitly by
tracing the equations which determine the dependence of
the functions g and h on the original parameters.

The nonlinear term in the circle map is proportional to
the coeffici'ent of the second-order term of the differential
equation! This is a main result of the paper. The qualita-
tive features of the maps (3.16) and (2.28) are very dif-
ferent. Whereas there are no subharmonic plateaus for
@=0, the circle map with a&0 gives phase locking at
every single rational frequency to=up/q, ' ' as indicated
in the figure.

The circle map (3.13) has a transition to chaos' at a
value of e for which 8„+~versus 8„becomes noninverti-
ble, i.e., the value of e for which

eg';„(8„)= —1 .

The transition is caused by "overlap" of the resonances'
t=omp/q and cannot, of course, be treated by the pertur-

bative methods used here. The limit e « 1 is far from the
transition to chaos.

The function g(P) is certainly not sinusoidal but con-
tains higher harmonics with coefficients g„.To first or-
der in e the width of the subharmonic steps of order q is
proportional to the qth harmonic,

Because of the explicit form of g(P) in (3.16), (3.17) tells
us what the mode-locked regimes will be like to first order
in e. If g had been purely sinusoidal the width of the pla-
teaus of order q would have been proportional to ee, i.e.,
extremely narrow. Although the frequency locks-in at
every single rational value, the locked portions do not fill
up the whole phase diagram. ' There is room for quasi-
periodic (incommensurate) solutions between the com-
mensurate ones for small e.

It has usually been assumed that the motion of sliding
CDW's in NbSe3, etc. is always in the overdamped regime
e-0. According to (3.17) this would imply very narrow
subharmonic plateaus. Recent experiments by Gruner re-
veal a multitude of high-order steps in a single-domain
CDW sample. Our results imply that this is inconsistent
with the completely overdamped limit but could well be
understood from the recent theory which is valid for
e«1. At high rf amplitudes it seems that the CDW in
NbSe3 can be driven into the chaotic regime (e-1) where
our theory does not apply and one must resort to numeri-
cal methods. Indeed, NbSe3 could very well be an ideal
candidate for checking current theories for the transition
to chaos in systems for which the return map is a circle
map.

In any case, the theory presented here yields explicit re-
sults in the case @&&1 which are certainly accessible in
CDW systems and Josephson systems in not too strong rf
and microwave fields. We suggest that such experiments
be analyzed in terms of the theory.
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