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Effect of Newtonian gravitational potential on a superfluid Josephson interferometer
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It is known that when a toroidal tube, with a Josephson junction, containing superAuid helium ro-
tates about its axis, there should be a phase shift across the junction, due to the rotation. It is shown
that there is an additional phase shift due to the variation of the gravitational potential in the super-
fluid.

I. INTRODUCTION

The effect of the gravitational field on the quantum in-
terference of a massive particle was detected for the first
time in neutron interferometry by means of an experiment
proposed by Overhauser and Colella' and performed by
Colella et al. An experiment to detect the effect of
Earth's rotation in neutron interferometry was also pro-
posed by Anandan and subsequently performed by Stau-
denmann et al

The purpose of this paper is to point out that a novel
effect should occur in a superfluid-helium Josephson in-
terferometer when gravity and rotation are simultaneously
present. While there is plenty of experimental evidence to
establish superfluid helium as a quantum fluid analogous
to the Cooper pairs in a superconductor, there seems to be
some difficulty in observing the analog of the supercon-
ducting Josephson effect for superfluid helium. An in-
terference effect in superfluid helium was observed by
Gamota, but it was never adequately confirmed. The dif-
ficulty in observing the Josephson effect in superfluid He
seems to be related to its small coherence length ( & 10 A)
which makes it difficult to construct an adequate Joseph-
son junction. For superfluid He, on the other hand, the
coherence length -400 A. This may be comparable to
the coherence length of superconductors, which vary from
a few hundred to several thousand angstroms. But there
are experimental difficulties associated with the very low
temperatures needed to produce superfluid He. The re-
cent observation of persistent currents in superfluid He-
8, however, perhaps gives some encouragement to the ex-
pectation that the Josephson effect in superfluid He may
be observed soon.

II. SUPERFLUID HELIUM
IN A GRAVITATIONAL FIELD

Superfluid helium, by which we mean the superfluid
phase of either He atoms or "Cooper pairs" of He
atoms, is an example of a quantum-mechanical system on
a macroscopic scale. It is therefore tempting to investi-
gate possible effects of the gravitational field on it. A
general relativistic theory of the effect of the gravitational
field on superfluid helium has accordingly been proposed
previously. ' %e present this theory, with more details,
in this section and, in the next section, apply it to the

specific case of superfluid helium in a toroidal tube with a
Josephson junction.

We let f(r, t)=ct(r, t)e'~'"", where a and P are real
scalar functions, denote the order parameter of superfluid
helium. This gr may be thought of as a wave function
representing the quantum-mechanical state of each
superfluid- He atom or a Cooper pair of He atoms which
is assum. ed to have mass m. Nonrelativistically, f may be
assumed to satisfy the Gross-Pitaevskii equation'

where g& is the pseudo-Riemannian metric, of signature
(+,—,—,—), on space-time and V& denotes covariant
derivative. " Now we define the superfluid "four veloci-
ty" v" by u„=—A,,B„P, where A,,= It/me is the Compton
wavelength. Then (2.1) is equivalent to

u"u„= 1+f(a),
where f(a) =A, g""(V„V a.)la+2Ea Imc, and

V„(a u")=0,

(2.2)

(2.3)

which is the continuity equation. It is shown below that
usually

~
f(a)

~
&&1. Hence, from (2.2), u" is a timelike

vector field. We shall also place the restriction that v" is
in the forward null cone, everywhere, for the physically
relevant solutions of (2.1). Owing to the smallness of
f(ct), v" cannot then undergo a transition to a vector in
the backward null cone. This restriction, therefore, elim-
inates the "negative energy" solutions of (2.1). Otherwise,
it would be necessary to treat g in (2.1) as an operator
field, similar to the Klein-Gordon field when it is quan-
tized.

It follows from (2.2) that u'V„u"= —,
' V"f(a) This leads

to the identification f(a) =2P jpc, where P is the pres-
sure and p is the density, when p is constant. Hence, (2.2)
is a generalization of the eikonal equation in relativistic
quantum mechanics, which takes into consideration
"pressure effects" in the superfluid, contained in the f(a)

where the nonlinear term represents collective interac-
tions, X being a constant. A general relativistic generali-
zation of this equation is

22
(2.1)
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term. .We let a=a at some fixed point in the superfluid.
Then

f(a) =A,,g""(V„V„a)/a+(A,,a/ga) (2.4)

where g=(A' /2ma K)'~ is the coherence length. For
superfluid He, A,,=5.2X10 ' m and g-10 ' m,
whereas for superfluid He, A,,=3.5X10 ' m and
g-10 m. Now, g""V&V,a-a/L, where L is the dis-
tance scale over which a varies appreciably. We assume
L —1 m for the apparatus considered in this paper. Then
the first term in (2.4) is A,,/L —10 for superfluid He
and He. But the second term in (2.4) is -A,,/g —10
for superfluid He and —10 ' for superfluid He.
Therefore, the first term in (2.4) is negligible when corn-
pared to the second term, in the present case. Hence,

include the effects of rotation represented by go;. The re-
sults that will be obtained in the next section depend only
on (2.3) and (2.7) of this section.

III. PHASE SHIFT DUE TO GRAVITY
AND ROTATION IN A SUPERFLUID-HELIUM

JOSEPHSON INTERFEROMETER

Consider two regions containing superfluid helium,
separated by a Josephson junction, by which we mean a
link that allows the superfluid from either side to tunnel
through it. It was shown by considering the interference
between the corresponding wave functions, for a particu-
lar geoinetry of the junction, that there should then be a
Josephson current

I='Iosinb, g, (3.1)
f(a)=(A,,a/ga) =2Ka~/mc' . (2.5)

Since the flow velocity of the superfluid relative to the
container is much smaller than the velocity of light, all
special relativistic corrections are negligible. We shall
also assume that a coordinate system can be chosen such
that the apparatus (container) is at rest in this coordinate
system, g,J

———5ij (i,j=1,2,3), and g» is independent of
time. This can always be done if the size of the container
is small compared to the radius of curvature of space-time
and the container is rigid. Then him ——goo —1=2V/c,
where V is the Newtonian potential for the gravitational
and centrifugal fields in the frame of the apparatus, i.e.,
g'= —(BV/Bx') is the acceleration relative to the frame of
the container of a particle released from rest. If the ap-
paratus is rotating relative to a local inertial frame, then
this coordinate system can be chosen such that at any
point on the apparatus go;

———u,'/c, where u,' is the velo-
city of the apparatus relative to this inertial frame. We
shall neglect terms that are second order in the small
quantities hoo and go;. Then (2.2) may be written as

(1—hoo)vo —g vi +2 Qgoivo i +f(a)

Therefore,

uo=l+ if(a)+ 2 g(u —g'o )(u —go )+ 2 "oo (2.6)

=Ra +mV+ —,mu
BO

at
(2.7)

Equation (2.7) is the nonrelativistic limit of (2.2). With
the identification above that ,'mc f(a)=Ka =mP—/p,
where P is the pressure and p is the density, (2.7) can be
recognized as the generalization of a known equation' to

We now remove the rest mass energy by defining
8=/+me t!fi. Then

ay ~ ae
mc && mc2 &t

On defining u'= —cu;+ego; ——(fi/m )(ag/i3x')+cg„,
which has the interpretation of the velocity of superfluid
relative to the apparatus, and on using (2.5), we finally
have

~„L(—llgll)'" ' "3=0 (3.2)

where
~ ~g ~ ~

—=det(g„„)=—goo. Therefore, for the present
stationary situation, i);[(goo)' a u'] =0. By assuming u'

to be constant across each cross section of the tube, it fol-
lows that (goo)'~ a v=const, where u=(5ij v'VJ)'~~. But
v'=g'"u& —g' u;=gio —u;=u'/c, —where we have used
(2.6) and neglected terms that are second order is small
quantities so that g' uo-g' . Therefore, u=u/c, where
u =(5ij u'uj)'~ is the speed of the superfluid relative to
the tube, as measured by a local observer. We choose the

relative to the junction, where hp is the phase difference
across the junction. ' More generally, the current I would
be a periodic function of hP with I =0 for 6/=0. Then
(3.1) would be the lowest-order term in the Fourier
transform of I. We shall then assume this to be the dom-
inant term and neglect the higher-order Fourier com-
ponents.

We consider now the special case of a hollow circular
toroidal tube containing superfluid helium and a Joseph-
son junction inside the tube. The thickness of the tube is
assumed to be small compared to the radius R of the cir-
cle formed by the tube. Suppose that the tube rotates
about the axis of symmetry which is normal to the plane
of the tube with angular velocity 0 relative to a local
inertial frame. We assume also that the Newtonian gravi-
tational potential V is different at different points on the
tube and the situation is assumed to be stationary in the
frame of the tube, i.e., Q and the value of V at any given
point on the tube are assumed to be independent of time.
Then the velocity of the superfluid relative to the tube
would also be constant. For example, that tube may be in
a vertical plane, at rest with respect to the earth, at the
equator. Then 0 is the earth's angular velocity and we
may take V=gz, where g is the acceleration due to gravi-
ty and z is the height above the lowest point on the tube.

We shall assume that the effects of space-time curva-
ture are negligible and that the apparatus is at rest in the
coordinate system described in the last section. Moreover,
the metric coefficients g„„,in this coordinate system, are
independent of time. On defining h&„——g» —

i1& where

g» ——diag(1, —1,—1, —1), h,j ——0. Also terms that are
second order in hoo, ho; will be neglected. Equation (2.3)
can be written as
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coordinate system so that goo
——1+2gz/c, where z is the

height from the lowest point 0 of the tube and g is the ac-
celeration due to gravity. If u =u'and n =cz at 0, then

1+ Q =0' Q (3.3)
C

Equation (3.3) is a consequence of the general relativis-
tic time dilation in a gravitational field and the continuity
equation. Since the current density relative to the tube is
proportional to a u, the continuity equation implies that
a u is constant along the tube in the absence of the gravi-
tational field. This condition is modified to (3.3) in the
presence of the gravitational field, because clocks at dif-
ferent heights run at different rates, according to general
relativity. But as will be seen shortly, this effect is negli-
gible.

We now consider a stationary solution of (2.7) for
which BL9/Bt= —coo, where coo is a constant. Then from
(2.7) and (3.3),

ICE Q
%coo—— +mgz+ —,mu

(1+gz/c )u
(3A)

It is clear from (3.4) that u is a function of the height z
and u. Indeed, 5u(z) = u —u satisfies, from (3 4), to
lowest order,

1 — u5u+ 1—
mQ

Ka
gz=O .

PP.C
(3.5)

But u depends on the angular velocity of the interferome-
ter relative to a local inertial frame, on account of (3.1).
We assume, for the present that the Josephson junction is
at the lowest point 0 of the tube. It was shown, using
(3.1), that in the absence of hysteresis the velocity of the
superfluid relative to the Josephson junction should not
exceed u~: fi/2mRm , wh—ere R .is th-e radius of the toroidal
tube. Therefore, u & U~. Hence

f

Ka /mu = —,'(A, , /g) (c/u) )—,'(A,, /g) (c/u~)

This is —10' for superfluid He and —10' for super- .

fluid He. But Ka /mc = —,'(A,, /g) is —10 ' for su-

perfluid He and —10 ' for superfluid He. It follows
that in (3.5) Ea /mu»1, whereas Ka /mc « 1.
Hence, from (3.5),

where C' is a closed curve, through the tube. If Q„ is the
component of the angular velocity of the apparatus nor-
mal to the torus it follows that

22~m n& mu 2mB mgR

KK
(3.7)

Also, (3.1) can be written as'

u =uosin(hg),

where the constant uo IolpoA——O, with po and Ao being
the density of the superfluid and the area of cross section
of the tube just outside the Josephson junction at 0. The
coupled equations (3.7) and (3.8) can be solved for b,P and

It is easy to obtain this solution for a small perturba-
tion. Suppose that Q„ is changed by 5Q„. For example,
the interferometer may be turned about a vertical axis so
as to change Q„, the component of the earth's angular
velocity normal to the plane of the interferometer. Or
5Q„may be the change in Q„due to the local precession
of inertial frames due to the I.ense-Thirring field of a ro-
tating body. ' Then, from (3.7), the change in the phase
shift 5P satisfies

2~m&'&&n 2m-mZ Su mgW

Ka

But from (3.8), assuming 5$ «2~,
5u =ucot(b, g)5$ . (3.10)

On substituting (3.10) into (3.9), the change in the phase
shift due to the change 5Q„ in Q„ is

2vrRmu cot( b,P ) mgR+
Xcz

2mB m 5Q„

superfluid. ' Suppose that the length of the junction is
much smaller than R. Then, using (3.6) to a good approx-
imation,

m . mu2mR m gu zu
c' c'

mgz

Kcz

The phase difference across the Josephson junction is

&P= J,.dx™I u dx'

' I g, dx' ——ju dx

I (u, +u).dr,

(3.6) Equation (3.11), for the special case when g =0, has been
obtained previously. ' '

Alternatively, Q„ in (3.7) may be kept constant, but the
effect of the gravitational field may be varied. This can
be accomplished, for instance, by keeping the tube in the
same Uertica/ p/ane and turning it about its axis so tl:at the
Josephson junction is at a variable height zz from the
lowest point. Then, on using (3.6), the velocity at the
Josephson junction relative to the junction is u

[1 + (mgzJ )/(Ka )]. Hence (3.8) must be replaced by

where u, is the velocity of the apparatus relative to a lo-
cal inertial frame with respect to which it is rotating, and
C is a curve that joins the opposite sides of the Josephson
junction by the longer route around the tube through the

mgzJ
Q 1+

X5
=uosin(hg) .

On substituting for g in (3.7) from (3.12),

(3.12)
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2irR'm Q„2~R~ mg (R —zJ )+ ~
'+ vosin(hP),

v, cos(SP) 5P .2mRm

Hence,

2mRmUO
5$= 1— cos(b, P)

/2m 3g4n R (R —zJ )vo sin( hP )

$3
(3.14)

where /=vari/(2m' E)'~ is the coherence length. Equa-
tion (3.14) can be tested by measuring 5$ for different
values of zz, the height of the Josephson junction. The
experiment can then be repeated with the interferometer
in different planes that are inclined at a variable angle 8
to the vertical. Then g in (3.14) must be replaced by

g cos6), the component of the acceleration due to gravity
in this plane, to obtain the phase shift.

IV. DISCUSSION AND CONCLUSIONS

We have obtained, above, a new effect in superfluid
Josephson interferometry that arises due to rotation and
the variation of the Newtonian gravitational potential.
This is unlike the effects discussed previously' ' ' for a
superfluid-helium interferometer, which can be under-
stood as being due to the rotation of the interferometer
relative to local inertial frames. This new effect is also
unlike the Overhauser-Colella effect' or the effect of rota-
tion on neutron interference ' which, in the nonrelativis-
tic limit, can be regarded as two separate unrelated ef-

(3.13)

neglecting 0(g ) terms. Therefore, hP can be obtained by
solving (3.13) in this case. Hence, the change 5$ in the
phase shift as R —z~ is varied from zero satisfies

2irRm g(R —z~)5$= vosin(b, P)
AKa

fects.
This difference is basically due to the fact that the neu-

tron beam is freely falling in between reflections. Super-
fluid helium in a toroidal tube, on the other hand, is not
freely falling and is being supported by its own pressure.
So, the nonlinear term in (2.1) plays an essential role in
obtaining the present effect. Since we expect the pressure
to decrease with height, a also would be expected to de-
crease with height. Then from the continuity equation,
the velocity u increases with height as seen from (3.6).
This is another fundamental difference between the
present effect and the Overhauser-Colella effect' due to
gravity in neutron interferometry. In the later case, the
velocity of the neutron beam decreases with height, be-
cause of conservation of energy, so that the phase shift
due to gravity between the upper and lower beams is nega-
tive. But in the present case, the phase shift due to gravity
in the direction of flow of superfluid, given by (3.14), is
positive for small b,P.

To obtain an order of magnitude estimate of the phase
shift (3.14),

5$-m gg voR /A -m gg R/A

since we must have vo (A'/m2irR to avoid hysteresis. ' '
If R —1 m, then 5$-10 ' rad for superfluid He. A
phase shift of this order of magnitude would be large and
easily measurable in neutron interferometry. But for
superfluid-helium Josephson interferometry, such a frac-
tional phase shift is at present very difficult to measure.
Hence, it appears that the confirmation of the effect pro-
posed in this paper has to await further advances in the
detection of the Josephson effect in superfluid helium. But
if this experiment is performed, then it would be the only
experiment, apart from the experiment proposed by
Overhauser and Colella, ' which would test the effect of
gravity on a quantum-mechanical system. It would also
test the nonlinear term in the equation that g is assumed
to satisfy in this paper. Since (2.7) can be derived from
the nonrelativistic Gross-Pitaevskii equation modified by
adding the term IVP, the main results of this paper can
be obtained from the latter equation and (2.1) is needed
only to compute the relativistic corrections.
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