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Mossbauer emission spectra of the ' Yb + ion were recorded at very low temperatures

(0.09& T&4.2 K) in Au'7 Tm sources and were interpreted by means of a relaxation line-shape

theory which takes into account the existence of populations out of thermal equilibrium in the hy-

perfine levels. The relaxation measurements gave confirmation of the Kondo behavior of Yb + in

gold, and the fitted values of 1/{ Tl T) are in better agreement with an Abrikosov-type variation in

[ln(T/Tx) j (with T» —10 K) than with a linear dependence in inT.

I. INTRODUCTION

In recent years the study of the dynamical behavior of
localized moments in solids has been performed by means
of a variety of spectroscopic techniques: EPR, Mossbauer
spectroscopy (MS), NMR, and neutron inelastic scattering
(NIS). The methods used in the measurements may be
classified within two categories: methods in which a
thorough energy analysis of the spectrum is performed
and the paramagnetic relaxation rate is extracted from the
line shape (EPR, MS, and NIS); and methods in which a
perturbation of the thermal-equilibrium populations of
the energy levels of the system is used (quick saturation of
a transition in EPR, spin echoes in NMR) and the relaxa-
tion time is measured by observation of the recovery of
these populations toward Boltzmann equilibrium.

In EPR, NIS, and MS local-moment —relaxation studies
in dilute alloys, the preferred method is usually the
analysis in energy of the impurity spectrum, whereas the
"population method" is used in NMR for the measure-
ment of nuclear relaxation times induced by fluctuations
of the local moment.

In previous works we used the deformation of the
Mossbauer emission spectrum of the ' Yb isotope to
measure the paramagnetic relaxation rate of ytterbium
impurities in, gold between 0.6 and 26 K.' The mea-
surements provided the first evidence of a logarithmic
dependence, due to the Kondo effect, of the thermal vari-
ation of a local-moment relaxation rate induced by con-
duction electrons. " '"' In addition, the Kondo behavior
of the dilute alloy Au Yb was independently observed by
means of resistivity measurements. Later, the presence

of logarithmic anomalies in the relaxation frequencies of
impurities was also observed by using other spectroscopic
techniques in various Kondo systems: Cupe by NIS (Ref.
5) and by NMR (Refs. 6 and 7), Cu Mn by NMR (Ref. 8),
and, recently, Au Yb by EPR (Ref. 9).

In a subsequent work' ' we showed that measuring
the populations of the hyperfine levels out of thermal
equilibrium in Mossbauer sources could be used to extend
paramagnetic relaxation measurements down to very low
temperatures.

In this work we apply the method to the dilute alloy
Au' Yb, which we studied in a He- He dilution re-
frigerator down to temperatures below the hyperfine
separation hike-0. 11 K.

Section II summarizes the formalism required for the
interpretation of the low-temperature Mossbauer emission
spectra. In order to analyze the spectra recorded between
0.09 and 4.2 K in a continuous way, we developed a new
relaxation line-shape calculation, which accounts for the
presence of hyperfine populations out of thermal equili-
brium and whose validity holds whatever the temperature
compared to 6/k~. We also calculated a variant line
shape with the help of the secular approximation, which
enables a more direct interpretation of the relative line in-
tensities and dynamical broad. enings to be made near the
slow-relaxation regime. The theoretical problems related
to the computation of the Mossbauer emission line shape
at low temperature in the absence or in the presence of the
Kondo effect are presented more thoroughly in Appen-
dixes A—C. In Sec. III we deal with sample preparation
and the experimental setup. The experimental results are
described and analyzed in Sec. IV. The Mossbauer relaxa-
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tion data are interpreted in terms of the Kondo effect and
are compared with the recent EPR data of Ref. 9. Final-
ly, in Sec. V we discuss the nature of the interaction be-
tween 4f and conduction electrons and compare different
expressions for the Kondo anomaly of the thermal depen-
dence of the relaxation rate.

II. EMISSION LINE-SHAPE FORMALISM:
SUMMARY AND NEW DEVELOPMENTS

A. Main features of Mossbauer spectroscopy
in the dilute alloy Au ' Yb

In order to reduce effects due to the proximity between
impurities, low impurity-concentration levels are needed.
This, in turn, imposes the recourse to emission experi-
ments rather than absorption experiments. Thus we used
very dilute Au Tm alloys to study the source
Au(' Tm~' Yb) (cf. Sec. III).

The electronic ground state of the ' Yb + ion in the
cubic crystalline field of gold is the Kramers doublet I 7,
and the separation from the excited I 6 and I'8 states is
about 80=90 K.' %'hen only the ground I 7 level is pop-
ulated, the hyperfine (hf) Hamiltonian is A z ———2nJ~s S (2)

The ' Yb Mossbauer emission spectrum observed from
the Au' "Tm source in zero external magnetic field de-
pends on the paramagnetic relaxation rate I/T~ between
the two states of the electronic doublet I 7. In the slow-
relaxation regime, i.e., when I /T~ &&b, /A', the spectrum is
made of two lines separated by the energy h. In the fast-
relaxation regime (I/T~ &&b, /A'), only one line remains,
located at the center of mass of the two above-mentioned
slow-relaxation lines. In our previous works' the
intermediate-relaxation spectra ( I/T& -b, /A) allowed us
to measure the relaxation rate 1/T& between 0.6 and 26 K
using the method of line-shape analysis in the high-
temperature approximation (kzT»h). The relaxation
frequency band 1/(2m T& ) so explored ranged from 120 to
9160 MHz, i.e., from about —,', 6/A to 4b /fi.

Below about T=0.5 K, one cannot maintain the high-
temperature assumption. On the contrary, kz T-h, and
the "spherical relaxation" approximation no longer holds
in the relaxation line-shape calculation: one must consid-
er separately spectral densities related to hyperfine "inter-
multiplet" and "intramultiplet" transitions. Indeed, the
exchange Hamiltonian responsible for relaxation,

A gg
——2 I .S,

where S is the effective electronic spin of I 7(S= —,
'

) and

I is the nuclear spin of the excited 84.3-keV state of
Yb(I =2), the nuclear spin being 0 in the ground state.
The isotropic hyperfine constant A is (897+5) MHz or

(13.20+0.07) mms ' (cf. Sec. IV). The eigenstates of the
Hamiltonian A „r are two hyperfine multiplets corre-
sponding to the values F& ———', and F2 ———,

' of the total an-

gular momentum F= I +S. These multiplets have degen-
eracies 2F~ + 1 =4 and 2F2+ 1 =6, and energies
E~ ————', A and E2 ——A. Thus the hyperfine separation is

b, = —,
'

A, i.e., 2243 MHz, or 33.0 mm s ', or 0.108 K (Fig.
1).

J( —b, ) =Cx
k~

exp —1
AT

(3)

[ s being the conduction-electron spin, J,~ the exchange
constant between 4f electrons and conduction electrons,
and a=g(17)(gz —I)/gz, with g(I 7)= —", and gz ———,

' for
Yb +], has nonvanishing matrix elements both within a
multiplet and between multiplets. Intermultiplet relaxa-
tion, due to the inelastic diffusion of conduction electrons
on the impurity, involves the spectral densities J(+b, ) at
the energy +6, whereas intramultiplet relaxation involves
the spectral density J(0) corresponding to elastic dif-
fusion. In the absence of any Kondo effect, these spectral
densities are given by" '

J(0)=Cx T,

F2
J(h) =J(—b, ) exp

AT
84.3 keV

where C~ is the Korringa constant,

F)
(4)

0 keV

1=0

FIG. 1. Hyperfine-level scheme in the I 7 state of the ' Yb +

ion in a cubic site. The degeneracies of the electronuclear levels
are indicated on the right-hand side.

with n(E&) the metal density of states at the Fermi level
per spin direction.

Furthermore, below T=0.5 K, the relaxation rate
1/T& of the I 7 doublet of Yb + in gold becomes much
smaller than b. /A'=1. 41X10' s ' and becomes compar-
able with the inverse nuclear lifetime I = I /r„
=0.431X10 s ' (fil =1.01 mms ', or 68.6 MHz, is the
natural linewidth of the Mossbauer transition). In this
quasi-slow-relaxation regime and at such low tempera-
tures, the hyperfine populations are observed out of
thermal equilibrium in emission Mossbauer spectra.



P. BONVILI.E et aL

A comprehensive description of the theoretical proper-
ties of the electronuclear system in this temperature range
(relaxation line shape, density matrix, Kondo behavior) is
given in Appendixes A—C. Below, we outline the main
features concerning the hyperfine populations and the re-
laxation line-shape formulas needed for the interpretation
of our experimental data.

B. Time evolution of the hyperfine populations

I.et Pi(t) and Pz(t) be the respective populations at
time I of the Fi and Fz hyperfine multiplets, choosing the
decay time of the radioactive parent as I =0

As the Tm + parent ion in the gold host lattice has a
diamagnetic and well-isolated ground state without any

hyperfine interaction, the ten hyperfine states of the Yb +

daughter ion receive equal initial populations at time
t =0. Assuming that each of these populations is normal-

1zcd to un1ty, thc 1n1t1al populat1ons P1 Rnd P2 1Q thc E]
and E2 multiplets are equal to the respective degeneracies

P0, =4 and P', =6.
As shown in Appendix 8, the density matrix of the ten-

fold hyperfine multiplicity of tlie excited nuclear state of
Yb in the source Au ' Tm remains diagonal during its

evolution under the action of the relaxation forces. Evo-

lution of the populations Pi(t) and PI(t) takes place from
the initial values P& and P2 toward the Boltzmann values,

20 3O 8

2+ 3e 2+ 3e

but this process is stopped by the decay of the excited nu-

clear state.
It can be shown" that the time evolution of Pi(t) and

P2(t) involves only two intermultiplet transition probabili-
ties,

U =P'( F2 +Fi ) and V=—%( FI ~F2 ),
obeying the detailed balance rule

V/U = —, exp( /4. /kII T ) =PI /P I—,

and the evolution equations of Pi (I) and PI(I) are simply

dP, (t) dP, (t)= UP, (I)—VP, (r), = VPI(I) —UP, (t) .
dt dt

(&)

The actual populations observed by Mossbauer emission
spectroscopy are

[Pi],„= f e "Pi(t)dt,

where 1/Tihf is the hyperfine relaxation rate defined by

1/Tu f= U+ V .

The quantities [Pi l,„and [Pal„represent the integrat-
ed intensities of the two lines of the quasi-slow-relaxation
emission spectrum of Au ' Yb. Under good experimental
conditions, direct measurement of these intensities, when

kII T—S, and T,hf -~„, allows the determination of
1/T, hf with the help of the following equations, derived
from relations (10):

1 Pi —[PI]- 1 Pz —[Pz]-
~. [Pzlav —P2

This is a "second window" for relaxation-rate measure-
ments centered on the value I =1/~„." A siinilar
method was successfully applied in the ZnS' Fe + sys-

tern, ' where it has been possible to measure phonon-
induced relaxation frequencies between electronic levels of
the Fe + ion, from the populations of these levels ob-

served out of thermal equihbrium in Mossbauer emission

spectrometry.
Thc intermultlplet trans1tloQ probabilities U RQd V arc

simply related to the spectral densities J(+b, ) given in re-
lations (3) and they are"

6/k~ T

U= R( FI~F) )=—„J(b.)= —,0 C»

V=9'(Fi +F2) = —,0 J—( —5)=—,0 C» 5/k~ T

which gives

= —,', J(&)+—,', J( —&),
Tlhf

1 6 4 S/k~T 6 1= (»+»' '
)k T ~ik, T

1hf e —1

A numerical calculation shows that the factor in the
large parentheses does not depart from the value 1 by
more than 3% in the temperature range reached in our ex-
periments ( T & 0.09 K).

Thus wc have~ to R good approx1IIlatlon,

1/Tihf=c» T

wliich has tllc saIIic form as tlM lllgll-tcIIlpcratlli'c cxplcs-
sion (k&T ~~6)

[P2],„= J e "PI(t)dt,

that is, after integrating (g) and (9),

Pi+(&~ /Tihr)Pi[Pil-=
1 +&n ~T1hf

Pz+ «. /Tihr)P2[Pzl-= 1+ rn /Tlhf

(10)

1/T1 ——Cg T

for the electronic relaxation rate 1/Ti within the I 7

ground-state level.

C. New low-temperature relaxation line shapes

In order to link the measurements of the parameter C»
made in the "first window" [that is, using relation (17)
and the high-temperature line shape] with those made in
the "second window" [that is, using relations (12) and (15)
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or (16) and low-temperature line-intensity measurements],
we calculated a general relaxation line shape which ap-
plies whatever the temperature compared to 6/ks. As
the new line shape allows a continuous exploitation of the
Au' Yb emission spectra to be performed in the entire

I

relaxation frequency range, we will no longer refer to
first-and second-window-type measurements in the fol-
lowing.

This general line shape, which is derived in Appendix A
[relation (A19)], can be written as follows:

[Pi],„[p+i(A/A')+(EI i+XI z)/2]+[Pz],„[p 3—iA/2R+(hl i+bi z)/2]
I(co)= Re

(p+bI i/2 —3iA/2%)(p+bI z/2+iX/A') —b I 1 AI z/4
(18)

where p = I'/2 —iso, and

EI i
———,0 [J(0)+J(—b, )]= ,OC»—T 1+ T 6/k~ T

5/k~ T

b, l z
———„[J(0)+J(b )]= ,'0 C» T 1+———

(19a)

(20)

Although limited to low-temperature measurements (typi-
cally, T &0.2 K for ' Yb in Au), this secular line shape
presents the following advantages

(i) It is simply the sum of two Lorentzian-shaped lines

For ks T»5, where the white-noise approximation
(WNA) applies, the line shape (18) reduces to the usual
high-temperature line shape [Appendix A, relation (A25)].

At low temperature, when the relaxation line broaden-
ings are small compared to the hyperfine separation b„
one can also compute the line shape within the secular ap-
proximation. The "secular line shape" is written

I

whose relative areas are the populations [Pi],„and [Pz],„
of the multiplets Ei and Fz, and whose dynamical
broadenings are, respectively, the quantities EI ~ and AI 2
as given in (19). We plotted EI i/C» and b, l z/C» as
functions of T from relations (19) for 5/ks =0.11 K; see
Fig. 2. At a temperature T= 1.2166/ks ——0. 134 K, the
two dynamical broadenings have the same value,
51 = 1.2C»/kz. As C»/2m is found to be of the order of
310 MHzK ' around 0.1 K (see Sec. IV), the ratio
A'KI /b, is less than 2X 10,justifying the use of the sec-
ular approximation in this temperature range. The
asymptotic values of EI, and AI z (when king T »6) are,
respectively, 1.2C~T and 0.8' T. However, at high tem-
peratures the secular approximation usually breaks down
and the spectrum is no longer made up of two Lorentzian
lines with breadths AI ~ and Al 2.

(ii) When comparing the theoretical line shapes (18) or
(20) with the experimental spectrum, the natural linewidth
I' of the emission process must be replaced by the effec-
tive static linewidth I df & 21, which includes the absorber
linewidth and the instrumental line broadenings. Howev-
er, compared to the general line shape (18), the secular line
shape (20) offers the additional possibility of attributing
different static widths I i and I z to the lines 1 and 2, and
this can be useful when the inhomogeneous broadenings
due to local random strains in the sample have to be taken
into account.

(iii) Finally, the dispersive correction' can be easily in-
troduced in the Lorentzian-shaped lines of Eq. (20), allow-
ing a better estimation of the fitted parameters.

ar (K)

C&

0.8

0.6

0.4

0.2

0.1 0.2 0.3 0.4 0,5 0.6 0.7 T(K)

FIG. 2. Plot of the quantities hI 1/CI(- and AI 2/C~ versus
temperature, from relations (19). The dynamical broadenings
hI 1 and hI 2 of lines 1 and 2 are equivalent for T=O. 134 K.

D. C~ measurement procedure and Kondo renormalization

It is clear that the relaxation line-shape expressions (18)
and (20) depend only on the temperature T and the Kor-
ringa parameter C», through relations (10), (15) or (16),
and (19). C» can thus be easily fitted to the experimental
line shape at various temperatures. When considering the
entire set of C» fitted values, one may expect two dif-
ferent thermal behaviors.

(a) Observation of temperature-independent C» fitted
values would constitute evidence for Korringa behavior of
the system, according to relation (4).

(b) Alternatively, a logarithmic thermal dependence of
the C» fitted values, with a negative slope, indicates Kon-
do behavior, as is indeed observed in the Au Yb dilute al-
loy (cf. Sec. IV). However, the relaxation line-shape prob-
lem itself has to be reexamined in the presence of Kondo
effect. In Appendix C it is shown that the line-shape ex-
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pressions (18) and (20) remain valid in a good approxima-
tion if one replaces, in formulas (13), (14), and (19), the
spectral densities J(+6) and J(0) defined in (3), by the
Kondo-modified values

J»(+b, ) =J(+b, )[1+a»(T)],
J»(0)=J(0)[1+b»(T)],

(21a)

(21b)

J»(0) =J(0)[1+4aJ/n(Ez) ln
~

k&T/D
~ ] .

As to the "inelastic" Kondo correction a»(T), which
involves the energy transfer 6 between the two hyperfine
levels, it is equal to b»( T) at high temperature
(k~ T &&b, ), whereas at low temperature (k& T &&5) it sat-
urates toward"

a»(T~O) =4aJ,/n(E+) ln
~

b/D
~

However, using an analytical expression of a»(T) given in
Ref. 18, we did not find any appreciable difference be-
tween numerical values of I+a»(T) and 1+b»(T) in the
temperature range of our experiments (T &0.09 K). In
these conditions the "elastic" Kondo corrective factor
1+b»(T) can be used for the various spectral densities
and introduced directly as a renormalization of the pa-
rameter

4~kg
C» = [aJ,/n (E~)]

which has to be replaced by

CKo ao
——C»[1+b»(T)]

where a»(T) and b»(T) are, respectively, the "inelastic"
and "elastic" Kondo corrections which are defined by ex-
pressions (C6) and (C5) in Appendix C.

In its explicit form, the "elastic" Kondo correction is
equal to

b»(T)=4aJ/n(Ez) ln
~

k&T/D
~

whence

nace. Melting was carried out under an argon atmo-
sphere; the susceptor and the crucible were degassed by
long-duration heating prior to fusion. A preliminary
1000-ppm Tm alloy was melted, thus serving as master
batch for the preparation of more dilute alloys. A piece
of this master alloy, after rolling, was melted with a 4
times heavier mass of gold in order to obtain a 200-ppm
Tm alloy, using the same melting conditions as above.
This low concentration was necessary in order to reduce
the static broadening of the lines due to crystal-field dis-
tortions. The activity of the as-melted alloy was about
25 mCi, which was too high for the refrigeration capacity
of our dilution apparatus. Obtaining very low tempera-
tures demands low-activity sources, which has the draw-
back of requiring long counting times. A compromise
was obtained with ' Tm sources of a few millicuries,
leading to a limiting temperature of about 0.1 K and to a
recording time of about one week for each spectrum. In
order to optimize experimental conditions, the radioactive
alloy was rolled (between two Crysocal sheets) to a thick-
ness of 150 pm, which gave an external activity of about
half of the total activity. Ribbon pieces of area 1 to 2 cm
were annealed in order to eliminate defects created by
cold-rolling, and then used as source samples. It was ob-
served that insufficient annealing temperatures (e.g. ,
500'C) led to broadened emission spectra, probably due to
trapping of Tm impurities by defects or grain boundaries.
Two samples, labeled 1 and 2, were prepared and used in
the present study: Sample 1 was annealed at 750'C for 24
h in a silica tube sealed under 10 Torr vacuum; sample
2 was annealed for 3 h at 820'C under a dynamical secon-
dary vacuum in a BeO crucible in the induction furnace.
Finally, it is to be noted that, after any operation that
could lead to a superficial contamination of the alloy (par-
tial oxidation of the rare earth during melting or anneal-
ing, inclusion of impurities during rolling), it was subject-
ed to intense etching by aqua regia. Additionally, the rib-
bon homogeneity was checked by autoradiography.

c»[1+4~Jf~ (EF)»
I

km T/D
I ] . (22) B. Sample mounting and thermometry

In conclusion, the fitting procedure of the spectra is the
same in the Korringa and in the Kondo situations, but in
the latter the fitted values of the parameter C» are to be
interpreted as C~,„q, values by means of relation (22) in-

stead of (4).

III. EXPERIMENTAL SETUP

A. Mossbauer source preparation

The Au' Tm sources were prepared from 5N-purity
gold supplied by Johnson-Matthey and 3N-purity thulium
supplied by Rare Earth Products. A piece of thulium
(monoisotopic ' Tm) with a mass of at least 2 mg
(minimum allowed for easy handling) was exposed to a
suitable neutron-beam irradiation in order to obtain a

Tm source with an activity of about 100 mCi. This
fragment of irradiated thulium was then melted with a
suitable mass of gold in a BeO crucible by setting it inside
the graphite susceptor of a high-frequency induction fur-

The sample, located outside the mixing chamber of the
He- He dilution cryostat and under vacuum, was

thermalized by contact with a gold-plated copper firiger,
upon which it was pressed by means of an aluminium
clamp and two stainless-steel screws (Fig. 3). Its tempera-
ture was measured with a carbon resistor embedded in a
copper holder screwed on the clamp; since superconduct-
ing aluminium is a bad heat conductor, the clamp was
covered with a thin copper sheet that is relatively trans-
parent to y rays; this ensured thermal contact between the
carbon resistor and the sample. A second carbon resistor
allows measurement of the temperature of the cold copper
finger. Whereas the two carbon thermometers give the
same temperature in the absence of a radioactive sample,
their indications are different when the sample is inserted,
the temperature of the cold finger being systematically
lower than that of the sample. These measurements clear-
ly show the existence of a thermal contact resistance be-
tween the sample, self-heated by radioactivity, and the
cold finger, which takes away the heat flowing towards
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ted values decreased by about 50%%uo between 0.1 and 4.2 K.
However, measurements made in the temperature range
between the two "windows" (0.2( T(0.8 K) and inter-
preted using the secular line shape, appeared to be unreli-
able. A detailed experimental study was then initiated us-
ing a new sample (no. 2), and a more general line shape
[relation (18)] was used to fit the spectra of each sample.

Below, we report relaxation measurements performed
between 0.108 and 4.2 K on sample 1 and between 0.087
and 4.2 K on sample 2. As the two sets of data agree with
each other to within the experimental errors (cf. Figs. 5

and 6), we will not distinguish them when analyzing the
results in the following.

FIG. 3. Sample holder (side view). 1, stainless-steel set
screw; 2, aluminium clamp, transparent to y rays; 3, sample,
clamped between parts 2 and 5; 4, thin copper sheet for thermal
contact between left-hand side of sample (3) and thermometer

(6); 5, cold finger of gold-plated copper linked to the dilution
chamber at (8); 6, thermometer for measurements of sample
temperature (3); 7, thermometer for measurements of cold-
finger temperature (5); 8, towards dilution chamber.

Observation of hyperfine populations
out of thermal equilibrium

Three emission spectra from sample 1 are shown in Fig.
4, at 0.087, 0.6, and 4.2 K, respectively. One observes on
the figure a clear variation of the relative intensities of the
two hyperfine components between 0.6 and 0.087 K.

As a first step, measurement of the relative intensities
of the two lines was achieved by means of fitting each

I I I I I I I

I
I I I I I I I I I

I
I I I I I I I I I

I
I I I I I I I I I

I
I I I I I I I I (TTT I I I I I

~ 5 ~
~ Y

the mixing chamber of the cryostat. Maximum tempera-
ture deviation is observed at the lowest temperatures
(respectively, 0.087 K on the sample and 0.062 K on the
cold finger), and the deviation becomes practically negligi-
ble above 0.16 K.

All of these results show the necessity of taking special
care in measuring the temperature of radioactive samples
in dilution cryostats, even for metallic samples which are
good heat conductors. The precision of the sample-
temperature measurement is estimated to be +0.004 K.

0)
«alc
0

C. Spectrum recording

Mossbauer emission spectra of the Au' Tm source
were recorded with a single-line-reference moving ab-
sorber of YbBs at 4.2 K, 70-at.% ' Yb enriched, and con-
taining about 33 mg of ' Yb per cm . The minimum
linewidth obtained with this absorber and a ' Tm source
of TmA12 was 2.7 mms

The 84.3-keV y rays were detected by an intrinsic Ge
semiconductor diode. The Mossbauer drive used a
symmetrical triangular velocity signal, and the symmetri-
cal spectra recorded on the two slopes of the velocity sig-
nal were summed by folding.

8 ~li
%.~~%

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I III I I I I I I I I I I I I I I I I I I I I

-2 -l 0 1 (cmls)

IV. EXPERIMENTS AND INTERPRETATION

A. Experimental study

Preliminary data concerned partly with sample 1 were
already briefly reported It was shown that the Cx fit-

FIG. 4. Mossbauer emission spectra of ' Yb + in gold (sam-
ple 2), at (a) 0.087 K, (b) 0.60 K, and (c) 4.2 K. Fitted curves
were calculated using the general line shape expression (18),
which accounts for the hyperfine populations out of thermal
equilibrium.
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TABLE I. Mossbauer emission spectroscopy data on Au ' Yb: Values of the relaxation parameter

Cz /2~ fitted using line shapes (18) and (20), and values of the population [Pz],„ in the Fi hyperfine

multiplet. Computed values of the Boltzmann population I'2 in the F2 multiplet are also given. (Note:

C~ values in parentheses have been discarded in the final interpretation; see text and Fig. 6.)

0.087
0.093
0.108
0.130
0.160
0.22
0.31
0.47
0.50
0.60
0.82
1.43
2.65
4.20
4.20

Sample
no.

CI(-/2m. (MHz K ')
[fitted using (18)]

(353)
(347}
(354)
(358)
(332)
265
246
225
238
208
202
200
187
175
182

CI(,-/2m' (MHz K ')
[fitted using (20)]

305
310
321
317
298

{224)
(195)

[P2]-
5.17
5.17
5.19
5.27
5.38
5.47
5.54
5.67
5.56
5.74

3.02
3.20
3.56
3.95
4.33
4.79
5.14
5.44
5.47
5.56

spectrum below 0.6 K to two independent Lorentzian-
shaped lines, taking into account the dispersion correction
with parameter /=0. 015.' The relative area [P2],„of
the right-hand line, with respect to the total area of the
two-line spectrum normalized to the value 10, is given in
Table I and plotted in Fig. 5 as a function of temperature.
This quantity does indeed represent the population [P2],„
in the hyperfine multiplet Fz, as defined in (9). One can
note on the figure that the [Pz],„measured values lie be-
tween the initial value P2 ——6 and the Boltzmann curve

Pz (T) given by (6): this clearly shows that the thermaliza
tion of the hyperjine populations in the 84 3 keV stat.e -of

pO

3-
0 0.1 G2 0.3 0.4 0%

FIG. 5. Population in the upper hyperfine multiplet F2
versus temperature: [Pz],„, measured from the relative area of
the second line (solid circles, sample 1; open circles, sample 2;
dashed and dotted lines, see text). I'2. Initial population of F2
just after the decay of the radioactive parent "Tm. P2..
Boltzmann population of F2 computed by relation (6). Note
that the total population of the 10 hyperfine levels is normalized

to 10.

Yb is not completed when the Mossbauer decay occurs.
Furthermore, at the lowest temperatures of the experi-
ments (T-0.1 K), where the dynamical line broadenings
are very small, the main information about relaxation
given by the emission spectra comes from the line intensi-
ties which reflect the hyperfine populations out of thermal
equilibrium.

2. C~ measurements

All of the spectra were fitted by means of the general
line shape (18): In Fig. 4 one can observe the excellent

agreement between calculated curves and experimental
spectra in the entire temperature range. The fitted values
of the relaxation parameter Cx are given in Table I. The
other parameters, i.e., the isoiner shift b, is, the hyperftne
constant A, and the effective static linewidth I',tt were fit-
ted together with C» for each sample using the spectrum
recorded at the lowest temperature. The values so ob-
tained were then kept fixed in fitting Cz at higher tem-
peratures.

A similar procedure was used when fitting the secular
line shape (20) to the spectra; the Lorentzian-shaped lines
of (20) were modified to take account of the dispersive
correction. ' Different values were allowed for the static
widths I i and I'2 of the two lines in (20), as fitted from
the lowest temperature spectra,

I i
——3.30 mm/s and I 2

——3.41 mm/s for sample 1,
I,=3.35 mm/s and I 2

——3.52 mm/s for sample 2 .

Static line broadenings - (beyond the instrumental
linewidth value of Go ——2.7 mm/s) are due to local distor-
tions of the cubic crystal field, originating from defects or
random strains in the samples. However, in contrast with
the ' Yb + emission spectra in palladium, ' the I i and
I 2 values are not very different, justifying the use of the
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The isomer-shift (IS) value agrees with a previous deter-
minationzo and can be considered as a typical value for

Yb + in a metallic host.
The hyperfine-constant value is very close to the values

measured for the I 7 doublet of ' Yb + (84.3 keV} in vari-

ous insulating compounds: (896+5) MHz in CaFz (direct
Mossbauer measurement ), (894+6) MHz in ThOz, and

(890+6) MHz in Ce02 [electron nuclear double-resonance

(ENDOR) measurements on ' 'Yb + (Ref. 22) scaled to
'7 Yb]. The discussion of the contribution of conduction
electrons to the hyperfine constant in dilute alloys will be

postponed until the end of Sec. V.

FIG. 6. Relaxation measurements in Au Yb. Experimental
values: C» /2n values versus luT, fitted to the '7 Yb emission

Mossbauer spectra, using line shapes (18) or (20) (see text). Solid

circles, sample 1; open circles, sample 2. Cz has the physical

meaning of 1/(T& T) for k~T &&5 and of 1/(T~bfT) for
k~T-h. The thermal variation of the C~ fitted values reveals

a Kondo behavior. Curves: a, linear variation (22) of
C~ „d, /2m versus lnT, fitted to previous "high-temperature"
Mossbauer data [Ref. 1(c)]. b, Abrikosov-type variation (23) of
C~ d, /2m fitted to the present Mossbauer data. c, EPR data,
mean variation of C~/2~ derived from EPR measurements

[Ref. 9(b)], using relations (24) and (25).

unique linewidth parameter I,ff in the frame of the gen-
eral line shape (18).

Comparing fits made using (18) and (20} calls for the
following comments.

(i) At the lowest temperatures (T&0.16 K) both types
of fits give comparable values fOr the mean-square error
( X ), but the C» fitted values differ by about 10% (see
Table I). For the reasons given in Sec. II C, we think that
the more reliable values at such low temperatures are
those fitted by means of the secular line shape (20).

(ii) Above 0.3 K, the ( pz ) values are markedly smaller
when. fitting the spectra by means of the general line
shape (18): This shows that the secular approximation
has to be discarded when the relaxation rate 1/Ti C»T——
becomes comparable to about 0.046/A.

As a matter of fact, in the following we will use the C»
values fitted by means of (20) for T &0.16 K and those
fitted by means of (18) for all higher temperatures
(0.22& T & 4.2 K). The entire set of data is represented in
Fig. 6 as a function of lnT. Differences between C» mea-
surements from sample 1 (solid circles) and sample 2
(open circles} are not significant to within experimental
errors. The interpretation of the data is given below (Sec.
IV B).

3. Other measured parameters

B. Interpretation of the relaxation measurements

D=0.128 K .

The value of
~
J,fn(EF)

~
is slightly lower than the pre-

vious determination ( —0.088 [Refs. 1(b) and 1(c)]).
However, in Fig. 6 it appears that the experimental

variation of C» versus lnT between 0.09 and 4.2 K is not
exactly linear. A better fit is obtained if one uses an
Abrikosov-type law

Cx,„d, 2mB/[ ln(T/T——» )] (23)

instead of the linear variation (22) of Cx,„d, versus lnT.
The solid curve labeled b in Fig. 6 was fitted by means

of (23), with the following parameter values:

B=3.27&&10 MHz/K, T» 3.6)&10 K. ——

C. Comparison with the EPR data

We first recall that the usual "linewidth" ~ observed
in EPR experiments, which actually is the half width at
half maximum of the Lorentzian-shaped absorptive part
of the dynamical transverse susceptibility Xi(co), is written
as

Figure 6 shows that the C~ experimental values de-
crease by about 45% between 0.09 and 4.2 K, which con-
firms the Kondo behavior previously observed above 0.6
K." "" However, the previous measurements of
C» ——1/(Ti T) using the "high-temperature" relaxation
line shape (represented by the dash-dotted straight line la-
beled a in Fig. 6) were overestimated by about 25%
around 1 K because of a rough determination of the static
effective linewidth in these experiments.

Fitting of the C» experimental variation by means of
expression (22) of Cx,„d„that is, using a linear variation
versus lnT, gives the following values:

J,fn (Ez )=—0.078,

i.e., Jf=—0.49 eV using n(E+)=0. 16 eV ' atom
and

The values of the isomer shift his and the hyperfine
constant A, fitted using the secular line shape (20) with a
dispersive correction, are

b, H =a(c,co)+
1

@Pa T2
(24)
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where a(c,co) is a residual "static" width depending on
the impurity concentration c and on the resonance fre-

quency co, and w'here the second term is a dynamical
broadening involving the transverse relaxation rate,

In the latter expression, Cz is the Korringa constant
defined in relation (4).

In the high-temperature range (kii T»co), relation (25)
becomes

1/T2 ——C» T, (26)

which is equivalent to the high-temperature expression
used in Mossbauer spectroscopy for k&T &&6,

1/Ti C» T,——
which is relation (17). The two techniques thus measure
identical quantities, 1/Ti ——1/Tz, in the high-temperature
region, in the case of cubic symmetry.

At low temperature, effects due to the finite Zeeman
splitting in EPR and to the hyperfine splitting in MS
hinder direct comparison of the two techniques. The best
solution therefore, is, to compare the experimental values
of C», which is the only adjustable parameter of the low-
temperature Mossbauer spectra and which can be extract-
ed from the EPR linewidth via formulas (24) and (25). In
the presence of the Kondo effect, expressions (22) or (23)
of 'CK,„d, can be used to account for the thermal varia-
tions of the experimental fitted values of C» in both tech-
niques. [Note that although a frequency dependence of
the CK,„d, values is also expected in EPR measure-
rnents, ' this effect may be neglected for the lowest fre-
quencies used in recent experiments, co/2m (3 GHz (Ref.
9).]

EPR experiments between 1.4 and 4.2 K were per-
formed in 1971 by Orbach and co-workers on Au Yb al-
loys using Yb concentrations down to 500 ppm. " The
value b =BbH /d T=(40+ 10) G/K, corresponding to
C»/2m=(187+47) MHz/K, was obtained. This mean
value is in good agreement with the present Mossbauer
data in the same temperature range, but the poor accuracy
and the restricted temperature range did not enable a
Kondo variation to be detected in these earliest EPR ex-
periments.

Later, Baberschke and Tsang used a lower microwave
frequency (co/2~=3. 22 GHz) and extended the measure-
ments down to about 0.1 K. " Both linewidth and g-
shift data were interpreted by Kondo variations, respec-
tively, in [ln(T»/T)] and [ln(T»/T)] ', with T»
values ranging between 10 and 10 K. Concentration
effects were evidenced by comparing samples with 500,
1200, and 2400 ppm of Yb.

Improved EPR data were recently published by the
same group, in the temperature range 80 mK & T & 4.2 K,
using Yb concentrations down to 70 ppm, microwave fre-
quencies down to 1.1 GHz, and ' 'Yb or ' Yb
isotopes. '"' Unfortunately, Baberschke and Tsang's re-
cent paper contains some. errors or misinterpretations
which were shortly revised in a later erratum: The EPR

dynamical line broadening was erroneously interpreted in
terms of 1/Ti+1/Tz instead of 1/T2 as in expression
(24) above. In addition, a factor of 2 was missing in the
relaxation-frequency values per kelvin indicated by crosses
on Figs. 4 and 6 of Ref. 9(b), which were supposed to
represent our earlier Mossbauer data. Using, in turn, the
EPR data given in these two figures and relation (25) of
this paper, we calculated a mean "Cz" thermal variation
(Fig. 6, curve c) which accounts, in a first approximation,
for the EPR measurements recorded with the three mi-
crowave frequencies of co/2m = 1.1, 3.4, and 9.0 GHz.

One observes in Fig. 6 that the EPR measurements are
in good agreement with the MS values around 4 K, but
they become markedly smaller at lower temperatures, the
discrepancy reaching about 25% at 0.1 K. As the overall
slope of the EPR variation is smaller than that for the MS
variation, the associated Kondo temperature is found to
be smaller as well. Tz values on the order of 10 K are
derived both from EPR g-shift and relaxation data [Ref.
9(b)] and erratum instead of —10 K as in the present
Mossbauer data.

The comparison between EPR and MS relaxation mea-
surements calls for the following comments. Contrary to
EPR, Mossbauer measurements are recorded without any
applied magnetic field which could modify the Kondo
properties. Furthermore, the Mossbauer measurements
are less sensitive than EPR to concentration effects be-
cause the Mossbauer sample is not doped with ytterbium,
but rather'with dilute thulium impurities which are non-
magnetic at low temperature. Finally, as explained in Sec.
II, the Mossbauer relaxation data around 0.1 K are essen-
tially based on. hyperfine-population measurements and
not on dynamical line-broadening effects; the evaluation
of the "static" residual linewidth thus does not present the
same critical character as in EPR measurements in the
slow-relaxation region. For these various reasons we
think that the low-temperature Mossbauer relaxation mea-
surements are more reliable than the corresponding EPR
data.

D. Interpretation of the hyperfine-population
measurements

The line-intensity or hyperfine-population data have al-
ready been exploited, together with the line broadenings,
when fitting C» by means of the relaxation line shape for-
mulas (18) or (20). It is interesting, however, to directly
compare the [P2],„population measurements of Fig. 5
with the [P2],„values calculated with the help of relations
(10) and (16), using, in turn, the above fitted CK,„d, varia-
tions (22) or (23). The dashed curve in Fig. 5 was calcu-
lated down to 0.9 K using (22) with the values of the pa-
rameters J,fn(EF) and D given in Sec. IVB. This curve
agrees fairly well with the experimental values of [Pz],„,
but a curve calculated using (23) instead of (22) actually
gives a similar agreement, which shows that [P2],„,mea-
surements are not sufficient by themselves to distinguish
between the two types of CK,„d, variations.

For 0& T&0.09 K, that is, for k&T«h, the exact ex-
pression (15) of 1/Tihf should be used instead of (16)
when calculating [P2],„, and furthermore the "inelastic"
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Kondo corrective factor 1+a»(T) should be used in (15)
instead of the "elastic" factor 1+b»(T) given by (22).
For T~O, both expressions (15) and 1+a»(T) saturate,
and the limiting values of 1/Tihr and [P2],„are"

=0.4 C» 1+4aJ,fn(E„)ln—
B

r.e.,

1 =13.0 MHz .
2m T&hf

p0
([P2],„)„,= =5.04 .

1+1n / Tlhf sat

(27)

The dotted curve linking the calculated value of [Pi],„at
0.09 K to the value ([P2],„)„,at 0 K has been drawn in
Fig. 5 in an attempt to represent the saturation of the
[Pq]a„ thermal variation near 0 K; however, no experi-
mental measurement was made at such low temperatures.

(We note that, apart from the saturation of the "inelas-
tic" relaxation rate I/Tihr between the two hyperfine
multiplets Fi andF2 for ks,T «b. , a saturation is expect-
ed in Kondo systems of both elastic and inelastic relaxa-
tion rates for T & T». As the Kondo critical temperature
T» is found to be of the order of 10 K in the system
Au Yb, this latter saturation phenomenon cannot obvious-
ly be observed in this alloy, but it could be of experimen-
tal interest in other cases, such as, for example, the
Mossbauer study of '7 Yb + in LaBe». 2 )

V. DISCUSSION OF THE s-f INTERACTION
AND THE KONDO BEHAVIOR

For rare-earth impurities diluted in nob1e metals, the
existence of a 5d virtual nonmagnetic bound state at the
impurity site now seems well established. ' ' This virtual
bound state arises from resonant scattering of the 1=2
component of the conduction electrons by the electrostatic
impurity potential, and supposedly has an energy width of
a few electron volts. A'tomic Coulomb interaction be-
twmn the rare-earth 4f electrons and this virtual bound
state is the dominant interaction for "normal" rare earths
(Er +, Dy +, etc.) in noble metals; it explains some aniso-
tropy properties of the resistivity in these alloys rather
well, ' and amounts to a few tens of milli-electron-volts.

In the case of Au Yb +, the existence of the Kondo ef-
fect on Yb + demonstrates that the main contribution to
the interaction between the 4f localized electrons and the
conduction electrons is resonant exchange (or s-f hybridi-
zation), which yields a 4f magnetic virtual bound state
at the impurity site, located, in energy, not far below the
Fermi level, and supposedly possessing a much narrower
width (a few one-hundredths of an electron volt). Our
measurements of J,f——0.49 eV, which gives the order of
magnitude of the hybridization coupling, shows that
atomic Coulomb interactions (-0.05 eV) can be neglected
in the Au Yb + system.

The calculation of the thermal variation of a localized-
moment relaxation rate in the presence of the Kondo ef-
fect was first performed by Kondo, for a spin-only mo-

ment (S=—,), interacting with l =0 conduction electrons

by the effective exchange interaction A,"„'=—2J,q s S.
'
One obtains

4m. AT[Jan(E~)] kit 1+4J,gn(E~) ln
D

(28)

However, magnetic impurities usually possess orbital
degeneracy, which may be partially lifted by the crystal-
line electric potential. In the case of d transition impuri-
ties in metallic hosts, the strong resonant hybridization
with band states is supposed to obliterate the crystal-field
interaction; in these alloys, Kondo properties and, in par-
ticular, relaxation-frequency measurements, are described
by an effective exchange interaction between the impurity

spin S and the 1=2 partial wave of conduction electrons,
with spin s:

JqP2( c—os8-, )S s,
where P2( cos8) is the Legendre polynomial of second or-

der, 8, is the angle between the incident (k) and final

(k ') conduction-electron wave vectors, and J,~ is the ef-
fective exchange constant. Such a form for the interac-
tion preserves the l=2 symmetry of the virtual bound
state ' and yields, for the relaxation rate to third order in
perturbation,

[Jagn(Ep)] Jagn(Ep) kri T=—AT 1+2 ln
T, I 2l+1 2l+1 D

(29)

Using a diagrammatic method, Abrikosov showed that
summing the most divergent terms to all orders in
J,qn(E+) leads to an expression for 1/Ti which depends
only on one parameter, T» (when T» T»),

1 ~ 2I+1
Ti A [ ln(T/T»)]

2l +1
where Tz ——D exp . (30)

J,„n(E„)

This expression takes into account the 2l+1 orbital de-
generacy of the electronic shell, the crystalline field being
neglected. Furthermore, relation (29) can be considered as
the first-order development of relation (30).

Thermal variation of the relaxation rate was fitted to a
law of the type of (30) in CuMn (T»—0.01 K) (Ref. 8)
and Cu Fe ( T»-30 K) (Refs. 5 and 6). Owing to the rela-
tively high value of Tz in these alloys, the experimental
temperature range is around 10T~ to 100T~, and devia-
tions from a linear thermal variation of the type of (29)
are considerable.

For the rare-earth Kondo ions Ce + and Yb +,
resonant hybridization is weaker than for 3d impurities
and is treated as a perturbation of the crystal-field states
of the rare-earth ion in the computation of the Kondo
properties.
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At low temperature, if one considers a doublet ground
state well isolated from the excited states, one can try to
phenomenologically describe the Kondo interaction by an
exchangelike interaction (2) with an antiferromagnetic
coupling constant,

[ ln( T /Tx ) ]

1
with Tx Dexp—— , (31)

2aJ,&n EF

that is,

CEO d.
2& [ ln(T/T~ )]

One cannot, however, use the same procedure for the
Ce + ion, because gj —1 &0 for Ce +. To circumvent this
difficulty, a derivation of the Kondo coupling was made
by Coqblin and Schrieffer (CS), who showed that in the
Kondo limit the s f—hybridizat-ion interaction can be
transformed into an effective exchange interaction,

JMMC ~ C~, , CMCM' ~ (32)
k, k',
M, M'

where the states M) and ~M') are eigenstates of the
rare-earth ion in the crystalline electric field, cM (cM) are
the creation (annihilation) operators of a localized electron
in the state

~

M ), c (c ) are the creation (annihila-
kM kM

tion) operators of a conduction electron with wave vector
k and total moment component J,=M, and J~M is a
negative parameter depending on the energies of the ionic
levels

~
M) and

~

M') and on the hybridization coupling.
In the case of Yb + (for which J= —', ), this Hamiltonian

describes a j-J coupling between the local moment in the
crystal field and the j=—', component of the itinerant-
electron wave function. In terms of the resonant scatter-
ing mechanism, one can say that the 4f magnetic virtual
bound state at the Yb + site is built up by the mixing of
the crystal-field eigenstates with the eightfold-degenerate
spherical component with j=—,

' of the Bloch extended
states.

~ f 2g[(gJ )/gJ]J f s 'S

where S is the effective spin (S=—,
'

) of the crystal-field

doublet and g is its spectroscopic constant. This is possi-
ble for Yb + since g(gJ —I)/gq ——a is positive for this ion,
leading, hence, to Kondo properties with a negative cou-
pling constant J,~.

This approach was used throughout this paper and

yields, to leading perturbation order, the thermal variation

(22) of I/T/T,

1 4m AT
Ti T fi D[aJ/n(EF)] ks 1+4aJ/n(E+) ln

(22)

From this expression, one can derive an Abrikosov-type
law,

For an isolated doublet ground state, the CS interaction
(32) yields a thermal variation of CK,„d„

~k~ AT
[Jp n (EF ) ] 1 +4Jp n ( EF ) 111

D

(33)

In this expression, Jo is the negative parameter,
Jp= —

~
Vk/ ~

/Ep, where Ep is the energy distance be-
tween the 4f virtual bound state and the Fermi level, and
Vkf is a mean matrix element of the resonant mixing in-
teraction. This variation of C~,„d, slightly differs from
relation (22) mentioned above.

The Abrikosov-type law derived from expression (33) is

+kg
4& [ ln(T/Tx. )]

with T~ ——D exp
1

(34)
2Jpn(EF)

Expression (34) differs by a factor of 4 from expression
(31): This results from the fact that the isotropic s-f ex-
change (2) assumes that the conduction electrons are plane
waves with no orbital momentum and spin s = —,, whereas
in the CS Hamiltonian (32) we assume that they are
represented by 2j+1 partial waves, with j= —,. The ratio
4 between the quantities CK,„d,——I/T&T calculated with
(2) or (32) simply reflects the ratio of the degeneracies
2/(2J'+ 1) of the conduction states considered in the cal-
culation of the relaxation rate.

The experimental value of the B coefficient in expres-
sion (23),

CK „d =2m'B/[ln(T/Tx)]2,

is 3.27 X 10 MHz/K, i.e., halfway between the values cal-
culated with (2) and (32), respectively [expressions (31)
and (34)]. We have no interpretation for this result at the
present moment. The authors of Ref. 9(a), in their deriva-
tion of the Abrikosov-type law, obtain a multiplicative
factor a d, where d denotes a degeneracy or a number of
"scattering channels, "

by analogy with 3d transition im-
purities [expression (30)]. However, the physical meaning
of this degeneracy factor, left as an adjustable parameter
in Ref. 9(a), remains unclear to us because the influence of
the crystal field on the number of "scattering channels" is
already taken into account by considering that the
resonant scattering occurs within the I 7 ground state of
the Yb + ion.

Nevertheless, our experimental results, as well as those
obtained with the use of EPR in Ref. 9, demonstrate that
the Abrikosov-type thermal variation of CK,„d, in the al-

loy Au Yb + is more appropriate than the linear lnT law,
even in a temperature range of the order of (10 —10 )T~.

Finally, we mention that the CS Hamiltonian has been
used to calculate the relaxation rate of Yb + in gold at a
higher temperature, when transitions toward excited
crystal-field levels become important, and also in a NMR
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study in the presence of a strong magnetic field which ap-

preciably mixes the crystal-field states. 3

We next consider the contribution of conduction elec-
trons to the hyperfine constant A.

In dilute alloys, one expects an extra contribution hA to
the hyperfine constant to arise from the dynamic polariza-
tion of conduction electrons via the exchange coupling.
A second-order perturbation calculation, with the assump-
tion that the conduction bands have s character, shows
that

s~ —&

hA -g AcEJgfn(EF),
Ss

where Acp is the Fermi-contact hyperfine constant of
conduction electrons at the nucleus site.

In the case of atomiclike exchange between 4f and con-
duction electrons, J,f is positive, as is AcE.

In the presence of the Kondo effect, the covalent mix-

ing interaction predominates, with a negative coupling
constant JcM. However, only the l=3 component of the
conduction-electron wave function is coupled to the 4f
electrons, and so there is no direct-contact interaction
with the nucleus. A possible contribution to hA could,
however, indirectly arise through core polarization of s-

type inner shells, yielding

gg —1
A .PcMn(Er)

Sz

where A',~„, is the contact hyperfine interaction due to
dynamical polarization of inner s shells by conduction
electrons. According to Ref. 24, A,'~„, is negative.

Thus in both cases, hA has the same sign as gJ —1, and
should be positive for Yb +. In the Kondo alloy Au Yb,
the covalent mixing interaction, is dominant, and thus, us-

ing the measured value of JcMn(Ep), we obtain

4A ——0.03A,' „, .

than a few hundred megahertz, which is the right o'rder of
magnitude for core-polarization effects.

VI. CONCLUDING REMARKS

This paper shows several improvements with respect to
our previous studies of the Au Yb system, at low tempera-
tures 1,2) 11

First, the use of a He-"He dilution refrigerator allowed
us to extend the temperature range of the experiments
down to 0.09 K, that is, below the hyperfine separation
value (b/ks ——0.11 K).

Qur results clearly demonstrate the existence of hyper-
fine populations out of thermal equilibrium in the
A u ' Yb emission spectra at such low temperatures.
They also show that the information about electronic re-
laxation available from the hyperfine populations progres-
sively overcomes the information available from dynami-
cal line broadenings as temperature decreases. Relaxation
rates down to —,', (6/A) have been measured in this way.

The computation of a general relaxation line shape gave
us the possibility to take all of the information present in
the emission spectra in the entire temperature range into
full account, including the population effects. We also
computed the emission line shape within the secular ap-
proximation and compared the respective advantages of
the two line shapes for fitting the low-temperature spec-
tra.

In conclusion, this study enabled us to confirm the
Kondo behavior of Yb + in gold by measuring the relaxa-
tion parameter Cx ——1!T&T (or 1/T, hrT for T-5/ks)
from 4.2 down to 0.09 K.

Our data are better fitted by means of an Abrikosov-

type variation in [ 1n(T/T~)] than with the usual Kon-
do linear logarithmic dependence. The order of magni-
tude of the Kondo critical temperature Tx is found to be
a few 10 K, that is, about 2 orders of magnitude larger
than in recent EPR experiments.

We indeed observe a very small increment of A in
Au Yb with respect to the value in insulators (less than
1%). As there is no available measurement of A',~„,as far
as we know, this might indicate that A „„„is not bigger
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APPENDIX A: MOSSBAUER LINE SHAPE OF A SOURCE
AT LOVE TEMPERATURE IN THE ABSENCE GF THE KGNDO EFFECT

1. Summary of general formulas (Refs. 10, 38, and 39)

We consider a source with an excited Mossbauer state I (electronuclear substates f ) and a ground state I (electronu-
clear substates g), between which a Mossbauer transition is induced by a nuclear electromagnetic multipole Tl . It can
be shown that in the Liouville formalism and within the "density-matrix" approach, the Mossbauer line shape g (co) of a
powder spectrum in the presence of relaxation is given by

with

M,f),f2,f3,
8) S2

&fi I Tllri &&Zz
I
&ri &'I f2 &(Fl f3 g~, I2)rrg I &I/A,

iso I'/2+(i/R)A p +R—
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(A2)

in which we note the following. (i) A p is the atomic Liouville Hamiltonian in the absence of relaxation [we will assume

that the kets ~g,f) are the eigenstates of A p, with eigenvalues Eg Ef—]. [Similarly, in the standard formalism,

~ f),
~ g ) are the eigenstates of 4 p with eigenvalues Ef,E&. We recall that it is necessary to use this basis for computing

relaxation effects when the white-noise approximation is not valid. It is also appropriate to the description of the density

matrix of the excited state in terms of populations (see below}.] (ii) R and S are (related) relaxation supermatrices. 39 ~
(iii) I'= 1/v„ is the linewidth of the excited Mossbauer state. (iv} cr (1/1 ) [Eq. (A2)] is the average value of the density

matrix o of the excited Mossbauer state I in the presence of (a) feeding by the radioactive parent with rate +I o;„, (b)

evolution in the presence of Pi p, (c) relaxation S which drives o towards the Boltzmann value oii, and (d} decay towards

the Mossbauer ground state with the rate —I'o. cr (1/I") is also the solution of the detailed balance equation [equivalent

to Eq. (A2)],

I i X=0=I cr;„+ ——4 0 +S o.—1 o. . (A3)

Owing to the properties of spontaneous emission, when the parent is at thermal equilibrium, the initial density matrix o;„
is diagonal with respect to the eigenstates

~ f ) of Pl p'. f4 =f5.
If o remains diagonal during its evolution, then f3 fi in Eq.——(A2); one may speak in terms of average populations

pf(1/I') =crff (1/I ) and Eq. (A3) is replaced by the rate equation

dPf 0 Ipf g Wf f'pf + g Wf' fpf Ipf
f' f'

(A4)

in which A 0 has disappeared because it commutes with the populations, and the second and third terms on the right-
hand side (rhs) are associated with relaxation (Wf f and Wf f are transition probabilities). The solutions of Eq. (A4)
are the pf(1/I ).

In terms of these populations, the Mossbauer line shape becomes

E(~)~ Re& g &fi I Ti I gi) &g21(Ti )' If2) g»f i „,f,)„,(ixrI .
M f) f2 iai 1 /2+(i/—fi)A p +R

(A5)

2. Introduction of tensor-operator formalism

We now consider the case where A p is an isotropic hyperfine structure Hamiltonian: A p
——A I S or Ag Ig S (S

denotes an effective electronic spin); then
~
f ) —=

~

F mF ) and
~
g) —=

~

G mg ), with F= I + S and G= Ig+S. If the re-

laxation process is also isotropic, it is interesting to use the tensor-operator formalism of Ref. 41. For this, the expres-

sion for g (tp) is first transfornied by expressing the nuclear multipole Ti in terms of tensor operators VL adapted to
the coupled system [Ref. 40; Ref. 41, Eqs. (26)—(34)]

TM y bFGFGVM

F,G

in which the coefficient bi is related to a 6j coefficient:

F 6 I
bFG ( 1)I+s+G+i[(2F+1)(2G+1)]1/2 .

L Ig I S

and the tensor operator Vi is defined in terms of a Clebsch-Gordan coefficient,

Vi = g ( —1) (F mF G, mg ~L,M) ~F,mF)(G, —mg
~

mp, mg

The Mossbauer line shape then takes the form

bi bi g p (1/1 )(F,mF
~

Vi
~
G, mg)(G', rng

~
( Vi )t ~F', mF )

F,G,
Ft Gi

—L (M &+I
—1

X GIGF mF . . x 6'mG F'mF
iso 1 /2+(i/ft)A p +—R

(A6)

(Aj)

(A8)

(A9)
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We now assume that the average populations p (1/I ) of the substates
I
m~) of a hyperfine state F are all equal:

3685

p (1/I )= &p.(1/r)mg
(A10)

It becomes possible to take P~(1/r) out of the summation over mz, m~, mg, and mg. Then, for isotropic relaxation,
the summation can be performed with the result

F,(1/r) —1
g(co) ~ Re g bL bL L,M, GF . . x L,M, G',F

F G 2F+1 i co I —/2+ (i/fi) A 0 +R
F', G',

M

(Al 1)

The kets
I
L,M, G,F), in which L is the multipolarity of the Mossbauer transition, are parts of a larger set of kets

IL',M', G,F), with IF G
I

&—L'(F+G for each pair F,G. With respect to this basis and when both the hyperfine
Hamiltonian A 0 and the relaxation process are isotropic, the matrix elements of ice I /—2+(i/A)A 0 +R have the
form [Ref. 41, Eqs. (38)—(40); Ref. 42, Eq. (1)]

r

L',M', G', F' ice —+——A 0 +R L",M",G",F":—Trace ( VL )t ice —+——A 0 +R VL
I,I iS

=5L L 5MM 5J;i. 5gg ~ ie —+—icing J. +5L, L. 5MM (L')G')F IR IL",G",F"), (A12)
2

A i
———gpiiH(t) S, (A13)

in which H is a fluctuating isotropic quantum field. At
high temperature and up to second order in A l, the relax-
ation coefficient (L,G,F

I
R

I
L,G',F') associated with

A i is related to the spectral density I(co) of the field H
by the complicated Eq. (1) of Ref. 42. At low tempera-
tures (quantuin field) two different spectral densities exist,

in which, because of the projection operator which enters

VL, the trace is in fact equivalent to a summation
over mF, mF'-, mG, and mG'. We observe that the large
matrix factorizes into submatrices corresponding to given
L' and M', and that for fixed L', the submatrices associ-
ated with different M' do not depend on M'. To obtain
the Mossbauer line shape, we only need to invert the sub-
matrix corresponding to the multipolarity L of the
Mossbauer transition and to M =0.

In this paper we are interested in relaxation by the con-
duction electrons. Up to a certain stage of the calculation,
this relaxation is equivalent to the more general problem
of relaxation by a fluctuating isotropic quantum field.
This last model will be used from Eqs. (A13) to (A25) and
the specialization of the formulas to conduction electrons
will be deferred until Eq. (A26).

We then consider a relaxation Hamiltonian

2 2

I'(co )= ~ f d r e'"' Trace[p~H'(0)H'( —~)],g Pa
A'2 lattice

(A14)
2 2

I"(co) = f dr e'"'Trace[p&H'( —~)H'(0)]g pg ao

fl lattice

(where pii is the density matrix of the lattice), and in the
expression of Ref. 42 for (L,G,F

I
R

I
L,G',F'), the four

spectral densities I have to be replaced, respectively, by
I", I', I', and I" (Ref. 42, note added in proof). Here we
will only be concerned with a particular case of these re-
sults [see Eq. (A15) below].

3. Application to Au'7 Yb

From now on we will restrict ourselves to the case of
Au' Yb, where I=2, Ig ——0, S=—,, and L =I=2.

In state I, 4 0——A I.S has two hyperfine eigenstates
with F= —,

' and —', separated by 6=5A/2A', and in state

Is there is a single hyperfine state with 6=S=—,'. The
spectrum is obtained by inversion of the submatrix
L =2,M=0 of Eq. (A12), which is 2X2 (two pairs F,G).

We are interested in relaxation by a fluctuating quan-
tum field. When I =0 and L=I, the expression for
(L,G,F

I
R

I
L,G,F' is [Ref. 42, Eq. (3) and note added

in proof],

F" F 1

(L,G,FIR IL,G,F')= —S(S+1) 5~~ I"(0)+g(2S+1)(2F"+1)'

S S I
' I'(co~~)

Ftl

2F'F1
+(—1) + + +'(2S+1)[(2F+1)(2F'+1)]'~ '

S S I [I'(cop~)+I"(0)]

(A15)
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Let us neglect the imaginary part of R. It can be shown that ReI"( —co)=ReI'(co) and ReI'(co)= exp(fico/
kii T) ReI'( —co) ["equilibration relation, "Ref. 43, Eq. (4.67)]. We then define

and

J(0)=2 ReI'(0), J(b)=2ReI'(5), J( —5}=2 ReI'( b),—

bl, = —', [J(0)+J(—b)], EI,= —', [J(0)+J(+b)] .

(A16)

(A17)

With the help of Eqs. (A12) and (A15), the submatrix L =2,M =0 of iso —I /2+ (i jh')4 0 +R is found to be equal to

F=—5
2

I . 3A

~6 b, l'z

2 2

i/6 vari
3 2

r ia ~I 2
EN—

2 iii 2

(A18)

whence, using Eq. (Al 1), the Mossbauer line shape, valid for any isotropic fluctuating quantum field (p = I /2 —iso),

P3/ (1/I )[p+iA /A+(EI' i+El'z) /2] +Pz /z(1/I )[p i(—3A/2R)+(b I i+hi"2)/2]
g (ci)) ~ Re

p (iA —/2iii)p+ [(AI i+ b I'2)/2]p+ 3A /2' —(iA /A)( —', b l 2
——,

' EI'i )
(A19}

which were introduced in our previous work [Ref. 2, Eq. (82); Ref. 11, Eqs. (28)—(30)] in connection with the high-

temperature line shape (8'} and the relaxation of the hyperfine populations (U, V). As a function of U, V, and W the
line shape becomes

P / (1/I )[p+iA/A'+'W+(U+ V)/2]+P (1/I )[p —i3A/2R+ 8'+(U+ V) /2]
g(co)~ Re (A21)

p (iA/2—A')p+[W+ —,'(U+ V)]p+3A /2R —i(3A/2R)( —,
' U ——,

'
V)

In terms of these same parameters, the average hyperfine populations P5/2(1/I') and P3/2(1/I') of the excited

Mossbauer state, which enter Eqs. (A19) and (A21},are solutions of [Ref. 11,Eq. (28)]

rIP5/2 0 dP

dt
=0=I P / —UP / + VP / —I P / (A22)

3/2 p=0=I P3/2+ UP —VP3/2 I P3/2,

Note that P3/2(1/I ) and P»i(1 /I') are, respectively, [Pi],„and [P2],„ofthe main text. The Mossbauer line shape can

also be expressed in terms of the parameters

W= —,
' J(0), U= —', J(h}, V= —', J( —5), (A20)

in which I P5/2 and I P3/g are the feeding rates of the two
hyperfine states by the parent, the terms in U and V are
associated with relaxation between F= —,

' and —,', and
—I P5/2 and —I'P3/2 correspond to radiative decay of I
towards Ig. Only the parameters U and Vappear in these
equations, because relaxation processes between F= —,

' and

always involve an energy transfer +b, between the
Mossbauer atom and the thermal bath.

Equations (A 19) and (A21) have been established
without the white-noise approximation. They are then
valid, provided that the relaxation effects are small com-
pared to the hyperfine interval h. ' ' For Au'7 Yb, in
which 6/kii ——0.11 K, relaxation effects happen to fulfill
the smallness condition below, say, 0.6 K. If they become
sufficiently small for the secular approximation to apply,
then we may neglect the off-diagonal elements in the ma-
trix [Eq. (A18)], and the Mossbauer line shape (A21)
reduces to the sum of two Lorentzian-shaped lines:

in which

zr. . . ar,= —,8'+ —, V, =—8+—U
2 ' ' 2

(A24)

p —iA /25+1/T»
g (co) ~ 10Re

p +p(1/T„i A2A/') +3A/—2iA'2

(A25)

In contrast, at high temperature (T &0.6 K) the relaxa-
tion effects are no longer small, but the WNA applies
since kii T»6, and Eqs. (A19) and (A21) remain valid,
with J(0)=J(b.)=J(—b). In addition, the density ma-
trix of the excited Mossbauer state is now proportional to
the unit matrix, and P3/2(1/I'}=4 and P5/2(1/I )=6.
Equations (A19) and (A21) are then replaced by [Ref. 40,
Eq. (34); Ref. 41, Eq. (36)].

P3/2(1/I )
co ~Re

—,
' (r+ar, ) —jco —i(3A/2iri)

P, /2 (1/I')
+

, (I +&&2) ice—+iA/iii—
(A23)

with 1/T» ——J(0).

A ) ———2J,faS.s, (A26)

In the case where relaxation is due to the conduction
electrons,
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the relaxation coefficients are given in terms of the Kor-
ringa constant

(ii) The off-diagonal elements are all zero: o, „=0
mFe mgi ~

if F'&F" and/or mE &mF"

b 11

C» (4——mIA')[aJ, fn(EE)] kE

J(0)=C» T,
exp(A/kE T)

kE exp(h/kET) 1—
J(—5)=C» 1

kE exp(b, /kET) 1—
(A27)

dry I i
t '" fi

=r~,„+ ——~, +s ~—r~. (Bl)

Then it can be shown that (a) the off-diagonal elements
remain always zero, and (b) the populations pm =om m

of a given hyperfine state remain equal to a common
value PE(t)l(2F+1), which depends on time; this second
point was established in Ref. 11 under assumption (a).

We now check statement (a). The density matrix cr

obeys the evolution equation [Eq. (A3)]

whence EI i, EI z, U, V, and W are given by Eqs. (A16)
and (A20).

All of the above results have been derived under the as-
sumption that the density matrix o of the excited
Mossbauer state always remains diagonal. We must now
check this point.

What we must show is that in (d/dt)o"„„(F"&F"'),
the contribution of the populations to the relaxation term
So is always zero if the populations pM with given F are
equal [case (b)]. This population contribution is written as

g (F",n;F"', n
I
S

I
F,m;F, m )o"

APPENDIX B: DECOUPLING PROBLEMS

We want to show that, in the presence of relaxation, the
density matrix o of the excited Mossbauer state I remains
always diagonal, i.e., that the p~:—om„m„are decoupledm

from all other matrix element o, „with F'+F"
mF mp

and/or mE &m~'.
This was demonstrated in Ref. 10 for the case

mE+mE' using symmetry considerations based on the
isotropy of the fluctuating field. It remains to be demon-
strated in the case F'&F",mE ——mE'.

This can be achieved if one assumes that the initial den-
sity matrix has the following properties (satisfied in
~u'"Yb):

(i) The substates IF,mE) of a hyperfine state F are
mF

equally populated: pE
—=o =PF /(2F+ 1) indepen-

dent of mE.

Pp

2F+1 g (F"n;F"',n
I
S

I
F,m;F, m ), (B2)

and we must show that the last summation over m is
zero.

For reasons of simplicity, the demonstration will only
be performed up to second order in the relaxation Hainil-
tonian A 1. Indeed, the Kondo corrections introduced in
Appendix C, which are of third order in A i, are always
small compared to the hyperfine interval 6 and they can-
not induce any appreciable coupling between the diagonal
and off-diagonal matrix elements of o.

We first assume a general relaxation Hamiltonian
KqFq (Kq denotes the atomic operator and Fq

denotes the lattice operator). If only the lattice correlation
functions [F q(0)Fq( —t)],„and [Fq( —t)F q(0)],„are
nonzero, then according to Eq. (8) of Ref. 41, the matrix
elements of the relaxation supermatrix S are given, up to
second order in A 1, by

(F",n;F' n
I
S IF m F m ) =

2 X —X&~",n;E, e+~, e ;E;mJ qq('toFE'@F m —F"'n'
q E,e

g +P,m;E, e+E,e;F"',n J qq(~EF +F,m;F, "n—
E,e

++F",n;F, m+5, m;F'", nJ qq( OF"'F ) ++5",n;—F,m+F, m;F"', n qq(~FF")—

in which the spectral densities J'
qq,

J"
qq are defined by

Eqs. (6) and (7) of Ref. 41, and we have taken the hyper-
fine degeneracies into account when writing their argu-
ments.

Here we are interested in the case where relaxation is
due to a fluctuating isotropic quantum field:

I

Then,

Xo ——S„Ki——S+/V 2, K i
——S /v 2,

H H+
Fo ——gPBHz. F1——gPa F—1

——gPa~2 v'2

(B3)

(B5)

A 1
———gPgH S. (B4) and two spectral densities exist, independent of q,
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Joo(to) =J' ii(to) =Ji i(to) =2I'(co),
(B6)

first and second lines of Eq. (B3) are zero, and that when
one calculates

Jo'o(to) =J"ii(to)= Ji' i(to) =2I"(co),

in which I'(to) and I"( to) have been defined previously

[Eq. (A14)].
Being independent of q, the spectral densities can be

taken out of the summation over q. Using this fact we
will now show that the summations over q and e in the

I

g (F",n;F"', n
~

S
~
F,m;F, m )

m

[Eq. (B2)], the contribution of the third line, which in-
volve summations over q and m, is also zero.

For this purpose, as in Eq. (50) of Ref. 41, we express
the components of the electronic spin Ko ——S,(. ) in
terms of tensor operators" Vi(. ) adapted to the hy-
perfine states F,

S,=
' 1/2

S(S+1)(2S+1) ssTO
3

1/2
S(S+1)(2S+1)

3 y CF'F(F'FVO)
FF'

(B7)

F' k F
Vg= g ~

F',mF)( —1) (2k+1)'~, (F,mF
~—mF q ply

78p, mp

SF' I
( F'F

( 1)s+I+F+k[(2F+1)(2F + 1)]1/2 ~

k F S k

(B8)

(B9)

in which the large parentheses and large curly brackets denote, respectively, 3j and 6j coefficients. In terms of these, the

summation over q and e in the first line of the relaxation supermatrix yields

QQKp»n„n, Ei, ,n„(F",n g(,
—1) Cfn(n Vj ) nC(nnV'() Fnl . (B10)

q e q

However, we have demonstrated [Ref. 41, Eq. (52)] thatfo, r any set I F,F',F",F"'I,

1 )q(FF'V q)(F'"F"yg )
—
( 1)F' F+-

2F+1
(B1 1)

The summation of interest here then becomes

( 1 )F" ECF"EC—EFg
2Fqg+ l 1 1 FF

(t

(B12)

The first line of the relaxation superrnatrix already contains a Kroneker 5 function, 5FF-, and we have assumed that
F"&F"'. This line is therefore zero.

The same arguments apply to the second line. The summation over m of the first term in the third line contains

QQX»n . )('$ . » (F" n g( —))nC, "( "V n)C (" Vf) F"'nl
Nf q

(B13)( 1)F F" CF"F—( FF"'
g2FPt+ ) 1 1 I'""'F" ~

which is also zero since F"'&F"—and similarly for the last term of the third line. Consequently, when the p~ are in-

dependent of m, the o„„with F"jF"' remain always zero. [This demonstration can easily be adapted to the case

where the Kq are the components of a tensor operator Tf(S) with k & 1 (here, k = 1,Tf is a vector). ]

APPENDIX C:. MOSSBAUER LINE SHAPE
OF Yb + IN GOLD IN THE PRESENCE

OF THE KONDO EFFECT

The coupling of S with the conduction electrons is

A 1
— 2JgfaS. s (C 1)

%Rile standard relaxation coefficients are of the order J,f,
Kondo corrections are- associated with terms of order J,f

I

in the relaxation supermatrix
In Ref. 10 we showed that when either the white-noise

approximation or the secular approximation is valid, these
third-order terms can be simply obtained by replacing, in
the relaxation matrix, the first-order transition amplitude
Ai by the sum of the first- and second-order transition
amplitudes 31+32, and by extracting the contributions
of the type A i A i and A iA i —J,f (standard relaxation),2

and of the type AiA2 and A2Ai-J, f (Kondo correc-3

tions).



30 EMISSION MOSSBAUER SPECTROSCOPY AND RELAXATION. . . 3689

W~ ——W[1+bx ( T)],
Ug ——U[1+ax.(T)],

~[ I ++K( T)]

with, as a function of

(C2)

(C3)

(C4)

a
g(&k)= ~ g

k '

1
t

2

With the use of this method, it can be established (Ref.
10, Sec. V B; Ref. 11, Sec. II B) that in the presence of the
Kondo effect the relaxation parameters 8', U, and V,

[Eqs. (A20)] should be replaced, respectively, by

(standard elastic Kondo correction), and

4JIa g g(&k )(1 fk')fk~(&k &k'+ 4)
aE(T)=

X (1 &k —)fko(&k ek—+~)
k, k'

(C6)

az(T)~4J,/an(E+) ln
~

6/D
~

(C7)

(inelastic Kondo correction associated with the hyperfine
energy transfer b, ).

In Ref. 11 it was indicated that at high T (k&T &)5),
a~(T) =bx (T), and that when T +0, and—to first order in
b, /D (assumed to be small),

4Js/a g g(ek)(1 fk')fk—@~k ek')

bx(T) =
X (1—fk)fk&(&k —&k)

k, k'

=4J,fan(EF) ln
~

k~T/D
~

(C5)

(in which ek denotes the conduction-electron energy and

f» denotes the Fermi distribution function),
i.e., the inelastic Kondo correction saturates when
ktt T «b, , this being clearly related to the energy transfer
b, involved in the relaxation between the two hyperfine
states.

Since the hyperfine interval b, =0.11 K, at temperatures
T &0.6 K the WNA is expected to apply. On the other
hand, as shown in Fig. 4, below 0.6 K relaxation broaden-
ing is small compared to the hyperfine splitting, so we
tend toward the secular approximation. We may there-
fore hope that the Kondo corrections ax and bz may be
used in the entire temperature range.
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