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Sound propagation in magnets and its application to a planar ferromagnetic chain
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The velocity shift and the attenuation of ultrasonic waves in magnetic insulators are studied

theoretically. By the treatment of the volume and single-ion magnetostrictive interactions on an

equal footing, interesting interference effects between these two spin-phonon coupling mechanisms

are possible. The results are applied to a planar ferromagnetic chain at low temperatures. The at-

tenuation coefficient is found to depend linearly on the temperature and quadratically on the fre-

quency. The velocity shift is also linear in the temperature but does not depend on the frequency.

I. INTRODUCTION

The spin-phonon interaction in magnetic systems and
its influence on the propagation of ultrasonic waves
through these materials have been of considerable interest
for quite some time. Experimental and theoretical studies
have been made on three-dimensional magnets at low tem-
peratures' as well as near magnetic critical points. ' A
growing interest in recent years has been on quasi-lower-
dimensional magnets such as the antiferromagnetic chain
compounds CsNiC13 and RbNiC13. By studying the velo-

city shift and the attenuation of ultrasonic waves in these
magnets, valuable information regarding the static as well

as dynamic properties of the spins can be obtained.
There are two basic mechanisms through which acous-

tic waves can couple to the spins in a magnetic insulator.
The first is the volume rnagnetostrictive interaction which
is due to the modulation of the exchange integral among
spins by lattice vibrations. The second is the single-ion
magnetostrictive interaction which arises because the
crystal-field environment surrounding the magnetic ions
is perturbed by the phonons. There is experimental evi-

dence that both mechanisms can be of comparable impor-
tance, ' and so they shall be treated on an equal footing
in this work. The possibility of coupling to the spin ener-

gy density, however, will not be considered here.
By treating these two mechanisms on an equal footing

here, we find interesting interference effects between these
two types of couplings. These features are absent from
earlier theories which considered only volume magneto-
strictive interaction, or the results were computed
separately for these mechanisms. Our expression for the
ultrasonic attenuation coefficient in the weak spin-phonon
coupling limit agrees with Tani and Mori; however, our
calculation for the corresponding frequency shift (or velo-
city shift) reveals an additional term that was missing
from their work. Their result for the velocity shift has
been used subsequently in other studies.

In Sec. II we write a spin-phonon Hamiltonian which
consists of a volume and a single-ion magnetostriction in-
teraction. The projection operator method of Mori is
used in Sec. III to derive expressions for the renormalized
phonon frequency and its associated width. In the weak

spin-phonon limit, the evaluation of these quantities in

fact involves the spin system only. In Sec. IV we apply
our results to planar ferromagnets at low temperatures.
Detailed results for the attenuation coefficient and veloci-

ty shift are computed in Sec. V for one-dimensional (1D)
spin systems with the planar ferromagnetic chain CsNiF3
in mind. ' General rules for computing static susceptibili-
ties as well as dynamic relaxation functions involving an
arbitrary number of boson or fermion operators are dis-
cussed in the Appendix within the free-particle model.

A brief account of some of the results here has been re-

ported. " The present paper serves to fill in some of the
details of the calculations.

II. SPIN-PHONON INTERACTIONS

We consider a localized spin system which can be
described by a Hamiltonian of the form

m, = —g J „S S„+A g(S„')',
m, n

(2.1)

(2.2)

Using the fact that BJ „/BR„=—BJ „/BR, and
transforming the displacements to phonon operators

bx(k) in the form

where J n and 3 are, respectively, the exchange integral
and the single-ion anisotropy constant. Here, we will treat
only the ferromagnetic case for which J „&0. Later, in
Sec. IV we analyze in detail the case where 3 & 0, so that
Eq. (2.1) describes a planar ferromagnet.

Assuming that the electrons of the magnetic ions are
bound rigidly to the ions as the ions vibrate about their
equilibrium sites, the exchange integral between spins is
then a function of the instantaneous positions of the ions.
Also, if the amplitude of. vibrations is small compared to
the lattice spacings, we can expand the exchange integral

up to the first power in the displacements q about the

equilibrium sites R to obtain

—g J(r —r„)S S„
m, n
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=(2M%) '~ Q cog
' '(k)[bg(k)+by( —k)]

—ik ~ R
Xe~(k)e (2.3)

the volume magnetoelastic interaction can be written as

A, ph
———g gI „(k;A,)cog

' (k)

Strictly speaking, in the single-ion magnetoelastic Ham-
iltonian, all terms which are allowed by the symmetry of
the lattice have to be included. ' However, here, for sim-
plicity we employ the Hamiltonian as given in Eq. (2.1),
and only consider A', ~h of the form of Eq. (2.8). More-
over, we have kept only the terms which are linear in the
phonon operators in both the volume and single-ion mag-
netoelastic interactions.

where

X[bg(k)+by( —k)]e S .S„,
(2.4)

III. RENORMALIZED PHONON FREQUENCY
AND THE ASSOCIATED WIDTH

A. Mori's Formalism

I „(k;A,)=(2M%) ' e~(k) (1—e ") .
~Rm

(2.5)

For simplicity, we take the single-ion magnetostriction
Hamiltonian to have the form

A, ph
——Verge;i(m)(S~ ) (2.6)

The strain components e;J {m ) can be expressed in terms of
the displacements and then in phonon operators as fol-
lows:

A —A ph+A g+A g ph (3.1)

where A ~h is the Hamiltonian for the harmonic phonons,
which takes the form

The attenuation and the velocity shift of acoustic waves
in a solid are related, respectively, to the phonon lifetime
and the renormalized phonon frequency. The quantities
will be derived in this section with the help of projection-
operator techniques and certain methods we developed
previously. '

In the presence of lattice vibrations, the Hamiltonian of
the total system can be written as

ei(m) = g [k;qJ(k)+keg;(k)]e
2

k

coq(k)bq(k)b~(k), (3.2)

i — [k;ej(k)+kje~;(k)]
A, is the Hamiltonian for the spin system which is given

by Eq. (2.1), and A, ~h denotes the spin-phonon interac-
tion of the form written in Eq. (2.9). From Eq. (3.1) the
equation of motion for the phonon is

X[b~(k)+b~( —k)]e
(2.7)

bg(k)= ice~(k)—bg(k)+cog (k)f~(k), (3.3)

Thus we can rewrite the single-ion magnetostriction Ham-
iltonian as

A, h ———g QEi(k)a)g ' (k)
kam

X [by(k)+by( —k)]e (S' )',

where f&( k ) is Hermitian and is defined as

f~(k)—= QI „(k;A,)e S S„
m, n

+QIC,J.( k )e (S' ) (3.4)

where

(2.8)

[k;egJ(k)+kjeg;(k)] .

X gI „(k;A,)e S S„
m, n

+ QKJ(k)e (S~)
rn

(2.9)

By combining Eqs (2.5) and (2.8), the total spin-phonon
Hamiltonian can be written as

A, ph= —g cog
'

( )k[ gb(k)+b~( —k)]
k, j,

(b~( k ),b~( —k ) ) = —i co~( k )(b~( k ),bq( —k ) )

Employing the operator identity'

(3.6)

Treating f~{k ) as a single entity, we see that the equation
of motion for the phonons, Eq. (3.3), is linear in the

operators b~(k) and f~(k). As shown in Ref. 13, this al-
lows us to obtain an exact relation connecting the static
correlation functions (b ~ ( k ),b & ( —k ) ) and (f~( k ),f~ (k ) ).
Throughout this paper the inner product (A,B) is the
correlation function defined as

(A, B)= J dA, (e Ae B ) —P(A ) (B) . (3.5)

Using Eq. (3.3), we take the inner product on the right-

hand side with b~( —k) to obtain
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(A,B)= —i([A,B]) (3.7)

(fg(k), bt„( —k))=ico (k)(fg(k), fg( —k)) . (3.9)

together with the boson commutation relations, we obtain

(bg(k), bg( —k)) =cog '(k) —icog (k)(fg(k), bg( —k)) .

(3.8)

Similarly, using the adjoint of Eq. (3.3) and taking the

inner product on the left-hand side with f~(k ), we find

On the right-hand side of Eq. (3.11), the first term is the
phonon static correlation function in the absence of spin-
phonon interactions, and the second term arises from in-

teractions with the spin system. Since f~(k) is linear in
the magnetoelastic coupling constants, the second term is
of second order in J' and V, . We should also point out
that this term has been omitted by Tani and Mori, and
therefore their results can only be correct to W(f ) (i.e., to
second order in the magnetoelastic coupling constants).

Next we will calculate the phonon relaxation function

P(k, co) defined as
In obtaining Eq. (3.9), we have used the fact that

(A,B)=—(A,B), and 4(k, co)= 1 dte '"'(bg(k, t), bg(k, 0)) . (3.12)

[ft„(k),bg (k ')]=0 . (3.10}

Substituting Eq. (3.9) in Eq. (3.8) yields the exact relation

(bg(k), bg( —k))=cog '(k)+cog (k)(fg(k), fg( —k)) .

(3.11)

From 4(k, co) one can then identify the renormalized pho-
non frequency and the corresponding phonon lifetime.

Employing the projection operator formalism with b~(k)
as the dynamic variable, we can write an exact equation
for 4(k, co):

I ico [—(bg( —k ),bg( —k ) )—y( k, co)]/(bg( k ),bg( —k ) ) I@(k, co) = (bg( k ),by( —k ) )

where

y(k, c)o= I dt e '"'(exp[it(l —H)W](1 —H)bg(k), (1—H)bg( —k)) .

In Eq. (3.14), H is the projection operator defined such that for any operator A

HA =(bg(k), bg( —k)} '(A, bg( —k))bg(k),

(3.13)

(3.14)

(3.15)

and W is the full Liouville operator for the system. With the help of Eqs. (3.15), (3.9), and (3.3) we can write (1—H )b~,
which appears in Eq. (3.14), as

fg(k) i(fg(k), fg( —k))

cog (k) qc(ok)(bq(k), bq( —k))

Using Eqs. (3.13) and (3.11), we can write 4( k, co) in the form

(3.16)

4(k, co)=[1+cog (k)(fg(k), fg( —k))]
cog( k )y( k, co) cog(k)

+l CO-
&+cog '(k)(fq(k), fq( —k)) I+coal '(k)(fq(k), fg( —k))

(3.17)

From this equation we can identify the renormalized pho-
non frequency

cog( k )[1—y "(k, co) ]
cosh(k) =

1+cog (k)(fg(k), fg( —k))

and the corresponding width

(3.18)

r,„= cog( k)y'(k, co)

I+coal (k)(fq(k), fq( —k))
(3.19)

where y'(k, co) and y"( k, co) are, respectively, the real and

imaginary parts of y( k, co). From cosh and I ph we can ob-
tain, respectively, the velocity shift and the attenuation
coefficient of acoustic waves.

B. Weak spin-phonon coupling limit

Although the calculations in Sec. III A are formally ex-
act, the usefulness of the resulting expressions, i.e., Eqs.
(3.18) and (3.19), is limited by the fact that they involve

correlation functions, (f~(k),f~( —k)) and y(k, co), which
are to be evaluated with the full Hamiltonian, Eq. (3.17).
Moreover, in y(k, co) the time development of the random
force f~(k) is governed by (1—H)W, which makes the
computation of expressions (3.18) and (3.19) extremely
difficult.

However, the spin-phonon coupling is often sufficiently
weak so that we only need to calculate (f~(k),f~( —k) ) to
the first nonvanishing order in the magnetoelastic cou-
pling constants, i.e., W(f ). In this limit our problem
completely separates into a spin and a phonon part.
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Also, to P(f ) the propagator exp[it(1 —H)W] can be
replaced by exp(it&, ), where W, is the Liouville opera-
tor for the spin system only. And in the evaluation of the
thermal averages, we only need to use the weight factor
exp( —13%,). Hence y(k, co) can now be expressed in the
form

y(k, co)=coq (k) j dte ' '(fg(k, t),f~( —k, O))'

=~~ '(k)(f~ f~)'k „ (3.21)

where the superscript s means that the quantity is to be
evaluated with the spin Hamiltonian A, only. From Eqs.
(3.18) and (3.21) the renormalized phonon frequency to
W(f ) is now given by

We see that in Eq. (3.16) the second term on the right-
hand side is at least of W(f ), and therefore can be

dropped in calculating y(k, co) in Eq. (3.14). Thus to
@(f ), y(k, co) can be written

)/(k, co)=cog (k) I dte ' '{exp[it(l —H)W]

Xf&(k),f&( —k)) . (3.2O)

[0m Sm ] =i~mn (4.1)

four-spin correlation functions. In general the calcula-
tions are rather difficult and quite often one must resort
to some kind of decoupling scheme to break up these
correlation functions. In this paper, however, we are only
interested in ultrasonic properties in the low-temperature
region, where the spin system can be described by an ap-
propriate noninteracting magnon theory. In this case,
these static and dynamic correlation functions can of
course be computed exactly.

Here, we will focus our attention on planar ferromag-
netic systems which can be described by the spin Hamil-
tonian as given in Eq. (2.1) with J and /1 both positive.
The X- Y plane is therefore the easy plane. Even though
our results so far are independent of the number of di-
mensions, eventually we will apply our results to the
quasi-1D planar ferromagnets, a prototype of which is the
compound CsNiF3. '

A magnon theory for planar ferromagnets with an easy
X- Y plane has been developed by Villain' in terms of the
conjugated variables ym =ic}/c}S—m and Sm, which satisfy
the commutation relation

cosh ——cog( k ) 1—
(f~ f~)'k Im(f~ f~)'k

cog(k )

(3.22)

and others are equal to O. The transformation of spin
operators to these variables can be accomplished using
Villain's prescription

and the corresponding width becomes

(3.23)

S+ e'+m[(S+ & )2 (S~ + & )2]1/2

S-= [(S+—,
' )'—(S'+ —,

' )']e
(4.2)

Thus the phonons no longer appear in the problem, and
all quantities now are to be evaluated with the spin Ham-
iltonian only. The superscript s will henceforth be
dropped.

From Eq. (3.22), the relative velocity shift is given by

(4.3)

where

The spin Hamiltonian can be written in the harmonic ap-
proximation as

A, = —,g(a S' S' +b g &p ),
q

av,„(f~f~)-„&m(f~ f~)-„„
Uvh cog( k ) cog( k )

(3.24) e

(4.4)
where v~h denotes the bare phonon velocity. The attenua-
tion coefficient is obtained from Eq. (3.23) as

Sz ~—1/2ySz ' & m

q

ctph: 1 ph/Uph: Re(fg f g )k, ~~(kjlUph (3.25) a =2(A+ J'p —J ),
In the work of Tani and Mori the equation for the rel-

ative velocity shift does not contain the term

co~ ( k )(f~,f~ )-. This can be traced back to the fact that
k

they have neglected terms of W(f ) in the phonon static
correlation function. Their result has subsequently been
used in other studies.

b =2S (Jp —J ),

J —=QJ„e
Similarly, Eq. (3.4) can be converted into the form

(4.5)

(4.6)

IV. PLANAR FERROMACsNETS
AT LOW TEMPERATURES

We will now only consider the phonon branch of in-
terest and drop the index A.. From Sec. III we see that in
the weak spin-phonon limit the problem has been reduced
to the calculation of a static and a dynamic correlation
function, namely (f,f )- and (f,f )- of the pure spin

k k, ct)

system. Since f-„contains two spin variables, these are

where

L(k, q) =I(k, q) —I(k, O) (4.7b)

f(k)=g[L(k, q)+K~)(k)]S' S'- +S L(k, q),
q (4.7a)
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I(k, q)= gI „(k)e

Next, using the magnon operators,

(4.7c) A, =pe (c c + —,
' ),

q

where e is the magnon dispersion relation given by

(4.10)

b
q

v2 a
q

1/4

i a
q"-+W2 b
q

' 1/4

S'

[c,c,]=5(q —q '),

and others equal to 0, A, becomes

which satisfy the boson commutation relations

(4.8)

(4.9)

e =(a b )'i (4.11)

By using Eq. (4.8), f(k) can be expressed in terms of the
magnon operators. Then, in order to obtain (f,f) and

k

(f,f),we need to evaluate some generalized static sus-
k, N

ceptibilities and relaxation functions involving four mag-
non operators. General rules for calculating such quanti-
ties can be found in the Appendix.

By combining Eqs. (4.7) and (4.8) with Eqs. (A4) and
(A5), we find after some straightforward calculations the
following results:

b bk
(f,f)-„ 4M% a a-

q q k —q

n- +n +1
k —q

E~+6'~
k —q

+
co —E 5+e~+ e~

k —q

n- —n
k —q

E'~ —6'~
k —q

1 1+—co —I5+e —e~ co+l5 6+—e~'
k —q k —q

P

b bk

4M% a a
k —q

' 1/2
n- +n +1

k —q

E'~+ 6~
k —q

P++
n —n

k —q

E'~ —E~
k —q

P

(4.12)

(4.13)

where

a a-
P, P, (k q)=2M~ g2

b-b-, - L(k, q)+[L(k, q)+El'(k)] (4.14)

In deriving Eqs. (4.12) and (4.13), various terms have been grouped together so that from the resulting expressions it can
be easily seen that Re(f,f) and (f,f) are both positive definite quantities, as they should be. From Eq. (3.25) the at-

kco ' k
tenuation coefficient can be written as

'"= 4M'~
q

b bk

a a
k —q

1/2
n~ +n~+ 1

k —q

6~+E'~
k —q

[5(co-+e +e- )+5(co-—e —e- )]P+
k q k —q k q k —q

n —n
+ [5(co-+e e- )+5(co— e+e- )]—P

6~ —E~ k q k —q k q k —q
k —q

(4.15)

and from Eq. (3.24) the relative velocity shift takes the form

Uph

b b-
q k —q

a a
q q k —q

n +n +1
k —q

6~+6~
k —q

co +E' +E'
k q k —q

CO —6 —6'
k q k —q

P+

n —n
k —q

k —q
CO~+ E—+ —F~

k q k —q
co —6 +E

k q k —q

P
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There are three points that deserve comment at this
stage. First, as we have pointed out in Sec. III, the contri-
bution to the velocity shift in previous theories comes
only from the imaginary part of (f,f)- . The contribu-

k, cg

tion from the term (f,f)- was omitted. Consequently ac-
k

cording to their calculation Eq. (4. 16) would appear with
the term 1 —cu-/(cu-+ e +e- ) replaced by

k k Q k —q—ru-/(cu-+e +e- ) and similarly for the other
k k Q k+q

terms. It is difficult to determine a priori the size of the
omitted terms. Later we will evaluate this expression ex-
plicitly for the planar ferromagnetic chain and we find
that, at least in this case, the omitted terms can in fact be
larger than the ones considered by these earlier studies.

The second point is that in most previous studies either
the volume magnetoelastic coupling or the single-ion mag-
netostriction was considered, but seldom both. The reason
might be that for a given solid one of these mechanisms
often dominates over the other. Bennett and Pytte, ' and
later Ghatak, studied both types of interactions for fer-
romagnets. Unfortunately, calculations were carried out
separately for the two rnechanisrns; consequently, cross
interaction terms of the form as given by Eq. (4.14) were
absent in their work. However, from the experimental
works of Liithi and co-workers, ' it is known that these
mechanisms can sometimes be comparable in strength.
When this is the case, interferences between the two types
of spin-phonon interactions can be significant.

Third, in earlier studies of ultrasonic attenuation in
magnets, scattering processes are computed separately,
and authors often just select processes which correspond
to phonon annihilation. These scattering events of course
have positive contributions to the attenuation coefficient.
However, there are also processes in which phonons are
created with the destruction of two magnons. These
scattering terms thus have negative contributions to the
attenuation and must be included. Here, we include all
scattering processes consistently to W(f ).

some unique behavior in the ultrasonic properties at a cer-
tain angle between the chain and the direction of propaga-
tion of the acoustic waves. From Eqs. (4.7b) and (2.5),
L(k, q) is found to be given by

1/2

L(k, q) = —Si

+P Idq[5(cu-+ eq —eI, q )

+ &(~-„—eq+el -q) j

vph kB ~
[P+(I)+I2,)+P (I3+I4)j,

vph 16A Mco

(S.4)

(5.5)

where

&& J'sin sin sin (kc —q )—,(5 3)
kca . qa . a

2 2 2

where c is a unit vector in the chain direction and
J' =—8J(r) /Br.

Since we are considering ultrasonic waves of frequency
in the (1—100)-MHz range, therefore in general, we have
ka =10 —10 . Owing to the presence. of the Bose fac-
tors in Eqs. (4.15) and (4.16), the dominant contributions
to Aph and 6v ph come from scattering with long-
wavelength magnons. Thus the long-wavelength approxi-
mation has been frequently used in calculations. Here, at
first, we will also make this approximation; however, a
more careful analysis will follow next. In this limit we
have nq —-k~T/eq and (n~ q nq)/(eq ——el, q):k&T/—
(eqe~ q), thus the expressions for a~h and Au~h/u~h can
be simplified as follows:

akB1
ash —— P+ f dq 6(co- —eq —eJ, q)643 vphv, M

V. APPLICATION TO PLANAR
FERROMAGNETIC CHAINS

Hereafter, we will concentrate on the one-dimensional
(1D) planar ferromagnets. ' The magnon energy is

1/2
2qa . 2qae =2S 4J sin 3 +4J sin

2 2 and

co-a
I) 2=—1— dq(cu~+eq+eg q)—m/a

co a
I3 4=—1— k

dq(cu~+Eq+eg q
)'—1

—m. /a

(5.6)

which in the long-wavelength limit becomes Av, q, where
the magnon velocity u, is given by 2Sa(JA)'~ A'. The en-
ergy eI, q assumes the form

a
q
=2S.4J sin (kc —q)—

2

X 2+4J sin (kc —q)—
2

' 1/2

(5.2)

where c is the cosine of the angle between the phonon
wave vector k and the chain. Owing to the 1D nature of
the magnetic part of the system, q is the magnon wave
vector along the chain direction, and k appears only in
the combination kc. As will be seen later, this leads to

4SWa'
e cJ'kca + (k;ej +kate; )

fiV, 2

2

(5.7)

The 6 function 6(cu -+eq+ el, q ) has been omitted in Eq.
k

(4.15), since the argument of this 5 function can never be
satisfied for positive frequencies. Thus from Eqs. (5.4)
and (5.5) we see that a~h and b,u„q both have a linear tem-
perature dependence. Moreover, since I'+ —k, mph is
quadratic in the phonon frequency. The frequency depen-
dence of Avph will be determined later.

Next we will make careful study of the ultrasonic at-
tenuation coefficient. For this purpose we will take a
closer look at the 6 functions than previous theories have
done. For each 6 function we need to find all q values
which will make the argument of the 6 function vanish.
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city, and for u, c less than and sufficiently close to vpp the
P term in Eq. (5.13) can become sufficiently negative so
as to cause the phonons to speed up. Note that the pro-
cesses responsible for this P term are those where a
magnon absorbs a phonon and changes into another mag-
non (and the reverse process). When u, c = v~q such
scattering processes become extremely probable even
though the spin-phonon coupling may be rather weak.

the approach using the approximate magnon dispersion
e~ =u,

~ q i, there is an upper bound to the amount of en-

ergy a magnon can have. Thus if the phonon has too high
a velocity, then these processes simply cannot take place
because of energy conservation.

The curves in Figs. 1 and 2 have discontinuous slopes,
and these can be traced back to the discontinuity in the
slope of the magnon dispersion eq at q =0. It is easily
seen that these curves join smoothly at q =0 and at kc.
So if we neglect the small contributions to a~q from the
large-qa solutions, Eq. (4.4) can be reduced to the simpler
form

VI. CONCLUSIONS AND DISCUSSIONS

We have certainly chosen a rather simple form for the
single-ion magnetostrictive interaction. However, exten-
sions of our calculations here to include more appropriate
form for A ', p], are quite straightforward. Basically, the
same type of four-spin correlation function must be
evaluated and the form for K;J must then be remodified.

Detailed results for the ultrasonic attenuation coeffi-
cient and the velocity shift have been derived here for a
planar ferromagnetic chain. An excellent candidate here
is of course CsNiF3, whose magnetic' as we11 as vibra-
tional properties' ' have been very we11 studied. We
hope that our work here will stimulate some experimental
studies into the ultrasonic behavior of this system.

For CsNiF3, Dorner and Steiner' found that v &&, v33,
and U44, are all larger than up~ at T=85 K, and these
phonon velocities depend very little on the temperature.
Thus only the P+ term in Eq. (5.12) contributes to a~q in
this case, as we have pointed out before. " One can also
do the calculation in the presence of a symmetry-breaking
magnetic field. Results for a~b were presented earlier"
and will not be discussed here any further.

ak~ T
a q —— [8(u b

—u, c)P +8(u, c —v q)P ],
32M up/ u M

(5.12)

ACKNOWLEDGMENTS

Part of this work was carried out while the author was
at the University of Wisconsin-Madison. The author is
grateful to the physics department and especially to Pro-
fessor D. Huber for suggesting this topic in the first place
and for his constant guidance and encouragement.

APPENDIX: GENERAL RULES
FOR CALCULATING FREE-PARTICLE

RELAXATION FUNCTIONS AND GENERALIZED
STATIC SUSCEPTIBILITIES

kgT P
SA Mcv- 1 —(v~b/u, c)

P++
5Upg

(5.13)
uph

In calculating the dynamic responses of physical sys-
tems one is often faced with the problem of evaluating
free-particle relaxation functions and generalized static
susceptibilities involving a number of second quantized
operators. General rules for writing such quantities will
be outlined here for bosons as well as for fermions. ' '

Consider the free-particle relaxation function which, by
definition, can be written

The relative velocity shift therefore has a linear depen-
dence on T and because P+ ~ k it is independent of the
sound frequency. Of course, the behavior of Aup], /up]„
when upI, happens to be extremely close to u, c is not ex-
pected to be given accurately by Eq. (5.13). Nevertheless,
the incipient anomaly for upI, -u, c should certainly exist.
For v, c ) upI, we can anticipate a slower ultrasound velo-

where 8(x) is the unit step function.
The attenuation coefficient as given in Eq. (5.12) takes

on different values depending on the relative magnitude
between u„b and v, c. This difference is small if either the
single-ion or the volume magnetostrictive interaction
dominates, but can be significant if both coupling mecha-
nisms have comparable strengths. For upq ) V,c the
scattering processes that contribute to ap], are those where
a phonon is annihilated while two magnons are simultane-
ously created (and the reverse processes). For v~q & u, c
the relevant processes are those where a magnon absorbs a
phonon and turns into another magnon (and the reverse
processes). If it happens that u~I, ——u, c, then the condi-
tions specified by the three 5 functions, i.e., Eqs. (5.8) and
(5.9), are satisfied identically for all q in the small-a re-

gion, and so all long-wavelength magnons contribute to
npb. The interaction between the phonons and magnons is
so strong that our assumption of a weak spin-phonon cou-
pling will no longer be true.

Next, we consider the velocity shift which can be ob-
tained from Eq. (5.5) by performing the integrals of Eq.
(5.6). By using the long-wavelength form for the magnon
dispersion relation, all these integrals can be evaluated
analytically. Dropping terms which are small because
ka &10, we find I&+I2 -—2 and I3+I4=2[1 (u~ql-
u, c) ] '. Thus the velocity shift can be written as

((aia2 . . ),a ap . . ),= f dte"'([ai(t)aq(t) . . ]",a (0)ap(0) . )

=f dte"' f dA([ i(taii)a~(t —i—A) . ] a ap. )—
0 0 Z

(a la2 ) (a ap

(Al)
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where the a's can be creation or annihilation operators.
Moreover, they can all be bosons or fermions. Their time
dependences are very simple, nalnely

where the generalized static
((ata2. . . ),a ap ) is given by

susceptrbihty

—
leak fak(t) =e ak,

where ek is the single-particle energy and

—ek, if ak is a creation operator

+ek, if ak is an annihilation operator .

(A2) ((ata2 . . ),a ap )=

X((a,a, )ta ap. )

The integrals in Eq. (A 1) can then be evaluated straight-
forwardly to give

((ata2 . . ),a ap . . ), =i —g e; co—+i5I

)&((ata, ),a ap ),

—P(a)a, . . . )*(a ap . . )

(AS)

In Eq. (AS) the thermal averages of a number of creation
and annihilation operators can easily be written for bosons
or fermions by using the Wick's theorem of Gaudin. '
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