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Critical spin fluctuations in the two-dimensional antiferromagnet KFeF,:
A Mossbauer study '

J. Slivka,* H. Keller, and W. Kiindig
Physik-Institut, Universitdt Ziirich, CH-8001 Ziirich, Switzerland

B. M. Wanklyn
Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom
(Received 14 May 1984)

The critical spin fluctuations in the two-dimensional antiferromagnet KFeF, were investigated
above Ty =136.15 K in detail by means of >’Fe Mdssbauer spectroscopy. Evidence is given that the
critical dynamics of KFeF, falls within the dynamic universality class (d,n)=(2,1). The dynamic
critical exponent z was deduced from the longitudinal spin-autocorrelation time in the reduced tem-
perature range 4X10~*<¢ <10~!. It is shown that the dynamic critical behavior of KFeF; is in
agreement with conventional theory (z=1.75) with z=1.77(5) down to at least t~5X 10~3. How-
ever, closer to Ty our data seem to indicate a small deviation from conventional behavior with
z=1.54(6). Possible reasons for this deviation are discussed.

I. INTRODUCTION

The static critical behavior of simple magnetic systems
with short-range interactions is well understood. In this
case the static critical behavior only depends on the lattice
dimension d and the spin dimension n. On the other
hand, the dynamic critical behavior of such systems is
more complex. For a given static universality class (d,n)
the critical dynamics depends in addition on conservation
laws and Poisson bracket relations among the order pa-
rameter and the conserved densities.! Consequently,
dynamic critical exponents cannot in general be expressed
in terms of static exponents only.!?

A theoretical problem of current interest in the field of
critical dynamics is the evaluation of the dynamic critical
exponent z for two-dimensional (2D) models belonging to
the dynamic universality class (d,n)=(2,1), where the
nonconserved order parameter is the only slow mode
(model A4)."2 In this context, two models which are be-

lieved to belong to this universality class have been stud-
ied in detail, namely, the time-dependent Ginzburg-
Landau model and the single-spin-flip kinetic Ising or
Glauber model.? In a review, Mazenko and Valls? have
shown that all current theoretical methods to treat these
models lead to inconclusive values for the dynamic ex-
ponent z, although reliable values for the static exponents
are obtained. The present values for z range between 1.4
and 2.2, depending on the method involved. It has been
suggested? that this discrepancy is due to the existence of
an asymptotic dynamic critical region much narrower
than the corresponding static region. Outside this region,
theory 1is consistent with a conventional value of
z=vy/v=1.75, where ¥ and v are the static critical ex-.
ponents of the susceptibility and the correlation length,
respectively.? However, at temperatures sufficiently close
to the critical point T, the conventional theory breaks
down. What the true asymptotic value of z is, is a ques-
tion of current interest.

TABLE 1. Summary of dynamic critical parameters for various 2D Ising-type antiferromagnets.

Compound Tn(K) w z Range of ¢ Method Ref.
K,CoF, 107.44 1.52(3) 1.74(13)* 107 <t <20 NMR PF 4
Rb,CoF, 99.8 1.40(5) 1.61(13)® 107! <t <4x10°!?® NMR *¥Rb 5
103.20(2) 1.21(10) ‘ Ultrasonic attenuation 6
102.96(1) 1.69(5)° 3X1072<t <4x10™! Neutron scattering - 3
KFeF, 135.797(6) 0.91(5) 1.29(9) 104 <t <1073 Médssbauer 7
136.131(3) -1.36(1) 1.71(4) 4x10~*<t <10! ‘Méssbauer This work
136.150¢ 1.42(2) 1.77(5) 5%1073<t <10~} Mossbauer This work
136.150(5) 1.20(4) 1.54(6) 4x10~*<t <5x1073 Mgdssbauer This work

*Estimated from w as explained in Ref. 3.
"Estimated from plots in the corresponding references.

°Average value obtained at T and in the quoted temperature range as explained in Ref. 3.

9Fitted with fixed Ty =136.15 K.
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So far only a few experiments to measure the dynamic
exponent z for the universality class (d,n)=(2,1) have
been performed. All experiments were done on 2D Ising-
type antiferromagnets, which are believed to be good
representatives of this universality class.’> Various results
are summarized in Table I and are discussed in Sec. III.
There are some inconsistencies in the values for z deter-
mined by different techniques. Recently, Hutchings
et al. have investigated the critical dynamics of the 2D
Ising-type antiferromagnet Rb,CoF, by high-resolution
inelastic neutron scattering. They found a value of
z=1.69(5) which is close to the conventional value,
whereas earlier ultrasonic attenuation measurements by
Suzuki et al.’ yielded a considerably smaller value
z=1.21(10) (Table I). A similar nonconventional value
z=1.29(9) was previously found by our group for the 2D
antiferromagnet KFeF, using the Mdssbauer technique.’
Note that neutron scattering® allows a direct measurement
of z, whereas crucial assumptions must be made to deduce
z from ultrasonic attenuation® and Mossbauer’ experi-
ments.

KFeF, exhibits a static critical behavior with a critical
exponent 3=0.151(3) which is close to the exact value
B=0.125 for the 2D Ising model.” Therefore we believe
that this compound also belongs to the dynamic universal-
ity class under consideration. Stimulated by the results of
Hutchings ez al.> on Rb,CoF,, we investigated the critical
spin dynamics in KFeF, by means of ’Fe Mossbauer
spectroscopy in more detail.

II. THEORETICAL BACKGROUND

Well above the critical temperature 7T, of a magnetic
system electronic spin fluctuations are too fast to be ob-
served by the Mossbauer effect. As the temperature ap-
proaches T,, however, the characteristic frequency of the
critical spin fluctuations goes to zero (critical slowing
down). Generally, this phenomenon gives rise to relaxa-
tion effects in the Mdossbauer spectra.

Here we summarize only enough of the theory of criti-
cal dynamics to understand our results. For a detailed
description of the theory we refer to Refs. 8 and 7. Fluc-
tuations of the spin component S, (a=x,y,z) are
described in terms of the space-time spin-correlation func-
tion

G(T,1)=(S,(T,1)8,(0,0)) /[S(S +1)/3], (1)

or its Fourier transform, the dynamic structure factor
S?(q,w). In a M0Ossbauer experiment, one measures the
spin-autocorrelation time 7% (a=x,y,z) defined by the
time integral®’

a__ 1 e aa
Te=7 J  dtG*0,1). (2)

It is more convenient to express this integral in terms of
the dynamic structure factor S**(q,w):

2 [ d%S5°q,0=0), 3)
q9

where v, is the Brillouin-zone volume. By using the
dynamic scaling form for $*%(q,0) (Ref. 1), an evaluation
of tshe integral in Eq. (3) near T, is straightforward, yield-
ing
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Tgoct_w , 4)
with
w=wz+2—d—7). (5)

Here t =(T —T,) /T, is the reduced temperature, d is the
dimension of the system, v and 7 are static critical ex-
ponents, and z is the dynamic critical exponent. Equation
(4) implies that at T, the spin-autocorrelation time 77
diverges with an exponent w (critical slowing down). In
an experiment one measures w, from which the dynamic
exponent z may be obtained according to Eq. (5), provided
the static exponents v and 7 are known. Using the static
scaling relations, z may be expressed in terms of other
static exponents (e.g., B, ¥, and v):’

z=d(w+2B)/(y+2B), (6a)
z=(w+2B)/v. (6b)

These relations are most convenient here since 3 has pre-
viously been evaluated by the same technique.’

In order to extract the spin-autocorrelation time 7
from the Mossbauer spectra, an appropriate relaxation
theory is needed. In this work we adopt the results of
Bradford and Marshall’ who have calculated the °’Fe
Mossbauer line shape in the limit of fast electronic relaxa-
tion using perturbation theory. In contrast to our previ-
ous work,” where the spin relaxation was assumed to be
isotropic, we consider here a more general case. The hy-
perfine interaction ¥ (¢) is taken to have axial symmetry:

V(t)= A\ LS,()+ A, [I,S:(t)+1,S,(1)] , (7)

where A4, and A, are the hyperfine coupling constants
parallel and perpendicular to the ¢ axis, respectively. It is
further assumed that the spin-autocorrelation function
G%%(0,¢) in Eq. (2) has an exponential form:

G%0,t)=8,exp(— |t | /7))
+ (8 + 8y Jexp( — | 2 | /71) )

with different correlation times 7) and ., parallel and
perpendicular to the z direction, respectively. In the case
of a single-crystal absorber with the principal component
V. of the axially symmetric electric field gradient (EFG)
tensor parallel to the direction of the y rays (cf. Sec. III),
the relaxation spectrum may be approximated by two
Lorentzians:’

(To+ATY) /2

A(w)
O @—A/2P+[(To+ ATy /2P

1 (Co+AT,) /2
3 (@+A/2P+[(Ty+AT,) /2]
where T’y is the natural linewidth [full width at half max-
imum (FWHM)], and A is the quadrupole splitting. The

corresponding line broadenings ATy, due to the relaxa-
tion are

9)

S(S+1)

= [(A0 =347 27 +2(47 +34%")711,

AT, =

(10a)
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S(S+1)

LA+ AT el 24T 474 )]

AF2=

(10b)

Here A2 and A% denote the hyperfine coupling constants
of the ground and the excited states, respectively. The va-
lidity of Egs. (9) and (10) is discussed in Sec. III.

III. RESULTS AND DISCUSSION

The structural and magnetic properties of the layered
antiferromagnet KFeF, are well described in Refs. 10 and
7. Simply speaking, KFeF, consists of slightly tilted and
distorted FeFg octahedra, separated by nonmagnetic layers
of K7 ions. Below the Néel temperature Ty =136.15 K
the magnetic moments (Fe’+,S = 2) are aligned along the
¢ axis (perpendicular to the layers). Moreover, the inter-
layer exchange interaction J’ is much weaker than the in-
tralayer interaction J( |J'/J | ~10~*), giving rise to the
quasi-two-dimensional magnetic properties of KFeF,.

The spectra were taken on a single crystal of KFeF,
with the direction of the ¥ rays perpendicular to the mag-
netic layers. The crystals were grown by the flux-growth
method as described in detail in Ref. 11. In order to
reduce finite thickness effects and temperature gradients
in the sample, a rather thin and small crystal (60 um x5
mm?) was used, in contrast to the larger sample used in
the previous work.” Special attention was paid to avoid
temperature gradients and mechanical strains across the
sample by mounting the crystal stress-free in a massive
copper sample holder with additional radiation shields.
The details of the cryostat and the temperature control
system are given in Ref. 7. The long-term temperature
stability of the sample was better than +3 mK/24 h. In-
dependent cooling and heating runs during several months
gave the same results within experimental errors. The
velocity of the drive was constantly monitored and cali-
brated with a laser interferometer.

A spectrum of KFeF, taken at 4.2 K is shown in Fig. 1.
It clearly illustrates the high quality of our sample. The
corresponding hyperfine parameters as obtained by a
least-squares fit (solid line in Fig. 1) are identical with the
previous results.” From the low-temperature spectra it is
known’ that the hyperfine field H is perpendicular to the
layers and that the principal component V,, of the axial

4.2K

1 | [l 1 1 1
-12 -8 -4 (0] 4 8 12
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FIG. 1. Low-temperature Mdssbauer spectrum of single-
crystal KFeF,.

EFG tensor is negative and almost parallel to H (the actu-
al angle is about 12°).

Typical quadrupole spectra taken at various tempera-
tures above Ty =136.15 K are represented in Fig. 2. No-
tice the obvious broadening of the lines as Ty is ap-
proached. Similar relaxation spectra were previously ob-
served by Ito and Horiike'? for the 2D Ising-type antifer-
romagnet Rb,CoF,:>’Fe. The broadening of the left line
(3 — %) is much more pronounced than that of the right
line (+—5) (see also Fig. 3). Since the principal com-
ponent ¥V, of the axial EFG tensor is almost parallel to
the direction of the y rays, we may approximate the spec-
tra with the line shape given by Egs. (9) and (10). Thus
the spectra were fitted to two Lorentzians, taking correc-
tions for the finite absorber thickness into account. The
solid curves in Fig. 2 represent the fitted line shape. The
temperature dependence of the linewidths I'j,=T,
+AT,; (FWHM) is shown in Fig. 3. The average value
Ir=0.198(2) mm/s as obtained from several spectra well
above Ty is consistent with the experimental source
linewidth I'y=0.1974(13) mm/s for an infinitely thin ab-
sorber. The latter value of 'y was used to extract the line
broadenings AT"; , from the measured linewidths T ,.

A quantity p which measures the degree of anisotropy
of the spin relaxation may be derived from the line
broadenings using Eq. (10):

p=(A /AN /7). (11)
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FIG. 2. Mossbauer spectra of single-crystal KFeF, taken in
the critical region above T =136.15 K. ¢ denotes the reduced
temperature. For comparison, a rcom-temperature spectrum is
shown at the top.
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FIG. 3. Mossbauer linewidths I'; (closed circles) and I'; (open
circles) as a function of reduced temperature.

The temperature dependence of p stems from that of the
correlation times 7! and 7.. For isotropic spin relaxation
p=1, whereas p=0 for pure longitudinal spin relaxation.
A plot of p extracted from the data is shown in Fig. 4 as a
function of reduced temperature. For a weakly anisotro-
pic Heisenberg system’ such as KFeF, (S =%) the spin
fluctuations are expected to be isotropic (p=1) well above
Ty. As the temperature approaches Ty, however, the
spin fluctuations become anisotropic and the relaxation
spectra are dominated by the longitudinal fluctuations
(p~O0) as seen in Fig. 4. This important observation fur-
ther justifies our assumption that KFeF, belongs to the
universality class under consideration (cf. Sec. I). It is
known from neutron scattering experiments'>3 on 2D an-
tiferromagnets that the critical scattering is determined
only by the longitudihal component S!(§,w) of the
dynamic structure factor. Therefore in a Mdssbauer ex-
periment the longitudinal spin-autocorrelation time 7!/ de-
fined in Eq. (3) should reflect the true critical behavior.

The temperature dependence of the experimental 7!/ as
obtained from Eq. (10) is shown in Fig. 5. Notice that in
the reduced temperature region investigated, 7 increases
by 3 orders of magnitude from 1012 to 10~° s as Ty is
approached from above. The exponent w defined in Egs.
(4) and (5) was determined by fitting the data to the power
law
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FIG. 4. Anisotropy parameter p of spin fluctuations versus
reduced temperature. The definition of p is given in the text [cf.
Eq. (11)].
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FIG. 5. Longitudinal spin-autocorrelation time 7!! as a func-
tion of reduced temperature. The slopes of the straight lines
determine the critical exponents w=1.20(4) and 1.42(2) obtained
below and above ¢~5 X 1073, respectively (Table I).

T=1o(T/Ty—1)7", (12)

with 79, Ty, and w as adjustable parameters. In order to
systematically investigate the behavior of w near Ty, the
following fitting procedure was adopted:'*’ A series of
weighted least-squares fits to Eq. (12) were performed by
successively omitting data points on the high-temperature
side until only the 15 data points closest to T remained
(further reduction of the number of data points lead to
large uncertainties in w). The variation of w as a function
of the maximum reduced temperature #.,, is shown in
Fig. 6. For tm, >3X10~2 w is almost constant. How-
ever, below #,,,~3X 1072, w decreases continuously, and
at tma~5X 1073 a distinct change in w to a lower and
nearly constant value is observed, accompanied by a re-
markable reduction in X2. The dashed lines in Fig. 6 cor-
respond to the best values w=1.36(1) and 1.20(4) as ob-
tained in the reduced temperature ranges 4X10~*
<t<107! and 4X10~% <t <5%x1073, respectively. A
best fit to the data in the more restricted range
5%1073<t <10~! with Ty fixed at Ty=136.15 K
yields w=1.42(2). This value is somewhat larger than the
global value w=1.36(1) (see Table I). The slopes of the
straight lines in Fig. 5 are determined by the values of w

14—

T T T T T T T T oIy

13-

+- 16
. °
12k— 1,*# ————————————
1 1 1 ¢ 111 I 1 1 1 L1111 l_l‘ 1.5
102 10"
t“ll]X

FIG. 6. Variation of the exponent w with maximum reduced
temperature ?,,x as obtained from fits to the power law in Eq.
(12). The right-hand scale shows the corresponding values of
the dynamic exponent z.



below and above t~5x 1073,

The dynamic exponent z was calculated from the values
of w listed in Table I using Eqs. (6a) and (6b). The static
exponent $=0.151(3) was previously measured using the
same apparatus and crystals of the same origin.” Since
the static exponents ¥ and v are not known for KFeF,, we
determined z with assumptions similar to those made in
our previous work,’ i.e., ¥+2B=1.95(5) and v=0.95(6)
(Ref. 15). With these assumptions and the measured value
of B one obtains a value of z=y/v=1.74(12). The large
error in z is due to the large uncertainty in v. This value
is in agreement with the theoretical conventional value of
z=1.75, indicating that the assumptions concerning the
static exponents are reasonable. The experimental values
of z quoted in Table I are weighted averages of z as ob-
tained from Egs. (6a) and (6b). In the following the
present values of z for KFeF, are compared with the pre-
vious value and with those reported for other 2D Ising-
type antiferromagnets (Table I). The most striking result
is that the value of z=1.71(4) as obtained from a best fit
over the whole temperature region investigated
(4%x10~*<t <10~1) is consistent with conventional
theory (z=1.75). This finding is in agreement with the
recent high-resolution neutron scattering results of Hutch-
ings et al.? for Rb,CoF, (Table I). Similar values of z can
also be derived from earlier NMR results of Bucci
et al.*® for Rb,CoF, and K,CoF,. Note that the NMR
measurements were taken far away from Ty (Table I). In
the temperature region very <close to Ty
(4% 10~* <t <5%1073), however, the present data yield a
value of z=1.54(6) which slightly deviates from conven-
tional theory (see also Figs. 5 and 6). This value is more
reliable than the previous value z=1.29(9), obtained in a
similar reduced temperature range,’ for the following
reasons. (i) In the previous work’ it was assumed that the
spin fluctuations in this weakly anisotropic 2D Heisen-
berg antiferromagnet are isotropic. From ‘the present
work it is evident that this is not the case for temperatures
close to Ty (see Fig. 4). For t < 10~2 the relaxation spec-
tra are dominated by the longitudinal spin fluctuations.
This is due to a small Ising-type anisotropy in the ex-
change interaction perpendicular to the magnetic layers,
giving rise to a 2D Ising-type critical behavior!® which is
also reflected in the static critical exponent S=0.151(3)
measured previously.” For comparison, note that for
Rb,CoF, a similar nonconventional value of z=1.21(10)
was deduced from ultrasonic attenuation measurements®
also requiring important assumptions.® (ii) The present
measurements were taken on a much smaller and thinner
crystal in order to avoid serious temperature gradients and
to keep the corrections for the finite absorber thickness as
small as possible.

A principal question arises whether the observed devia-
tion from conventional theory is physically real or just an
artifact of the relaxation model adopted. The Bradford-
Marshall theory® is a reasonable approach, since the corre-
lation times 7, are sufficiently short (7, <7 1071 s) for
Egs. (9) and (10) to be valid, in first order. Support for
the model is offered by the fact that the spectra are rather
well described over virtually the whole temperature range
by two Lorentzians, as shown in Fig. 2. Notice, however,
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that for ¢ <10~ small deviations from a Lorentzian line
shape are apparent, which probably arise from nondiago-
nal terms in the hyperfine interaction due to the small an-
gle between the principal component ¥V,, of the EFG ten-
sor and the hyperfine field H. A further assumption is
that the spin-correlation function G“*0,7) has an ex-
ponential form [Eq. (8)]. This is not the case for critical
fluctuations where the correlation function has a long
tail.'” It may be shown,!” however, that the Bradford-
Marshall theory® is still valid for a general correlation
function if the correlation times 77 in Eq. (10) are defined
by the time integral in Eq. (2). Consequently, for the
model to hold the correlation function must decay suffi-
ciently rapidly, since in practice the integration limits in
Eq. (2) are finite; this may be problematic for a critical
correlation function with a long tail. Thus it may not be
excluded that the observed kink in 7! close to T (Fig. 5)
is an artificial effect. However, for ¢ > 5X 10~ the spin-
correlation times are sufficiently short (7l <3x 10~ §)
for our assumptions to hold rigorously. This is also evi-
dent from Fig. 2, where for t>5%10"3 no deviation
from a Lorentzian line shape is observed. As a result,
in the restricted reduced temperature range,
5%1073 <t <1071, a true value of z=1.77(5) was found
(Table I) which is in excellent agreement with the conven-
tional value z=1.75 predicted by theory.

IV. CONCLUSIONS

The critical spin dynamics in the 2D-layered antifer-
romagnet KFeF, was investigated above Ty in some de-
tail by means of Méssbauer spectroscopy. The main con-
clusions of this work may be summarized as follows.

The critical spin fluctuations in KFeF, are found to be
anisotropic; the longitudinal component reflecting the
critical behavior is perpendicular to the magnetic layers.
A best fit to the longitudinal spin-autocorrelation time
over the whole reduced temperature range,
4%10* <t <1071, yields a dynamic critical exponent
z=1.71(4). This value is consistent with conventional
theory (z=1.75) and is in agreement with the experimen-
tal value z=1.69(5) for the 2D Ising-type antiferromagnet
Rb,CoF, measured by high-resolution inelastic neutron
scattering.

At t~5X10~3 a change in z from the conventional
value to a smaller value z=1.54(6) is observed (Figs. 5 and
6) which appears to indicate the onset of nonconventional
behavior. This experimental value lies within the range
z=1.4—2.2 predicted by current theory.? However, one
cannot guarantee that this is not an artifact of the relaxa-
tion model used.

For ¢t >5X 1073, where the spectra show no deviations
from Bradford-Marshall theory® (solid lines in Fig. 2), a
value of z=1.77(5) was obtained. This value of z is even
closer to the conventional theoretical value z=1.75 than
that deduced in the whole reduced temperature range.
Thus we conclude that conventional theory for KFeF, is
essentially valid down to at least t~5X 10~3. Our results
are consistent with the theoretical prediction of Mazenko
and Valls? that for the dynamic universality class
(d,n)=(2,1), model A, the asymptotic dynamic critical re-
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gion is much narrower than the corresponding static re-
gion. For comparison, the static critical region for KFeF,
extends up to almost t~10"1 (Ref. 7). For all these
reasons we conclude that the dynamic critical behavior of
the 2D antiferromagnet KFeF, falls most likely within
this particular universality class.

In this paper we demonstrated that the Mdossbauer ef-
fect provides a complementary method to other experi-
mental techniques (e.g., neutron scattering) to study criti-
cal spin dynamics in magnetic systems. However, there is
a common problem with all current experimental
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methods: It appears to be very difficult to determine a re-
liable asymptotic value of z for this dynamic universality
class since experiments very close to the critical point
(t <10™*) are difficult to perform and to interpret.
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