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Effects of higher- J states on nuclear-spin relaxation times for Hz in solid nonmagnetic hosts
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We calculate the effects of J& 1 states on nuclear-spin relaxation times for isolated H~ or 02 mol-
ecules located at sites with various crystal fields in solid nonmagnetic hosts. This extends similar
earlier work to temperatures higher than about 100 K. In this warm regime we find that the relaxa-
tion times depend quantitatively and even qualitatively on the environment of the molecules in or on
a host lattice.

I. INTRODUCTION coi [l(I——+1)J(J+1)/9]'i co', (2a)

In an earlier paper' we calculated nuclear-spin relaxa-
tion times Ti and Tz for isolated orthohydrogen (J=1)
[o-Hz] molecules in solid nonmagnetic hosts. This work
showed that the relaxation times depend crucially on the
magnitude and symmetry of the crystal fields experienced
by the H2 molecules and explained several puzzling
anomalies. However, since the calculation was re-
stricted to J= 1, it is valid only for temperatures less than
about 100 K because the occupation of higher J states sig-
nificantly alters the relaxation times at higher tempera-
tures.

Recently NMR measurements have been made on
amorphous Si:H that relate to the relaxation of Hz at tem-
peratures well above 100 K. Furthermore, there is consid-
erable interest about where the H2 in amorphous Si:H re-
sides, and a knowledge of the crystal-field environment of
the Hz should be useful in determining this. Thus in this
paper we extend our previous calculation to all J states
(and thus to all temperatures) for o-Hz, o-D2, and p-Dz
(paradeuterium). As will be seen, different crystal-field
symmetries and magnitudes lead to quantitative and even
qualitative differences in relaxation times.

In the rest of this section we briefly explain our model
and basic approximations. Section II contains the details
of the calculations for molecules in a specific state J. The
results, including averaging over J, are displayed and dis-
cussed in Sec. III.

As in Ref. 1, we refer to the molecular angular momen-
tum as molecular spin of magnitude J in order to em-
phasize the fact that the molecule acts like a spin in every
way. Similarly, the two protons (or deuterons) will be re-.
ferred to as a single nuclear spin of magnitude I. For o
H2 or p-02 the Hamiltonian I;„,connecting the nuclear
and molecular spin systems of a single molecule can be
written as"

+1 +2
IIi„t(J)=quoi g Bi~A i~ ~Ra)z g 8, A2

m =—2

where the AI and BI are the irreducible multipole
operators for the molecular spin J and the nuclear spin I,
respectively. The coupling constants coi and co2 depend
upon the molecular state J and are conveniently written as

co2 [I(I+——l)J(J+1)/5(2J —1)(2J+3)]'~co", (2b)

where co' and co" are independent of J. For Hz, co' and co"
are often denoted by co, and co~, respectively. For o-D2
the Hamiltonian is very similar and will be discussed in
Sec. II along with formulas for co' and co" in more fa-
miliar terms. Most of the language and approximations
used in Ref. 1 will be used in the present paper. This in-
cludes the consideration of the dynamics of the molecular
spin system as molecular spin modes described by the
multipole operators At

For our purposes the H2 and 02 molecules can be
characterized by two sets of properties that reflect their
environment. The static environment of the molecules is
characterized by a set of electric field gradients V~ at the
molecular sites. Although our formalism is valid for elec-
tric field gradients of any magnitude, detailed calculations
will be limited to cases where each VJ is either very large
or very small. Very large field gradients will push the
resonant frequencies of some of the spin-normal modes so
high that they will cease to be effective in relaxing the nu-
clear spins.

Dynamically the molecules are characterized by a set of
molecular spin-phonon decay rates I'i(J) that depend on
the state J of the molecule and the multipole operator or
mode l that is being considered. In practice only the I = 1

and 2 modes will be needed, and the ratio between the
relevant molecular relaxation rates"' is

I'z(J)/I i(J)=3(4J +4J —7)/(4J +4J—3) . (3)

It is assumed that these relaxation rates are much greater
than coi or co@ so that the effects of the nuclear spins on
the molecular spins can be ignored.

II. CALCULATIONS

A. Cubic symmetry

Since we have assumed that the nuclear spins have a
negligible effect on the molecular spins, the effects of H;„„
on the nuclear spins can easily be obtained. The relaxa-
tion time of the z component of the nuclear magnetization
when the molecule is in the state J is given by'
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+1
[Ti(J)] '=[J(J+1)/3](co') g m~Fi (mcop)

+[3J(J+1)/5(2J —1)(2J+3)](co")z

+2
X g F2~(mcop), (4)

where cop yIHp——71 is the gyromagnetic ratio of the nu-

clear spins, and Hp is the magnitude of an external mag-

netic field Hp that defines the z axis. F~ (co) is the nor-
malized spectral function for the molecular spin operator
Ai as defined in Ref. 1 and can be written as

Fi (co)=I,/[(co coi ) —+I I] . (5)

B. Axial symmetry H2

We next consider a crystal site with an axial electric
field gradient V~ that defines a new z axis. By using the
transformation given in Ref. 1, Ti can be written in terms
of the Fi in the new coordinate system and this expres-

I

In this equation co& is the frequency of the (I,m) normal
mode described by A~ and I ~ is its decay rate.

For molecules in sites of cubic symmetry the Ai
represent the normal modes of the system'" and

co( —Pl coJ where coJ——y Ho and y is the gyromagnetic
ratio of the molecular spin. Since we are concerned with
reasonably high temperatures in this paper, we shall as-
sume that I ~ is much greater than coJ and co&. In this case
Eq. (4) can be written as

[Ti (J)] ' =[2J(J+ 1)(co') /3I i(J)]

X[1+3r/(3J'+4J —7)],
r =(co'/co") . (6)

co(n, k)=(E„EI,) jiri— (7) '

and Ai is proportional to a sum over n of B(n,n m)—
The change in the energy level E„arising from V is pro-
portional to V~n Sinc.e all co(n, n+1) are proportional
to V~, none of the Fi~ with m =+1 in the new coordi-
nate system contribute to Ti. The only co(n, n+2) that
are not proportional to V are co(+1,+1). Thus we need
only compute the projection of 8 (+1,+1) on Az +2 in or-
der to complete the calculation. For molecular spin J the
projection R (J}is easily computed to be

~(J)= g (m[8(+1 +1)Hz+2
i m)]/( I2+1)

=[15J(J+1)/2(2J—1)(2J+1)(2J+3)]1/2 (g)

Then, after averaging over orientations as in Ref. 1, we
obtain

sion includes FIm with l = 1, m =0, + l. , and I =2,
m =0,+1,+2. If we assume that the frequency that
characterizes this field gradient is much greater than
I i(J), then a number of normal modes of the system will
have their frequencies pushed so high that the modes will
be ineffective in relaxing the nuclear spin. That is, the re-
sulting spectral functions will have virtually no weight at
nuclear resonance frequencies. Thus we wish to identify
those modes whose frequencies do and do not scale as V .

With a strong axial field the mode (l,m) is coupled to
the modes (I+1,m) so that m remains a good quantum
number but I does not. ' However, the modes with m =0
do not couple to any other modes. At this point it is use-
ful to introduce the projection operator 8(n, k) which
changes a spin in the state k to the state n The. frequen-
cy associated with 8 (n, k) is co(n, k), where

[Ti(J)] '=[2J(J+1)(co') /91 i(J)]I 1+[9r/5(4J +4J —7)][1+15J(J+1)/(2J —1)(2J+1)(2J+3)]I . (9)

C. No symmetry

Finally we consider crystal sites with large electric field
gradients V —

Vzz and/or V„z in addition to V . The
multipole operators with m =+1 have already been elim-
inated and we ignore them here. As in Ref. 1, an addi-
tional efftx:tive Hamiltonian H' acts on the system,

H'=A(cogI+ +cogI ), (10)

where co~ is a complex frequency whose 'real part is pro-
portional to V~ —

V~~ and whose imaginary part is pro-
portional to V„~.

In addition to the operators B(n, k) introduced in Sec.
IIC, we introduce the projection operator N(k), where

N(k) in)=5„k in) .

From the discussion of the last section it is clear that the
I

modes whose frequencies are not proportional to V must
be constructed from the B(m, —m) and N(k). That is,
all of the 8(m, k) with k& —m have frequencies propor-
tional to V and can be ignored. Within this restricted
set of operators, the only ones whose commutators with
H' are nonzero are 8(+1,+1} and N(+1), and those
commutators are

[8(1,—1), H'] =cogJ(J+1)[N(1)—N( —1)],
[8(—1, 1), H"]=cogJ(J+ l)[N( —1)—N(1)],
[N(+1),H'] =J(J+1)I+cogB(1,—1)+cogB(—1,1)j .

From the above equations one can find the modes
whose frequencies do not scale as V or cog and then find
the projections of these modes onto the relevant AI~.
When this is done and the appropriate angular average is
performed, one obtains

I

[T,(J)] '=[ZJ(J+1)/51, (J)(4J2+4J—7)](co")2[1+15J(J+1)/2(2J —1)(ZJ+1)(2J+3)] . (13)
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Hsr=m I J (14)

As mentioned earlier, co' is often denoted as co, . The
second term in Eq. (1) is due to the dipolar interaction in
Hz and due to a combination of the dipolar interaction
and the quadrupolar interaction' in Dz. Using Ref. 10
one can easily verify that for o-H2, p-D2, and o-(I =2)
02, respectively,

(15a)

a)"=co +eqQ/4,
co"=(7/15)'i (co —eqQ/4),

where

(15b)

(15c)

co~ =y R/R (16)

and q and Q refer to the nuclear quadrupolar interaction
of D2.

In addition, there is a term in the magnetic dipolar
Hamiltonian for o-D2 that connects the I =0 and 2 sub-
spaces. ' It is rather easily seen that this term makes a
small additional correction to Ti to account for the loss
of magnetization by transfer from the I=2 to I =0 state.
This term can be. taken into account by using an effective
co,

"
given by

D. Coupling constants

The first term in Eq. (1) describes the spin-rotational
magnetic interaction which, using Eq. (2a), can be written
as

al field gradient which defines the z direction, are given
by Eq. (9). The results for the case of no symmetry,
where there are large additional electric field gradients in
the x-y plane, are given by Eq. (13).

At temperatures high enough so that more than the
lowest J state can be appreciably occupied, we average the
relaxation rate over different J states with the appropriate
weighting factor for each state,

Ti ' ——QP(J)[Ti(J)]
J

(2J + 1)(exp[ —J(J+ 1)0/T]
g (2J + 1)exp[ —J(J+ 1)S/T]
J

In these equations the summation is over odd J for o-H2
and p-Dz and over even J for o-D2. This averaging is ap-
propriate' ' if the transition rate between states of dif-
ferent J is much greater than T i

' but much less than the
relevant I'i(J). We note that if the transition rate between
states of different J is less than Ti, the molecules in dif-
ferent J states will have different Ti's and a very nonex-
ponential signal will be observed.

For the purposes of illustration we shall now assume
that the molecular spin-phonon relaxation mechanism is
the standard one where the quadrupole moment of the
molecule interacts with the time-dependent electric field
gradients that are set up by phonons. The Hamiltonian
can be written as'

H = Q Qij I ij

co,"=[(8/15)co +(co") ] i

In practice, this correction term is quite small.

(17) (19)
Qj ——[eQ/12J(2J —1)])&[3IJi,JjI 25il(J+1—)],

III. RESULTS

In the preceding section we derived results for the re-
laxation time Ti(J) for o-Hz, p-Dz, or o-Dz in a state of
given J under crystal fields of various symmetries. These
results are valid in the high-temperature or low-frequency
regime where the molecular relaxation rate I'i(J) is much
greater than coo. The crystal fields considered in detail are
three limiting cases. The results for cubic symmetry,
where the frequencies associated with all electric field gra-
dients are inuch less than I', (J), are given by Eq. (6). The
results for axial symmetry, where there is a very large axi-

I

I'i(J)=AT (2J+3)/J (2J —1), (20)

where T is the expected high-temperature behavior, and
A is a constant.

From Eqs. (18) and (20), along with the previous equa-
tion for Ti(J), one can get the asymptotical forms for Ti
in the limit T &&O. They are

where Vi are the electric Geld gradients. From this equa-
tion one can easily determine that the J dependence of
I i(J) will be (2J+3)/J (2I —1). Thus we assume a
I i(J) of

Ti ' (4/3A)(co'/O~——) [1—(9n'i /8)(O/T)'i +(0/T)(2. 25+0.37Sr) ] (21a)

for cubic symmetry,

Ti ——(4/9A)(co'/S) [1—9m i /8)(S/T) i +(S/T)(2. 25+0.4Sr) ] (21b)

for axial symmetry, and

Ti ' ——[(ei") /10AOT][1 —(33m'i /32)(O/T)'i +(230/16T)+ ] (21c)
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FIG. 1. T~ versus T for o-H2 for the cases of (a) cubic sym-

metry, (b) axial symmetry, and (c) no symmetry. Values of the
parameters used are discussed in the text.

FIG. 3. T& versus T for o-D2 for the cases of (a) cubic sym-

metry, (b) axial symmetry, and (c) no symmetry. Values of the
parameters used are discussed in the text.
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for no symmetry.
In Figs. 1—3 we have plotted T~ versus temperature for

o-Hz, p-Dz, and o-Dz, respectively. In these figures we
have used 0=86 K, co'= 7.15& 10 sec ', co

= 1.81)& 10 sec ' for Hz and 8=43 K, co'= 5.52
&& 10 sec ', co~ =4.28)& 10 sec ', eqg = 1.41 && 10
sec ' for Dz. A typical value of A =10 sec ' K was
used for all three.

From Eqs. (21) or from the figures one can see that the
high-temperature behavior in the case of no symmetry is
different than the cases of cubic or axial symmetry. The
reason for this is that the spin-rotation (IJ) term in the
Hamiltonian usually dominates the relaxation rate at high
temperatures because its J dependence is stronger than the
dipolar-quadrupolar term. However, in the case of no
symmetry, the spin-rotation relaxation cannot come into
play because of the lack of symmetry. A word of caution
should be added to this point. The various limiting cases
considered here were for the quadrupole splitting to be
large or small with respect to I &. However, because I

&
is

temperature dependent, this condition can depend on tem-
perature even if everything else is temperature indepen-
dent. Thus, as the temperature increases, it is possible to
go from no symmetry to axial symmetry to cubic symme-
try.
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FIG. 2. T) versus T for p-D2 for the cases of (a) cubic sym-
metry, (b) axial symmetry, and (c) no symmetry. Values of the
parameters used are discussed in the text.
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