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Shift in the longitudinal sound velocity due to sliding charge-density waves
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The nonlinear conductivity observed for moderate electric fields in NbSe3, TaS3, (TaS4) 2I, and

Kp3Mo03 below the charge-density-wave-transition is believed to be due to the sliding of the charge-

density waves. The sliding motion leads to a Doppler shift of the x-ray diffraction peaks, but this effect
has not yet been resolved. We show here that besides the Doppler shift, a sliding incommensurate
charge-density wave causes a change in the longitudinal sound velocity of the crystal that is linear in the
charge-density-wave velocity. The resulting anisotropic shift is estimated in a mean-field approximation
and found to be experimentally observable.

Some compounds exhibit charge-density waves (CDW's)
below a transition temperature T, and also display nonlinear
conductivity for small electric fields (on the order of I
V/cm). ' This nonlinear conductivity has been interpreted
as arising from "excess" current caused by sliding of the
CDW. The small magnitude of the threshold field E, sup-
ports this view because the electric field energy is small
compared to the Fermi energy E~, making a change in the
number of free carriers unlikely. F.xperimentally, it has
been shown that the x-ray diffraction peaks from the CDW
do not lose intensity in the field, so that the nonlinearity is
not caused by conversion of condensate electrons to normal
electrons. 2

However, to date there has not been an independent ex-
perirnental verification that the excess conductivity for fields
above E, is due to sliding motion of the CDW. The most
direct measurement would resolve the Doppler shift of the
x-ray diffraction superlattice peaks when a CDW with wave
vector Q moves with finite velocity V, causing the elastic
peak at (Q, cp = 0) to change to an inelastic peak at
(Q, cp = Q v), but so far the shift is below the experimental
resolution.

In this Rapid Communication we show that for an incom-
mensurate CDW the motion induces changes in the longitu-
dinal sound velocity of the crystal that could be measured in
ultrasonic experiments. The change in the sound velocity is
proportional to the sliding velocity, and the resulting aniso-
tropy should make the shift easier to resolve. The size of
the effect is estimated and shown to be accessible to present
ultrasonic techniques.

The effect is estimated using a very simple mean-field ap-
proximation in which the CDW amplitude is fixed and the
phase P varies sinusoidally, @=Q. x. Impurities and ther-
mal effects that induce fluctuations in the phase are ignored.
It is straightforward to generalize the discussion to allow for
harmonics of the wave vector Q. One can start with a mi-
croscopic model involving electron-phonon coupling and
solve for the equilibrium CDW distortion. For instance, in
one dimension one could use the Frohlich Hamiltonian4

and solve the gap equation in the mean-field approximation
to find the CDW amplitude at wave vector Q=2kF. Here,
the a 's and a's are phonon creation and annihilation opera-
tors, the b 's and b's create and annihilate electrons, m is
the electron mass, and s is the speed of sound. Regarding
this amplitude as fixed, one then evaluates the resulting ef-
fective Hamiltonian for the low-frequency phonons. A stat-
ic CDW thus induces a potential on the ions of the form
VpcosQ x. One can evaluate Vp for the one-dimensional

jellium model, but here it will be estimated by using experi-
mentally obtained values of the mean ionic displacements in
the CDW state. The change in the phonon frequencies
caused by a periodic potential sliding with velocity v is calcu-
lated to second order in perturbation theory for small Vp,
and it is shown that there is a contribution linear in v.

The simplest case involves phonons parallel to the CDW
wave vector, for which one can model the phonons as aris-
ing from a one-dimensional chain of ions. For a CDW slid-
ing with velocity v, the classical equation of motion5 for the
displacement xJ of the jth ion can be written

mxJ' = —XD,kxk+ g Vp sing (x, + vt )
k

(2)

The dynamical matrix DJk describes the ion-ion interactions
in the harmonic approximation, and m is the ion mass. We
assume D&k describes phonons so that it is a function of
j —k, it falls off sufficiently quickly with distance, and that
it is symmetric. This equation is nonlinear, so we proceed
by assuming that Vp, and hence the distortions, are small.
However, one must allow for the fact that the lowest-energy
state of the chain is distorted; so one writes the position x,.
of the jth ion as x~ = aj + 5, (t) + u, (t), where a is the lattice
constant, 5, (t) is the forced distortion, and u, (t) describes.
the phonons. To first order in Vp the distortion 5jt'l(t) is

5& (t) =
2 sing (aj+ vt)g p

m gv —D q=g
Here, D(q) = X,D,Je'~". To second order in Vp, one finds
that the

0= g b„bk+hska„at, + ghk(a„b» bp+k+ H.c.)h k t

k 2m k, q

(I) obey

u(q, pp) = X I dt expi(qaj —cut) (t)u1
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mpp'(q)u(q, cu)=D(q)u(q, cu) —~g Vp'
2

' + —, Vpg'[u(q+Q, pp —Qv)+u(q —Q, cu+Qv)]
m (Qv)' —D (q = Q)

Equations (4) are coupled linear equations that can be solved by iteration for small Vp to yield

(4)

mco2(q) =D(q) —~ V)g~
2

+ 4 Vpg
m(gv)2 —D(q= Q) m(ro+gv) —D(q —g) m(cu —Qv) —D(q+Q)

We assume the unperturbed system has reflection invari-
ance, so that D (k) = D ( —k). This expression can be
evaluated in the limit q 0, cu sq (s is the speed of
sound), v 0 to yield

s = sp — QD'(g)v+ 0 (v )
Q4V 2

2

D'(g) (6)

Changes in s that are independent of v are accounted for in

sp, which is the speed of sound when v = 0, and
D'(q) = dD (q)/dq.

Alternatively, one can evaluate the phonon frequencies
using Green's function techniques. It is again necessary to
allow for the distortions that occur in the lowest-energy
state, Fig. 1(a), in order to ensure stability. The diagrams
that lead to Eq. (5) are all represented in Fig. 1. The first-
order scattering process, not shown, from (q, ~) to (q + g,
cu + gv) is responsible for the Doppler shift in the Bragg
peak mentioned earlier but does not affect the sound veloci-
ty. A pictorial description of the mechanism is shown in
Fig. 2; the phonon at (q, cu) scatters off the distortion at
[q + Q, ao (q + Q) —g v ] and [q —Q, co (q —Q) + Q v]. The
usual denominators of second-sound perturbation theory are
then slightly shifted in different directions.

In the calculations discussed above the charge-density
wave is assumed to slide as a rigid body for fields above
threshold. This assumption is only valid well above thresh-
old. Near threshold the internal degrees of freedom of the
charge-density wave can not be ignored. The qualitative as-
pect of our result, the linear shift, which arises from sym-
metry breaking due to a moving density wave will persist,
although there may well be enhanced damping of the sound
1Tlode.

The expression (6) for 5s = s —sp can be written in terms

Vpof the magnitude of the distortion I5, I
= asJ D g

5s=l5 I g v .» D'(Q)

This expression for the shift displays several interesting
features. First, it is proportional to D'(Q), which is finite
for an incommensurate CDW but is zero for a commensu-
rate CDW. In the commensurate case, umklapp scattering
within the unit cell must be considered, rendering the treat-
ment described here inadequate, but we do not expect a
shift linear in v to appear. Assuming that D'(Q) is not
anomalously large or small [so QD'(Q) —D (Q) ], one finds
5s is on the order of Q2I5~I2v. Note that I5, I Q is the
dimensionless measure of the lattice distortion due to the
charge-density wave. The velocity shift obtained here can
then be looked on as arising from the motion of this distor-
tion at velocity v. Experimentally, I5, I is found to be ap-
proximately 5% of the lattice constant, ' so for g —m, drift
velocities on the order of 10 cm/sec and sound velocities of
about 10' cm/sec, one finds

5s/s =10
which is large enough to be resolved experimentally.

Since the shift is linear in v, changing the direction of the
electric field driving the CDW should alter the shift. It is
emphasized that this shift is added to the change induced by
a static CDW.

In summary, we have shown that a moving CDW causes
an anisotropic shift in the longitudinal sound velocity of the
crystal that is linear in the CDW velocity. The effect pro-
vides a means to obtain independent experimental evidence
for sliding CDW conductivity in crystals such as NbSe3,
Kp 3MOO3, TaS3, and (TaS4) 21.
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FIG. 1. Second-order diagrams that contribute to the sound velo-
city shift. Diagrams (b) and (c) contribute the linear term in the
CDW velocity.

FIG. 2. Schematic representation of mechanism causing linear
velocity shift. There are momentum transfers from q to q + 0 and
q —0, and the finite velocity causes different energy shifts for the
two terms.
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At a conference where preliminary results of this work
were reported, we learned of experiments ' in which a
change of the elastic modulus due to sliding charge-density
wave was observed. However, the magnitude of the ob-
served effects are much larger than estimated here because
of geometry and phason distortion effects. Detailed com-

parison with experiment must await a more complete under-
standing of these factors.
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