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Laughlin states in higher Landau levels
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We propose a procedure for determining the pair-correlation function and the energy for the higher-
Landau-level generalization of the incompressible quantum fluid states proposed by Laughlin fPhys. Rev.
Lett. 50, 1395 (1983)]. On the basis of explicit calculations for Landau-level filling factors v=

3 and

v= 5, we conclude that the fractional quantum Hall effect is not restricted to the lowest-orbital Landau

level.

For a two-dimensional electron gas in a strong magnetic
field the Hall conductivity, &AH, is given by'

ic energy) operator may be written as

t=a a +~1 (3a)
e v~H= (1) where

when the chemical potential has a discontinuity which, as a
function of magnetic field, is pinned at a certain Landau-
level filling factor, v. [v—= 2maLp, where p is the electron
density and aL, = (tc/eB ) '~' is the magnetic length. ]
Discontinuities occurring at integral values of v are associat-
ed with the splitting of the energy spectrum into Landau
levels and are reflected in the integral quantum Hall effect.
Similarly, the observation of a fractional quantum Hall ef-
fect shows that at some set of rational values of v, the elec-
tron gas has especially stable states. An explicit form for
these states has been proposed by Laughlin' for v= 1/M,
where M is an odd integer, and it is generally expected that
the states corresponding to the other stable filling factors
seen in experiments are generalizations of these, possibly
ones to states involving both spins. To our knowledge,
the fractional quantum Hall effect has, to date, been ob-
served only in the lowest-orbital Landau level and theoreti-
cal work has been directed toward that case. However, as
we see below, there exist natural generalizations of
Laughlin's state in higher Landau levels. Moreover it is
possible to evaluate the pair-correlation functions and hence
the energies of these states, and we find them to be lower
in energy than the corresponding charge-density-wave
(CDW) states. The elementary excitations of these states
are found to have a localized fractional charge as in the
lowest Landau level, and the excitation energies can be es-
timated. On this basis we conclude that for sufficiently low
temperatures, strong fields, and high electron mobilities, the
fractional quantum Hall effect should occur in higher-orbital
Landau levels.

We use a symmetric gauge vector potential

A=B( —y/2, x/2, 0) (2)

take ar, as the unit of length and tee, =t(eB/mc) as the-
unit of energy. Then the single-particle Hamiltonian (kinet-

and

a —= (a+p)= 1

2
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2 2
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(3b)

(3c)

(3d)

The normalized eigenfunctions of t may be written as

(xy) = (urn!m!) ' (a )"(b ) exp( —IzI2/4)

where

( '-p') .1

2

(4a)

(4b)

(Note that [a,a ] = [b,b ] = 1 and [a,b]= [a,b ] =0.)
Hop„= (n + 2 )Q„, so n labels a Landau level and m la-

bels the eigenstates within a Landau level. The unnormal-
ized many-body states invented by Laughlin for v = 1/M are

40 [z]= Q (z —z„)Mexp —~ XIzII
)&k I

Noting that $„0 ~ Z, it is easily seen that this state is
entirely contained with the lowest Landau level. The corre-
sponding state in the n th Landau level is'

4" [Z] = g(a~ ) "~ ' [Z] (6)
J

For QM0[z], Laughlins pointed out that the pair-correlation
function gM(r) is identical to that of a two-dimensional
one-component plasma (2DOCP) with plasma parameter
I' = 2M and ion-disk radius a = aL, /42M. Below we use Eq.
(6) to construct gM(r ) from gM(r).

The pair-correlation function is defined by

gM( IZt —Z21) =, „JldZ3 J dZ~leM[Z] I'N(N —1) I

P (q'Mlq'M)

But using Eq. (4a) and the commutation relations among the a and b operators we see that for all m and m'

I

J dZk[(a )"Zk exp( —IZkI /4)]" [(a )"Zk exp( —IZkI /4)] = n!
&

dZk(Zk ')'Zk exp( —IZkI /2) (8)
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lt follows that (iPiir~@~) = (n!) (iPiir~Ci~). The same identity can be used for the N —2 coordinates which are integrated

over in Eq. (7) with the result that if g~( ~Z~ —Z2~) is written (without loss of generality) in the form

I

gii'r()Z, —Z2() = X X A (StSt,S2S2)Zt 'Z2 Z)'Z2 exp( —[Zg~ /2) exp( —~Z2['/2)
I I$),$) $2,$2

(9)

then the corresponding function in the n th Landau level is given by

$I
giir()Z) —Z2[) = X X A (StS)',S2S2)(n!) [(a )"Zt' exp( —(Z~~ /4)]"

I I
$]&$) $2p$2

I

x [(a )"Z2' exp( —(Z2('/4)]'[(a')"Z~' exp( —)Zq['/4)] [(a') "Z2' exp( —(Z2['/4)], (10)

g~~(r ) can be accurately determined by Monte Carlo calcula-

tions for the 2DOCP. "' Our procedure for determining

giir(r ) is to fit these results to an appropriate analytic form,
expand this expression in the manner of Eq. (9) and then
use Eq. (10). We have done this in several different ways,
one of which is discussed in detail in the following para-

graph.
Girvin'3 has suggested an analytic form for gMO(r) which

is motivated by the observation that only odd powers of r'
appear in the Taylor series expansion of exp(r'/4)g (r ).

g~~(r ) = 1 —exp( —r2/2) —2 g r2'exp( —r2/4) . (11)
, , 4'l!

[The prime on the sum in Eq. (12) indicates that only odd
values of I appear. ] Of the forms we have tried this one al-

I

ger(r ) = 1 —exp( —r2/2) [L„o(r2/2) ]2

I

lowed us to fit the Monte Carlo results for M = 3 and M = 5

reported in Ref. 12 with the fewest number of parameters.
Each term in Eq. (11) can be expressed in the form of Eq.
(9). To obtain a simple expression for gM(r) we then
evaluate the right-hand side of Eq. (10) at Z2 ~ 0,
Z~' =Z~=r, and use the identity

(a )"Z exp( —~Z [ /4)[ ~ = 2 " exp( —r /4)

where

&(F~.M(r) (12)

(r) 2irs —i( )(/ !Ls
—i(r2/2)

s is the greater of m and n, i the lesser of m and n, and

L„(x) a generalized Laguerre polynominal. [Note that
F„(r= 0) = 0 unless m = n. ] The result is'

i 7 i 'i i

C) 1 s l $+l —i —j i+ j—2exp( —r'/2) g',
, g, ,

[F„,+i „(r)]'X ( —), . „(,+ .
)/2 (,. + .

)/2 (14)
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FIG. 1. Pair-correlation functions, g"(r), for the Laughlin states

at v=
3 in the n =0, n =1, and n =2 Landau levels. The long-

dashed line is for n =0, the solid line for n =1, and the short-
dashed line for n = 2.
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FIG. 2. As in Fig. 1 but for the v =
5 Laughlin states.
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TABLE I. Energy per electron in units of e /aL for Laughlin and
CDW states at n =0, 1, and 2 at v=1/M for M=3 and 5. The
CDW states are of the hexagonal type.

CDW Laughlin CDW Laughlin

0.3 —i

—0.388
—0.284
—0.252

—0.410
—0.325
—0.263

—0.322
—0.252
—0.209

—0.328
—0.294
—0.247

+I Q

GO

0. 1

(The prime on the sum over i and j indicates that it is re-
stricted to values for which i +j is even. ) The first two
terms on the right-hand side of Eq. (14) give the pair corre-
lation function for a full Landau level. Pair-correlation
functions for n = 0, 1, and 2 obtained using this procedure
are illustrated in Fig. 1 for M=3 and in Fig. 2 for M=5.
Note that gM(r = 0) = 0 is guaranteed for all n by the an-
tisymmetry of the many-body wave function C&~[Z]. It is
also worth noting that the charge-neutrality sum rule,

0.0

3
r/a

FIG. 3. Quasiparticle density distributions for n = 0, n = 1, and
n =2 Landau levels. These plots are for quasiparticles created in

the v =
3 Laughlin state as discussed in the text. The long-dashed

line is for n = 0, the solid line is for n = 1, and the short-dashed line
is for n =2.

dr r(1 —g~(r) =M

must be, and is, preserved by our procedure. '

The energy per electron for these Laughlin states is relat-
ed to the pair-correlation function by'

fa oo

EM = dr [1 g~(r ) ]— (16)

TABLE II. Estimates for quasiparticle or quasihole creation ener-
gies in the n = 0, n = 1, and n = 2 Landau levels for r = 1/M, where
M=3 and M=5. The energies are in units of e2/aL.

In Table I we have compared the energies at M=3 and
M = 5 with the energies of the corresponding CDW states'
for several values of n. It is quite clear that Laughlin's
states remain lower in energy, at least in some cases, in the
higher Landau levels. For example, for M=3, the density
is ideally suited for the CDW state if n =0 but not if
n =1.' As a result the energy difference between Laughlin
and CDW states is actually larger in the higher Landau lev-
el.

In his theory for the fractional Hall effect, Laughlin pro-
posed trial wave functions for states in which a quasiparticle
or quasihole is created in @~~l[Z]. '' These states have a
localized excess or deficiency in the charge density contain-
ing a total charge +e/M and can be raised to higher-
Landau levels just as in Eq. (6). The quasiparticle or

quasihole creation energy can be approximated by the self-
interaction of the excess charge density Sp —(r ). For a
quasiparticle or quasihole state in the lowest Landau level,
with the quasiparticle or quasihole centered at the origin for
convenience, Sp( r ) can quite generally be written in the
form

oo C + 2$

Sp
+-' '( r ) = X ', exp( —r'/2)

2mm, 0 2's! (17)

where g,c,—= + l. Using arguments similar to those for
the pair correlation, the excess charge densities for the cor-
responding states in higher Landau are

Sp —" ( r ) = g,+„, [F„,(r)]2exp( —r2/2)

(Note that the total excess or deficiency of charge is
preserved. ) For the present purposes it is adequate to ap-
proximate Sp -~ ~( r ) by taking C, —= +1/m, s =0, . . . ,
m —1 in accordance with expectations for the size of the
quasiparticle or quasihole. In Table II we list the quasiparti-
cle creation energies in units of e /aL obtained from this ap-
proximation for M = 3 and 5 and n =0, 1, and 2. For n =0
the values are 0.034 for M=3 and 0.010 for M=5 com-
pared to Laughlin's estimates' 0.028 for M=3 and 0.007
for M = 5. For M = 3 we plot in Fig. 3 the approximate ex-
cess charge density of the quasiparticle state for n =0, 1,
and 2. We see that the localized nature of the excitations is
preserved in the higher-Landau-level states and that the
dependence of the excitation energy of Landau-level index
is approximately the same as that for the total energy.

0.034
0.028
0.024

0.0098
0.0086
0.0077

The author would like to acknowledge a stimulating dis-
cussion with R. B. Laughlin during which he suggested the
generalization we use for his states in higher Landau levels.
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