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Quantum-size effects in the continuum states of semiconductor quantum we]]s
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We present theoretical results bearing on the energy position and spatial localization of the low-lying
"barrierlike" states (i.e., states which are not bound in the narrow we11) in semiconductor separate con-
finement heterostructures. We show that under most circumstances these states are less localized than
classically expected. However, when a virtual bound state of the narrow well occurs near the onset of the
narrow-well continuum or when a state has just been bound by this well, the quantum-well-projected den-
sity of states of the system is much larger than in nonresonant situations. This points out the possible in-
fluence of the virtual bound states in the mechanism of carrier capture by the quantum well.

It is now well established that 1asing action is easier in
separate confinement heterostructures (SCH) than in the
conventional double heterostructure lasers. ' ' This effect
has been attributed to the quasi-two-dimensional density of
states associated with the bound states of the quantum well
(QW) between which laser action occurs. Efficient carrier
collection by the QW is also frequently invoked. The
mechanism of such carrier capture through optical-phonon
emission has been theoretically studied by Shichijo et al. 4

and Tang et al. ' neglecting, however, the quantum aspect of
the carrier motion along the growth axis. Recently, we
pointed out that semiconductor QW's, like the idealized
ones, display pronounced quantum effects for both the
discrete and the continuum spectra. These effects manifest
themselves through an oscillatory behavior upon the carrier
energy of the transmission coefficient T across the QW.
Neglecting band-structure effects (effective mass mismatch,
intervalley couplings, band nonparabolicity, etc.) T(e) is
given for a rectangular QW by'

1

T(e) = 1+— — sin k w
1 kw k
4 kb k

wk„(e) =pm (3)

Equation (3) is satisfied only for certain discrete energies.
Transmission resonances can also be viewed as virtual
bound states. " These levels, like QW bound levels, corre-
spond to an accumulation of probability for the carrier to be
in the well; but unlike the true bound levels, they decay
gradually with a time constant lr/I', where I' is the energy
width of the transmission resonance. Narrow resonances

where w is the QW thickness and k (kb) are the carrier
wave vectors in the well (barrier)
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In Eq. (2), m' is the carrier effective mass and Vb the bar-
rier height. The energy origin has been taken at the onset
of the QW continuum. At a=0, the transmission vanishes
[unless wk„(0) =pm, where p is an integer]: the carrier is
totally reflected by the QW. If however wk„(0) = (p + n) m,
a « 1, one sees from Eq. (1) that the transmission will
steeply increase with e reaching unity if o, ( 0 and becoming
large (but & 1) if u & 0. The first situation (n & 0) corre-
sponds to the true transmission resonances which fulfill

exist only if kb/k « 1: the closer the resonances are from
the onset of the continuum, the smaller their widths.

The second situation (0 & o. « 1) occurs when a level
has just been bound by the well (binding energy « Vb)
The transmission steeply increases near e = 0 but does not
reach unity. As in the case u & 0, T(e) increases rapidly
because the condition for constructive interferences inside
the QW slab is almost fulfilled. T(e) remains smaller than
unity when n ) 0 since, by increasing e, the states move
away from resonance where an integer number of carrier
wavelength should fit to 2w. On the contrary, if o, ( 0, the
states move towards the resonance with increase in ~ and
T (e) reaches unity at some. In summary, the carrier
transmission across a QW vanishes at the onset of the QW
continuum but can be large near e = 0, either when a virtual
bound state has just popped out of the QW (T,„=1) or
when a level has just been bound in the well (T,„&1). A
nonresonant situation occurs when wk„(0) = (p + n) rr,
n —~. In this case, near a=0, T(e) remains very small
and the carrier repulsion by the QW is larger.

Suppose now that a carrier has been injected deep inside
the QW continuum (e —Vb). It will quickly (10 '~-10
s) relax its energy by emitting optical phonons (intracontin-
uum transitions). High-energy transmission resonances are
very broad (kb/k„—1) and in practice negligible; T(e) —1
for any e. The direct carrier capture by the QW
(continuum bound-states transitions) is very unlikely
since it would require a very large change of the carrier
wave vector in the layer plane to ensure energy conserva-
tion within the energy of an optical phonon tcuLo. The fast
LO phonon emission lasts until the carrier energy is within
rl'GJLo from the edge of the QW continuum. A subsequent
phonon emission, leading to the carrier capture, requires the
carrier to shrink its delocalized wave function down to ~ to
end up in a QW bound-state wave function. The matrix
element of the electron-phonon interaction will be much
smaller for the capture than the one corresponding to in-
tracontinuum transitions. Hence, the edge of the QW con-
tinuum may act like a bottleneck for the energy relaxation.
We believe the capture process can be more efficient if,
within tcoLo of the continuum edge, there exists a virtual
bound state or if a QW level is marginally bound. Actual
QW lasers are made from SCH or graded-index SCH
(GRINSCH). Here, we focus our attention on SCH.

We model the SCH as follows (Fig. 1). A QW of thick-
ness w and barrier height Vb is inserted at the center of a
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FIG. 1. Conduction-band profile of an idealized SCH. The po-
tential energy is assumed to be infinite for !z!& L/2.

r- "!
I

'310A

I
I
I
I

I
I
I

r I
I

p

~w~ J
I
I
I

I I
I Ir-J I

r
I

[

0

340A
J
@OA

280A

20 0

i—1608
I

22ok

~190A

100A

130A

J
wJ

E (meV)

large well which we assume for convenience to be of infinite
height (z = +L/2). The total thickness of the structure is
I.. We take the energy zero at the bottom of the large well
and discuss the "barrierlike" states of positive energies.
Since the cladding barriers are impenetrable, all the states
are discrete. Neglecting band-structure effects, z and (x,y)
motions separate. Energy levels and wave functions for the
z motion are denoted by a„and X„(z), respectively. The
free motion in the layer plane (wave vector k) adds the
kinetic energy term /i 'k'/2m' to a„. Eigenstates are even or
odd in z due to the mirror symmetry with respect to the
center of the structure. The integrated probability of find-
ing the carrier in the small well while being in the state X„ is

~/2
P„=2 X„(z)dz (4)

We define the QW-projected density of states (DOS) p(E)
as the number of states per unit energy whose total energy
is between E and E+dE, each of the state being weighted
by the probability of finding the carrier in the small well:

p(E) = 2 QP„5 E —a„— ~
= pp $P„Y(E—a„), (5)m'

nn k i

where Y(x) is the step function [ Y(x) = 1 if x & 0,
Y(x) =0 if x & 0] and pp= m'S/mt is the two-
dimensional DOS, S being the sample area. p (E) em-
phasizes the carrier localization in the small well. We be-
lieve it is more appropriate than the conventional DOS [ob-
tained by deleting P„ in Eq. (5)] to ascertain which continu-
um states are more efficient in a capture event (the final
state of the carrier is essentially localized over w). Figure 2

shows the energy dependence of p (E) for increasing w

keeping Vb and L constant (Vs=195 meV, L =3000 A)
and taking m'=0. 067mp. These values correspond roughly
to the conduction-band parameters of a GaAs-Gap82Alp isAs
SCH. The classical regime (not shown in Fig. 2) occurs at
large E (E —Vb) where the narrow well is a small perturba-
tion for the large well states. In that case, P„—w/L and
p(E) becomes proportional to the conventional DOS. It is
evident on Fig. 2 that the low-energy barrierlike states
behave completely differently.

(i) p(E) is much smaller than its classical limit (w/L per
step on Fig. 2). This is reminiscent of the carrier repulsion
by the narrow QW when L is infinite [T(0)=0] and im-

FIG. 2. Quantum-well projected density of states (in units of pp)
of an idealized SCH vs energy E. L and Vb are kept constant (0.3
p, m and 195 meV, respectively) while ~ varies. Curves correspond-
ing to different ~ are displaced vertically and are alternatively drawn
in solid and broken lines. p/pp (linear scale) varies by 0.05 between
two horizontal divisions.

plies incidentally that p(E) does not behave like E' 2 near
the onset of the continuum.

(ii) For some w, p(E) is much larger and increases faster
with E than found for wells of adjacent w (compare, for in-
stance, p(E) for w = 160 A with the p's calculated for
w = 130 A and w = 190 A.) These enhanced p(E) occur
whenever wk„(E =0) = (p+a)m, Ia! « 1, i.e., when a
level has just become bound (n & 0) or has become a virtu-
al bound state of the small well (n & 0). In the specific
case of w = 160 A, the fourth QW bound state9 (E4) has
just entered in the well (a —0.045) whereas for w = 310 A,
E7 forms a resonance near 6.7 meV from the edge. For
w = 130 A and w = 190 A, the whole investigated energy
range corresponds to a nonresonant situation [wk„
(a) —2.5m and wk„(a) —3.7m, respectively]. Correspond-
ingly, the p's are very small.

(iii) In the resonant situation, there exists a strong asym-
metry between the heights of the steps associated with even
or odd levels. For w =160 A, the odd states have a much
larger probability density to be localized in the well: inside
the QW, they closely resemble the odd E4 QW bound state.
On the other hand, it is impossible for even levels to fit the
shape of the E4 state within the well. They are accordingly
heavily repelled by the small QW and their contribution to
p(E) is then very small. In the nonresonant situation, the
even and odd contributions display less asymmetry.

Another feature apparent in Fig. 2 is the size quantization
associated with the large well. Actually broadening effects
will smooth the p(E) curves. Nevertheless, the high quality
of the present SCH's may be sufficient to observe this size
quantization. We present in Fig. 3 p(E) curves obtained by
varying L while keeping Vs and w constant (195 meV and
155 A, respectively). For w = 155 A, E4 has become a reso-
nance located at —6.7 meV from the edge. One sees in
Fig. 3 the strong increase of p/pp near that energy. The
symmetry-induced repulsion is also clearly apparent for all
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FIG. 3. Quantum-well-projected density of states (in units of pp)
of an idealized SCH vs energy E. w and Vb are kept constant (155
0
A and 195 meV, respectively) while L varies. Curves corresponding
to different L are displaced vertically and are alternatively drawn in
solid and broken lines. p/ps (linear scale) varies by 0.05 between
two horizontal divisions.

I.: large steps occur only for odd levels. Note again that
the energy levels are not dominated by the large well (they
do not vary like n2/L2)

Lasing action in very narrow wells (w & 30 A) is known'
to be more difficult than in larger wells (w —150 A). Dif-
ficulties in growing good interfaces may be an explana-
tion. ' " Shichijo et al. has applied Fermi's "age theory"

to predict that carrier collection will be inefficient in narrow
wells. If we link the easy carrier capture to the condition
wk„(0) = (@+ a)m, ct « I, we deduce the carrier capture
will become difficult when the last virtual bound level (E2
for electrons) will have moved beyond ttaLo from the bot-
tom of the large well (all the low-energy barrierlike states
being then repelled by the small QW). For the parameters
we used Vb=195 meV, m =0.067mp, hcoLo=37 meV; this
corresponds to w & 50 A. Heavy holes (Vb ——34.4 meV,
m" = 0.048ma) will not be collected if w & 33 A.

In summary, we have discussed the low-lying barrierlike
states in semiconductor QW and SCH. We have shown that
their behavior is strongly influenced by constructive or des-
tructive interferences in the narrow QW. We have also
shown that each time a level (bound or virtually bound) is
near the onset of the small well continuum, the QW-
projected DOS is much larger than in other (nonresonant)
situations. The calculations have neglected band-structure
effects and assumed impenetrable confining barriers in the
SCH. These two assumptions can be relaxed. This will

change the numbers but in no case alter the qualitative
features of the analysis. GRINSCH structures appear to be
more efficient carrier collectors than SCH. ' Preliminary
results indicate that actual GRINSCH (equivalent electric
field —10b V/m) considerably increase the localization of
the low-lying barrierlike states in the narrow well, therefore
enhancing the carrier collection. Detailed results on these
GRINSCH structures will be reported elsewhere.

We have suggested that the virtual bound levels may be
efficient relays in the carrier capture because, in many
respects, they behave like true bound levels. A complete
theory of the energy relaxation, accounting for the compli-
cated nature of the QW continuum states, is however,
necessary to prove or disprove the correctness of our sug-
gestion.
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