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Stability of lattice registry as a function of lattice parameter mismatch has been studied for a single inter-
face. The interface model consists of two two-dimensional lattice systems each 12 atoms high by 120
atoms long. Each of the two lattice systems has a different lattice parameter, but is initially constrained to
match at the interface. The atoms interact with their nearest neighbors either through a Lennard-Jones po-
tential or an anisotropic potential designed to more closely simulate covalent bonding. The stability of re-
gistry is then determined via Monte Carlo evolution of the initial state of the system. We find that registry
is stable to extremely large mismatches ( > 15%), from which one can infer that the observed loss of re-
gistry above a few percent mismatch is not due to instability of an initially perfect superlattice, but rather to

an inability to grow perfect interfaces.

Strained-layer superlattice (SLS) systems such as GaAs-
GaAs; —P, are currently of great interest in device applica-
tions. When the lattice mismatch between the layers is
small (1-2%), the unit cells undergo homogeneous defor-
mation into a state of compressive uniaxial strain in one
layer, and tensile uniaxial strain in the other, leading to a
constant unit-cell dimension parallel to the layer interface.
The opposed uniaxial strains in the two layer materials lead
to a system band gap which can be varied by control of the
lattice mismatch and of the layer thickness, which allows
significantly more flexibility for design of semiconductor de-
vices.

The applicability of SLS systems to devices is limited by
an instability of lattice registry which develops at larger
mismatches. Although maintenance of registry in a very
low defect SLS has been limited, as a practical matter, to
systems possessing 1-29% mismatch, the mechanism leading
to the loss of registry has not been identified. The present
work seeks to determine whether the loss of registry is due
to a fundamental instability in an initially perfect SLS, or is
related to the failure of epitaxial growth of perfect, lattice-
matched interfaces.

In this Rapid Communication the choice was made to
study the stability of a single interface between two similar
atomic systems as a function of lattice parameter mismatch.
Each of the layers consists of a two-dimensional (2D) slab
with 12 atoms perpendicular to the interface and 120 atoms
parallel to the interface. Thus, the total simulation involves
a system of 2880 atoms, each of which interacts only with
its nearest neighbors, through a continuous interatomic po-
tential which will be described in detail later. Both layers
are isotropically compressed or expanded so that the unit
cells have identical dimensions. The layers are then assem-
bled so that an atomically perfect interface is formed, which
may then remain perfect upon removing external con-
straints from the system. The system then has completely
free boundary conditions, so that only a section of 2D inter-
face 24 atoms by 120 atoms is modeled. If this perfect SLS
state were unstable, the evolution from the initial system
would lead to a defective interface and lattice. The relaxa-
tion of the initial state is performed through a Monte Carlo
technique,! carried out at zero temperature, with a total of
2% 10° Monte Carlo steps/spin needed to reach a long-lived
metastable state. The SLS interface is clearly metastable,
but the energy needed to nucleate a dislocation is very
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large.? Accordingly, the metastable state is the condition of
interest. Previous atomistic simulations indicate that tem-
peratures up to — 20% of melting do not significantly alter
threshold strains for lattice damage,® and thus the approxi-
mation of a zero temperature calculation seems justified.
Similarly, the use of a two-dimensional lattice is justified by
differences of —~—20% in damage thresholds found in
atomistic simulations of two- and three-dimensional lattices
subjected to uniaxial strain.*

Simulations have been performed using two different con-
tinuous nearest-neighbor interatomic potential functions.
The first was a Lennard-Jones (LJ) potential, which models
spherically symmetric molecular systems bound by van der
Waals forces. This potential is thus a function only of the
distance between any pair of neighboring atoms, where, in
scaled units, the potential becomes

S(F)=F 2—qif ¢ . ¢))

Here the scaled potential energy ¢ =¢/4E, where E is an
energy characteristic of the strength of the LJ potential, and
7 =r/o, where o represents the range of the potential. The
interaction is truncated at 7 =3.0. In two dimensions, this
potential leads to a hexagonal-close-packed structure at zero
temperature and no applied stress.> The parameter « in Eq.
(1) is used to vary the equilibrium bond length. Thus
req=(2/a)7% A 10% reduction in equilibrium lattice
parameter requires that « change from 1.0 to 1.8813.

Although the LJ interatomic potential is quite realistic for
a certain class of materials, it is not suitable for modeling of
semiconductors, which are bonded covalently, and typically
exhibit a rather open lattice and directional bonding forces.
At present, little work has been done on calculating covalent
bond energies away from the ground state, e.g., in strained
lattices. In addition, a pairwise interaction approximation
does not work well for covalently bonded materials.> The
second potential used herein has therefore been designed to
include the principle characteristic of covalent bonding, that
is, the dependence of the magnitude of the attractive part of
the potential upon angular orientation. The form of this
directional Lennard-Jones (DLJ) potential, in scaled units,
is

$12(F, 01,05, 0) =F 12— apyF ¢ , )
where 6, and 8, are the orientation angles of particles 1 and
2, and 6 is the angle of the vector connecting particle 1 with
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particle 2, where all angles are measured relative to a coor-
dinate system wherein a vector parallel to the interface has
an angle of either /2 or 37/2. Fis the magnitude of this
same vector. « is defined as in Eq. (1), and 8 and y are
functions describing the angular dependence of the inter-
action between pairs of particles. B is defined by
B=sin[3(8;-71,)/2]|, where a ~ represents a unit vector
parallel to the direction defined by the variable. Thus, we
have defined a three-lobed potential dependent on the
orientation of the atom. (y is defined identically to 8, by
replacing all reference to 6, with 6,.) The net result is an
interatomic potential having a radial dependence similar to
that of Eq. (1), but with an angular dependence which en-
courages the formation of three bonds with the maxima of
B and vy corresponding to bond alignment. The DLJ poten-
tial is more strongly oriented than a realistic covalent bond,
since the possibility of distorting a single bond to improve
bond strength does not exist within DLJ. However, model-
ing the current problem with both LJ and DLJ potentials
should bracket the actual angular dependence characteristic
of covalent bonds. The equilibrium crystal structure for the
DLJ potential is found to be an open system of empty hexa-
gons, sometimes known as a two-dimensional honeycomb
lattice. At equilibrium, 8=vy =1, so the bond lengths are
identical to those of the LJ potential.

As described earlier, the initial state for our simulation is
one where homogeneous compression or expansion of the
two lattice materials has resulted in a perfectly registered
structure, but where the lattice parameter perpendicular to
the interface needs to relax considerably in the process of
equilibration. This initial system is relaxed to a metastable
equilibrium using a Monte Carlo procedure, and the result-
ing lattice configuration is inspected for damage ‘or loss of
registry.

The results of this analysis were unexpected, as neither
the LJ nor the DLIJ superlattice interface models showed
any sign of loss of registry up to 15% lattice mismatch, the
largest mismatch value considered. The significance of this
result becomes clear when one considers that the total lat-
tice strain energy involved in matching an interface with a
15% mismatch will be approximately 100 times that occur-
ring with a 2% mismatch. Thus, the theoretical stability of
an SLS interface is much greater than the practical results
achieved to date.

It is instructive to consider some details of the equilibri-
um states of our interface models. For example, how does
the DLJ model with 10% lattice mismatch accommodate to
such large strains? Very little of the accommodation occurs
through changes in average bond length, which are 2.8%
elongation in the more dense material, and 0.9% compres-
sion in the less dense material, numbers resulting from a
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direct study of the atomic positions in the equilibrated lat-
tices. The strain is relieved primarily through changes in
bond angle. The residual uniaxial strain is split approxi-
mately evenly between the SLS layers. In the 10% DLJ
model, the less dense layer exhibits 4.3% compressive
uniaxial strain parallel to the interface, and the more dense
material exhibits 6.5% tensile uniaxial strain in the same
direction, resulting in a unit-cell dimension parallel to the
interface which varies by less than 1% from the arithmetic
mean of the equilibrium cell dimensions of the two layer
materials.

In prior work by the present author,® a two-dimensional
perfect LJ lattice has been subjected gradually to uniaxial
strain by a simulation technique which ensures that the sys-
tem remains near a local equilibrium. The damage thresh-
old in that case was found to be at 8.5% uniaxial strain, and
the mechnaism for producing lattice damage was the accu-
mulation of sufficient strain energy to nucleate dislocations.
Both the more open structure of the DLJ model and the
ability to change bond angles to accommodate uniaxial
strain suggest that the threshold for damage of a perfect
DLJ lattice might be considerably higher. Combining these
results on mechanical yield strain with the observation that
the layers of the SLS share the strain associated with lattice
registry about equally, one concludes that the LJ model
should show instability of registry not far above 15%
mismatch, and the DLJ model should retain registry to con-
siderably larger values of mismatch.

The theoretical results presented in this Rapid Communi-
cation clearly suggest that the practical limits on SLS stabili-
ty are not due to any fundamental instability of an SLS in-
terface. We must therefore look toward two possibilities.
First, a large mismatch between the layer materials may
make the growth of a perfect interface impossible. This
would result in interface vacancies which would serve as nu-
cleation centers for damage, resulting in instability of regis-
try at much smaller mismatch values than in the perfect in-
terfaces. Second, the interfaces may be imperfect owing to
factors which are subject, at least in principle, to experimen-
tal control. Thus, it is conceivable that there may exist new
surface treatments aimed at producing a more perfect sub-
strate, combined with specific combinations of substrate
temperature and deposition rate, which will result in access
to a larger regime of acceptable lattice mismatch. The
present author is currently evaluating the first of these pos-
sibilities through simulation of the layer growth between
mismatched materials.
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