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Response of a Higgs kink to a static external force
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The acceleration of a $4 kink in a weak constant external field ~X~ && 1 is studied analytically and nu-

merically. Similarly as for a sine-Gordon kink a non-Newtonian acceleration v(t) —Xt is observed for
t « T=J2ir. However, for very weak fields ~X~ && 1/T the acceleration in the time average over a full

period T is Newtonian.

r/i(x, t) = tanh + u(t)
2

where

z(x, t) =y[x —s(t)], y= (1—v')

and

(4a)

(4b)

s(t) = v(t')dt', v(0) =0 .
a Q

(4c)

That u(t) may be considered to depend approximately only

on t, has been justified in Ref. 2 for the SGE. Taking the
ansatz (4a) seriously, the position of the soliton at time t is

determined by the maximum of the derivative $„(x,t), i.e.,
by x=s(t), where s(t) is given by Eq. (4c) and v(t) is the
kink's velocity. Then the ansatz (4a) leads to a simple ex-
pression for the acceleration v(t) which for small times, in

the approximation y3(1+v2) =const, can be elementarily
integrated two times to obtain v(t) and s(t) This pro-.
cedure we will follow here.

Inserting Eqs. (4a) —(4c) into Eq. (3), one obtains for
x=s(t) or z=0,

Fernandez, Gambaudo, Gauthier, and Reinisch, ' have
obtained the result that an initially static 2m antikink in the
sine-Gordon equation (SGE') with a constant external force
X,

—$„=sing —X

for small times t & 1 does not experience the a priori ex-
pected constant ("Newtonian" ) acceleration i (t) = 7rX/4,
but v(t) —t2. However, when a constant is added to the
initial soliton, the acceleration becomes proportional to this
constant. In both cases, the behavior has been ascribed
to the interaction between the phonon waves excited by the
force X about the kink profile, and the kink itself.

In this Brief Report the nonrelativistic motion of a kink,
initially at rest,

iti(x, 0) =tanh(x/J2)+ u(0), di, (x, 0) =0

is studied in the Higgs scalar equation (HE) with an x- and
t-independent external force X,

(3)

by an analytical approach and numerical experiments.
Similarly as in Ref. I, the solution to Eqs. (2) and (3) is

supposed to be the sum of an exact kink and an x-
independent perturbation function u (t), i.e. ,

while Eq. (3) in x = + ~ reduces to

—u„=2u +3u + u —g (Sb)

Equation (Sb) shows that the perturbation function u

depends also on x when terms of order u2 are taken into ac-
count. Here we consider Eqs. (Sa) and (Sb) only in the first
order of u, i.e., for (u ( « 1 (and ~X( && 1). Then, due to
the supposed x independence of u, both equations may be
subtracted from each other yielding

y'(1+ v')v = —342u (6a)

reads

u(t) = sin(J2t)+ f u(0) —X/2] cos(J2t)+X/2u, (0)

(6c)

In this first-order approximation u(t) oscillates with a
period T= J27r and amplitude (u(0) —X/2) [for u, (0) =0]
about the equilibrium u=X/2. Similarly as for the SGE, '

for larger values of
~
X

~
and u (0) the perturbation function

is no longer of the form (6c). (The numerical solution for
the HE shows that for X=0.3 [and u(0) = u, (0) =0] the
ansatz (4) is no longer satisfied for t 2.) In spite of this
the following approach for v(t) is valid also for larger
values of (X ~, for small times, as long as

~
u (t) ( && 1.

To derive Eq. (6a) it is not necessary that u(t) is in-
dependent of x. A weaker (sufficient) condition is that the
derivative u„(x, t) is symmetric with respect to x = s (t) and
vanishes faster than 1/x for ~x~~ oo. (The latter is satis-
fied for t & ~.) Then the (finite) values of u (and corre-
spondingly u„) in x = + ~ and x = s ( t) are related to each
other by

u(x=+~, t)+u(x= —~, t) =2u[x=s(t), t], (7)

[and Eqs. (6a)—(6c) are meant for x = s(t)].
Integrating Eq. (6a) with Eq. (6c) twice for

u, (0) = s (0) = v (0) = 0 [and y'(1+ v2) = 1] one obtains
for the position of the kink in leading order of t,

s ( t) = —3u (0) t'/ J2 for u (0) A 0 (8a)

and

The general solution to the first-order approximation of Eq.
(Sb)

(6b)

—u„+y'(1+v')v/ j2= u' —u —x, (Sa) s ( t ) = —J2Xt4/8 for u (0) = 0 (8b)
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These results show an analogous time dependence as the
corresponding results for a sine-Gordon kink. '

To check formulas (8a) and (8b), Eqs. (2) and (3) are in-
tegrated numerically (by the method of characteristics), for
seven sets of the parameters X and u(0). In Table I the
symbol s (t) denotes the point of steepest slope in the nu-
merical solution P (x, t ) at time t .This definition agrees
with that used above to derive the expressions (8a) and
(8b) from the ansatz (4a). Since the perturbation, in gen-
eral, causes small asymmetries in the shape of the kink, the
"true" expression for the position of the soliton is hard to
find. Therefore we consider in the numerical solution also
another definition for the position of the kink, ' namely,

ta +oo P +oo
P„(x,t)dx . (9)st(t) =„x@„(x,t) dx

In the examined time interval 0» t » 1 both definitions,
s (t) and st(t), lead to good agreement with each other
and also with s(t), given by Eqs. (8a) and (8b), respective-
ly (cf., Table I). [This is different from the situation in the
SGE (1) where s (t) and st(t), even for small ~X~, exhibit
considerable differences. ] Also the prediction [Eq. (8a)]
that for different signs of u (0) the kink moves into oppo-
site directions is verified by the numerical results. For
X=0.2 and u(0) = —0.2 differences of about 15—25% ap-
pear for t &0.8 between s(t) and the numerical results
s (t) and st(t). It is interesting that this is corrected by
the next order term

342(u (0) —X/2) t4/12 = —0.11 t4

v y' 3X/"A (10a)

while the position of the kink at time t= T=&27r is given
by

s ( T) = —3X T /(242) = —20.9X (10b)

independently from u(0) [and u, (0) ]. The numeral solu-
tion of Eqs. (2) and (3) yields s (T) = —0.209, —0.206,

in Eq. (6c), although higher orders in u have been neglect-
ed. [Obviously, this fourth-order term in t becomes less im-
portant when X and u(0) have equal signs. ]

For very small values ~X~, ~
u (0)

~
&& 1/T [such that y(v)

and v may be considered as constant during a full period T]
Eqs. (6a) and (6c) can be integrated for larger times t & 1,
too. In this case one obtains in the average over a full
period T, as long as ~v{ && 1, the acceleration

and —0.205 for the three sets (X,u (0) ) = (0.01,0),
(0.01,0.03), and (0.01,—0.03), and st(T) = —0.209 for all
three sets, in excellent agreement with Eq. (10b). For arbi-
trary times (but {v~ && 1) Eq. (6a) gives [with u, (0) =0],
s ( t ) = —6 {[ u (0) —X/2 ] [1—cos (J2 t ) ]/2+ X t'/4}/ 42

(10c)

For the above three sets of X and u(0) one obtains by a
numerical integration of Eqs. (2) and (3) for t = T/2
=m/J2 the results s (T/2) = st(T/2) = —0.031, —0.158,
and +0.097, respectively, in complete agreement with
s( T/2) obtained by Eq. (10c).

Oscillations of v(t), related with those of u(t), are
predicted for all values of ~X ~

and of
~
u (0) ~

[in the follow-
ing we consider u (0) = 0] for which the given approach
holds. The difference between the situations for ~X~ && 1/T
and ~X{ && 1 is the following. For very small values
~X{« 1/T the velocity ~v~ && 1 remains small at least
during a full period T. Therefore the amplitudes ( —X/2)
of the oscillations of v ( t ) diminish slowly. In this nonrela-
tivistic case the motion of the kink is Newtonian in the
average over a full period as shown above, although it fol-
lows Eq. (8b) for t « T. With increasing

~
X

~
(but

~X~ && 1, for example, X=0.1 —0.2) the velocity v(t)
tends faster to the relativistic value

~
v

~

= 1, and the ac-
celeration v(t) to v =0. Then the amplitude in the oscilla-
tion of v(t) in the second half of the first period
(T/2 & t & T) is already considerably smaller than in the
first half (0 & t & T/2), and the non-Newtonian behavior
for t « T is no longer compensated in the average over the
whole period 0» t» T. The latter can be understood as a
consequence of the fact that the kink has left already during
the first period the nonrelativistic, i.e., the Newtonian re-
gion.

In conclusion, the Higgs and sine-Gordon kinks behave
similarly in a constant external field. It is emphasized here
explicitly that also for the SGE, for ~X~ && 1/T= (27r)
small oscillations of v(t) with a period T=2m about the
Newtonian acceleration are predicted. The result given in
Ref. 3 (cf., Eq. (56) there) that "for very weak amplitude
X. . . the kink dynamics is 'classical' —i.e. Newtonian" has
to be understood in the average over a full period. [The
amplitude in the oscillation of v(t) is of the same order as
the Newtonian acceleration, i.e., proportional to X. ]

The nonrelativistic motion of the kinks for both Eqs. (1)
and (3) may also be discussed by means of the field

TABLE I. For 0~ t ~ 1 the position s(t) of the Higgs kink, given by Eq. (8a) for u(0) A 0 and by Eq. (gb) for u(0) =0, agrees well
with the results s~(t) (point of steepest slope) and st(t) (center of mass) of the numerical experiments. All numbers given here for s, s~,
and st must be multiplied by 10 . (For t=0 the kink [Eq. (2)l is at rest in x=0, i.e. , s(0) =s~(0) =st(0) =0.)

x u(0)
0.2
Sm Sl

0.4
Sm SI

0.6 0.8
Sm

1.0
Sm Sy

0.2 0 —0.06
0.4 0 —0.11
0.2 0.1 —8
0.2 0.2 —17
0.2 0.4 —34
0.4 0.2 —17
0.2 —0.2 +17

& —0.1
= —0.1
—8
—17
—34
—17
+17

—0.06
—0.11
—8
—17
—34
—17
+17

—0.9
—1.8
—34
—68
—136
—68
+68

—0.8
—1.8
—33
—67
—134
—68
+65

—0.9
—1.8
—34
—67
—135
—68
+65

—4.6
—9.2
—76
—153
—305
—152
+153

—4.5
—8.9
—76
—148
—289
—152
+139

—4.5
—8.9
—77
—150
—303
—154
+141

—14.5
—29.0
—136
—272
—543
—272
+272

—13.8
—27.4
—135
—252
—470
—266
+229

—13.9
—27.8
-136
—261
—533
—276
+233

—35.4
—70.7
—212
—424
—849
—424
+424

—33.2
—66.1
—208
—372
—653
—402
+311

—33.1
—66.2
—213
-399
—818
—434
+331
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momentum

P= — P„P,dx

supposing that its time derivative dP/dt is constant in time
and using the ansatz (4), or the corresponding one for the
SGE (I). For the HE one finds with dP/dt= —2X and
u (0) = ui(0) = 0,

yu(t) = —3Xt/42+ (3X/2) sin(J2t)

which corresponds for ~u ~
&& 1 (and small t) approximately

with the above result (8b). For the SGE one can reproduce
Eq. (4) of Ref. 1 with dP/dt = —2mX (up to a negative sign,
since in Ref. 1 a 27r antikink is considered). This indicates
for both equations that, while dP/dt is a conserved quantity,
the time derivative dPk;„k/dt of the kink's momentum

p +oo

Pk;„k = —
~ p„(p —u ),dx

is not conserved. The difference is due to the excitation of
the vacuum.

Since the similar topological structure of P4 kinks and 2m

kinks leads one to expect analogous results also for their ac-
celeration by an external force, we would like to emphasize
the slight differences. In the SGE (1), the ansatz (4) leads
to two different values of the acceleration (for v = 0 they
differ by a factor 4/m. ) according to whether one considers
the maximum of $„(x,t) or the field momentum P(t).
This explains why the numerical results s (t) and st(t)
differ considerably for a 2m kink, but agree well with each
other for a $" kink. This agreement for a P~ kink indicates
that if for small velocities and small times the $4 kink be-
comes even slightly deformed, the derivative u„of the per-
turbation function should remain approximately symmetric
with respect to x=s(t). Secondly, the almost perfect
correspondence between the numerical results and the
theoretical values s(t) suggests that the formulas (8a) and
(8b) for a P~ kink in leading order of t are already correct.
For a 2m kink a corrective factor 8/n' was obtained by con-
sidering the interaction between the kink and the phonons
of wave number k & 0.3 This interaction leads to the nona-
diabaticity in the motion of a 2n- kink. The corrected result
was recently also obtained by perturbative methods based
on the inverse scattering method. '

It seems that the debate about Newtonian or non-
Newtonian behavior of 2m kinks has still not been finished.
Eboli and Marques claim that the answer depends on
whether radiation is taken into account or not. (Here, radi-
ation is meant in the sense of the vacuum excitation, and
not of dissipating energy as it is usually understood for
quasistable soliton solutions. ) However, the oscillations of
the vacuum arise since the boundary conditions for the soli-
ton are changed by the external force. Therefore, one does
not have the freedom to take radiation into account or not.
The only situation where the vacuum does not oscillate [for
o & I x I « I, 1

u (0)
~ «1, and

~ u, (0) ~
« I ] corresponds

(in first order of u) to the initial conditions u (0) = X (SGE)
or u (0) = X/2 (HE) and u, (0) = 0. In this case the kink ex-
periences a constant acceleration, equal to the Newtonian
value. 4 Recently, Dash has made some comments in favor
of a Newtonian behavior. He requires "When the external
field is not time dependent the exact solution u =const,
independent of t, is to be considered. . . ." As pointed out
above, a solution u =const (corresponding to u =const in
our notation) does not exist for X & 0 and u (0) = u, (0) = 0,
i.e., an initially exact (unshifted) kink. Furthermore, when
differentiating Eq. (1) of his comments, Dash would also
arrive at the non-Newtonian acceleration

which is the contribution from the real part xcos(Qt) —x
(for t « I) of the periodic external force. The imaginary
part iX sin(Ot) contributes only to higher orders in t since
sin(O t) —A t for t « l.

Finally, the following should be emphasized. That the ac-
celeration of initially exact unshifted kinks for small times is
different from the Newtonian value does not mean that in
sine-Gordon or P4 theory Newtonian dynamics is not valid.
Just to the contrary, the field momentum P(t) in the non-
relativistic limit satisfies Newton s law dP/dt = —2ir X

(SGE) or dP/dt = —2X (HE). Velocity and acceleration,
however, are directly related to the (bare) kink's momen-
tum Pk;„k and its derivative. In all cases where u«does not
vanish identically dPk;„k/dt and dP/dt are different from
each other, and therefore the first cannot satisfy Newton's
law. In consequence, the acceleration of the kink is dif-
ferent from the Newtonian value.
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