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Multiphonon resonance Raman scattering of impurity centers: Polarization of the emission tail
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The emission tail arising from multiphonon resonance Raman scattering by F centers in alkali
halide crystals exhibits remarkable polarization which weakly depends on the emitted-photon fre-
quency. This means that depolarization processes accompanying vibrational relaxation in the excited
electronic state take pIace only in the earliest stage of relaxation; later they are switched off. This
depolarization switching-off effect may be understood as a result of Jahn-Teller splitting of the adia-
batic potential energy surface in the excited electronic state. A theory of this effect is proposed
based upon the usual Kramers-Heisenberg expression for light scattering. Vibronic interaction is
considered as strong, thereby allowing one to use a short-time approximation for the description of
relaxation and depolarization processes. Interaction with A &g Eg and T2g modes is taken into ac-
count, with the latter being assumed to be relatively weak, and considered in first-order perturbation
theory. Formulas are obtained for the first-order scattering and for the emission tail in parallel (I~~)

and perpendicular (I&) polarizations. The damping of the coherence of the electronic state in vibra-

tional relaxation, which is revealed in the tail polarization, is also studied. The physical interpreta-
tions of the mathematical expressions are discussed. Higher-order processes are treated qualitatively
and it is found that they may change the relaxation paths and may limit the depolarization at

I~~/I& ——2, in agreement with experiment. Additional experimental tests of the proposed theory are
also discussed.

I. INTRODUCTION

In this paper the polarization and spectral characteris-
tics of multiphonon resonance Raman scattering in
centers with strong vibronic coupling are considered.
Such scattering has an intensity comparable to that of the
first-order scattering. Phonon dispersion washes out the
structure of the multiphonon spectrum, and as a result
this scattering produces a smooth emission tail.

The first experimental data revealing the mentioned
multiphonon tail in a resonance Raman scattering spec-
trum were obtained by Buchenauer et al. ' (see their data
for F centers in NaBr). Detailed investigations of reso-
nance Raman scattering by F centers in different alkali
halide crystals, conducted by Pan and Liity, showed that
such scattering behavior is quite general for centers with
strong vibronic coupling. A theoretical explanation of
this phenomena was obtained in Ref. 4. Later it was
shown that this aspect of the scattering may be under-
stood in terms of a hot-luminescence approach; the corre-
sponding structureless emission spectrum may be con-
sidered as absorption followed by emission during the ini-
tial stages of vibrational relaxation. It also was shown in
Ref. 6 that in such centers hot-luminescence spectra may
have well-pronounced features both to the blue and the
red of the ordinary luminescence band. These features are
due to emission arising from the classical turning points
of the configurational coordinate (emission from the vi-
cinity of points 1,2, . . . in Fig. 1). Experimentally, such
emission from the turning points was observed for self-
trapped excitons in alkali halides and for Tl+ centers in

The main goal of Refs. 6 and 7 was to study the
dynamics of vibrational relaxation in the excited electron-
ic state; the electronic processes which may accompany
the relaxation (so-called hot transfer of electronic excita-
tion ) were not considered. One obvious possibility of ob-
taining information about these processes is to study the
polarization characteristics of the multiphonon resonance
Raman scattering. Experiments of this type were recently
carried out by Liity. He reported that the tail emission
for many F centers in alkali halide crystals is remarkably
polarized, with the polarization ratio p =I~~/Ii in many F
centers equaling or exceeding 2, and that it is comparable
with that for the first-order Raman scattering. Here, I~~

and Ii are intensities of emission in parallel and perpen-
dicular polarizations with respect to the incident polariza-
tion. Moreover, the tail polarization ratio p, was found to
be remarkably constant over the length of the tail [at least
for Qi —Q2-(5—10)co, where Qi and 02 are the frequen-
cies of excitation and emission, and co is the mean phonon
frequency]. This means that, for F centers, depolarization
processes occur in the very early stage of vibrational re-
laxation; later they are "switched off." (These processes
may also occur after the relaxation, but such "ordinary"
depolarization processes are not under consideration in
this work. )

A possibility of understanding this switching off of the
depolarization process in relaxation is provided by the
Jahn-Teller effect. Indeed this effect leads to removal of
the degeneracy of the excited electronic p state during the
relaxation following absorption (see Fig. 1). However,
depolarization processes may occur with high probability
only if the energies of the electronic states are sufficiently
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consi. dered here, upon optical excitation the system ap-
pears near the crossing point with a small average
momentum of large uncertainty. This uncertainty causes
a rapid loss of coherence after excitation (see below), so
that the Landau-Zeener solution cannot be used here.
Another approach, based on a short-time approximation,
will be used below.

II. GENERAL FORMULAS

A. Model

In this work we consider secondary radiation from a
cubic impurity center for the case of excitation in reso-
nance with A &~g~~F~~„~ electronic transitions. The spin-
orbit interaction is neglected initially, but it will be dis-
cussed later. The vibronic coupling in the linear approxi-
mation is described by a 3 &(3 matrix V,

~=~~„+~E +~r,
g 2g

where

Q (a.u.)

E ~„=&gil

Q2~3+Qs
b

g 3
2'E = 0 —Q2~3+Qs

—2gs

(2b)

FIG. 1. Diagram of the potential energies and the optical ex-
citation followed by vibrational relaxation.

close, i.e., the process can efficiently occur only near the
crossing point of the potential surface (point 0 in Fig. 1).
For the case of strong vibronic interaction with nontotally
symmetric vibrations, the system will leave the crossing
point in the very beginning stage of relaxation, thereby
switching off the depolarization.

Of course, if the interaction with non-totally-symmetric
modes is relatively weak, then during the entire relaxation
(which in this case occurs mainly via the totally sym-

metric modes) the system remains near the crossing point.
In this case, depolarization processes cannot be totally
switched off in relaxation. As follows from experimental
data on first-order resonance Raman scattering, ' the in-
teraction with non-totally-symmetric Eg and T2g modes
in I centers is remarkable, although the corresponding
vibronic-coupling parameter values vary considerably
from one host crystal to another and from one absorption
band to another. This coupling is much larger for the F
band than for the E band, where the predominant cou-
pling is due to interaction with A ~g modes. ' According-
ly, the proposed mechanism of depolarization switching
off is worthwhile to study in detail.

It should be mentioned that the problem of hot depolar-
ization is an example of the well-known general problem
of electronic transition near the potential-energy crossing
point. A solution of this problem has been given by Lan-
dau and Zeener, as discussed in Ref. 11. Their solution is
based on a semiclassical treatment and is valid when the
momentum near the crossing point is sufficiently large.
The transition is regarded as coherent. In the case to be

Q6 Qs

Er„=& Q6 '0 Q4

Qs Q4

(2c)

For the electronic basis of the F~~„~ state we have used

~x), ~y), and ~z) states transforming as corresponding
components of a (polar) vector; I is the 3)&3 unit matrix,
and the Q„'s are the configuration coordinates belonging
to the A ~s(g~), Eg(Q2, gq), and T2g(Q4, gs, g6) represen-
tations. They are linear combinations of the normal coor-
dinates xj of the impurity-host system,

Qn= geng'xi ~

J
2 2 2 2 2 2e 1J' Ae 2J

=e sj.&e 4J. =e sJ esq——
e„je„j=0 if n~n' .

(3)

I(Q„Q,)= g g ~

a,a' P,P'
(4)

Here i and i ~ are the Cartesian components of unit po-
larization vectors for excitation (i) and emission ( i ), and

W~pp ~ = g(i ~P p ~
f)(f

~
Pp ~ ~i )

f
XSQ) Ap+E; —Ef));, , —

where ~i ) and
~ f ) are the initial and final states with

energies E; and Ef, ( );~, denotes the average over initial

Resonance secondary radiation of an impurity center is
described by the well-known Kramers-Heisenberg formula
for light scattering, which may be written in the form'2
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states, the 5 function describes energy conservation, Pi= 1,

(6)

is the polarizability operator, d is the electronic dipole

moment, and
~

m ) is the intermediate state with energy
E and radiative damping constant y . We neglect the
second term in (6), which is not important for the reso-
nance case and use integral representations for the 5 func-
tion and resolvent in (6); then within the adiabatic and
Condon approximation for Ai~g~~Fi~„~ electronic transi-
tions, expression (5) takes the following form

& ( Vp &] )(p +8—7 )+ l ( Q2 —Vo )p —p( &+g )
(7a)

(7b)

Here, Ho is the vibrational Hamiltonian in the nondegen-
erate ground electronic state, having, within the harmonic
approximation, the form

Ho ———,
' g

H =HOI+ V is the vibronic Hamiltonian of the
threefold-degenerate excited electronic state, y is the radi-
ative damping constant, Vo is the energy of the electronic
transition for Q„=O, and the angular brackets denote a
thermal average,

( )0——Tr[exp( Hp/kT)( — )]/Tr[exp( Ho/kT)] —.
The integral over p in expression (7a) represents the
energy-conservation law; the integrals over ~ and ~' arise
from the resolvent in (6) and have the meaning of averag-
ing over the times spent in the intermediate electronic
state in the two transition amplitudes. Correspondingly,t:(~+r')/2 —has the meaning of the time spent by the sys-
tem in this state, while v=r rdescribes t—he difference
between the phases of the two amplitudes.

theory of hot luminescence for nondegenerate electronic
states may be used to describe this emission. Such a
theory was developed in Refs. 5—8 and 14. (Also see
Refs. 15—17, where a classical description of this emission
was proposed. ) Therefore in this work we will be con-
cerned only with the emission in the initial stage of relax-
ation (i.e., for the system between points 0 and 2 in Fig.
1). Then the time t =(r+r')/2 may also be considered as
short in comparison with co '. Therefore the times r and
~' are also short: ~,~' &&co

We take into account the following well-known opera-
tor relation:

7
e~a+b) e 'T exp ds e '% eas

0

(T is the time-ordering operator), and consider a = HoI—
and b = —i V. Then, expanding

V( —s) =exp( —isHO) Vexp(isHo)

B. Short-time approximation

We consider the case of strong vibronic coupling and
fast vibrational relaxation. This case is associated with
broad (in comparison with co) absorption bands. In this
case, actual values of

~

v
~

in (7) are small,

~
v~ &m2 '

&&co ', where m2 is the quadratic disper-
sion (second inoment) of the absorption band; in order of
magnitude, m2& Sco, where S is the Stokes loss energy.
For centers with strong vibronic couplings, S»co.

As mentioned above, the hot depolarization may occur
only near the crossing point on the potential energy in the
excited electronic state. In centers with fast vibrational
relaxation, during the first period of vibrations of the con-
figurational coordinates, their amplitudes are ordinarily
reduced by an approximate factor of 2 or even more. '

This means that in such centers the hot depolarization
may occur only during the very beginning stage of relaxa-
tion. Consequently, the emission in all stages of relaxa-
tion except the initial stage may be considered without
taking into account hot electronic transitions. Hence a

into a series in s and taking into account only the zeroth-
order term, we obtain the following approximate expres-
sion:

—i~H ' 0 irV (10)

This expression is a well-known short-time or semiclassi-
cal approximation. ' In this approximation,

~app'a'=((e' ) p(e
" '"')p )p .

We also take into account that, ordinarily, y «co. There-
fore, for ~,~'&&co ', e ~'+ '=1.

There are three independent components of a fourth-
rank tensor in cubic systems. The nonzero independent
components of the tensor W are Wi ——$V~~,

8 zyyz and 8'3 ——W~yy + W~y„y . These three com-
ponents determine all of the polarization characteristics of
resonance secondary radiation. ' Below, we first find 8'&
and W2. They determine the polarization of emission in
the experimentally studied case of excitation with polari-
zation along the (100) direction: 8'i ——

I~~ and 8'2 Ii. ——
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U(Q, ,Q„. . .,Q, )= U, (Q, , Q&, . . . ,Q6}+V. (12)

C. Potential-energy surface

Although in this work we take all normal coordinates
of the impurity-host system into account, the most impor-
tant are the six linear combinations, i.e., Q&, Qz, . . . , Q6.
This is because for the case of strong vibronic coupling
only these configuration coordinates may undergo a re-
markable shift in relaxation. Therefore for our considera-
tion it is essential to know the shape of the potential-
energy surface ( U} for the excited state in the space of
just these coordinates,

( /IV) xx

L~s(e "
) „= i—cQ6 dse

0

where

L„=i(s r—)V» i—sV~ .

Then,
iYV i~V —(y)

&

7

A.».=c'(Q6Q6(l )&pf, ds f, ds'&e ' 'e "'
&p

(13)

(14)

(15)

Here, Up(Q~, Qz, . . ., Q6) describes the dependence of the
vibrational potential energy in the ground electronic state
on Qi, Q2, . . . , Q6 if all other coordinates are assumed to
be in their equilibrium positions.

It is known from the theory of the Jahn-Teller effect
(see, e.g., Ref. 19) that the shape of U(Q~, Q2, . . .,Q6}
essentially depends on the ratio k =c co&/b co 6, where ip2

and cp6 are the characteristic frequencies of the Es and
T2g modes. If k &1 then U has troughs and minima in
tetragonal directions, but if k &1 then the troughs and
minima are in trigonal directions. If the primary vibronic
coupling involves the totally symmetric vibrations, then
the mentioned troughs (and minima) are shallow and are
not an essential factor in relaxation. In this case (the first
case treated below) the value of k is not a critical parame-
ter of the theory. However, if the vibronic coupling with
non totally sy-mmetri-c vibrations is strong (the second case
treated below), then the troughs are deep (except for the
degenerate case k = 1) and evidently determine the paths
of the relaxation. In this case the value of k is important.
In this work we consider the case k &~ 1.

D. Weak coupling with T2g modes

For the cases considered here, the vibronic interaction
Vr may be regarded as a perturbation. [Using expres-

2g

sion (11), it is also possible to carry out an exact treatment
of Vr, it leads to rather complicated expressions which

2g

we were unable to reasonably simplify. ]
Using expression (9) once more, for a = —i r( Vg

1&

+ V@ ) and b = irVT, —we obtain, to first order in VT
2g 2&

(17)

Here V and L are linear operators. Therefore to calculate
the correlators in (16) and (17) one can use the Bloch—de
Dominicus theorem for pair correlators. As a result, we
obtain

A =exp[ —,' (r +r'—)(V &p+rr'( V V (iLt) &p],

(18}

A„„„="(Q,Q, (l ) &,

X f ds f ds'exp[ ,' (L—~,&p+ —,
' (L„&p

+ (L g, L„(p)&p] . (19)

The substitution of these expressions in (7) allows us to
calculate an arbitrary-order resonance Raman scattering
by Ais and Eg modes associated with zeroth- or first-
order process involving T2g modes.

III. FIRST-ORDER RESONANCE
RAMAN SCATTERING

To obtain formulas describing the first-order resonance
Raman scattering, one must expand the exponents in (18)
and (19) in series of pair correlators depending on p and
consider only the first- (for A~~) or zeroth- (for A„„)
order terms. Then after simple calculations we obtain, for
the integrated intensity of first-order scattering by
A iit+Eit modes (II~") and by Tzz modes (Ii"), the follow-
ing expressions:

(2O)
—222

II~"——const X [m.z ie '+ (1—2zi to(z, ) )2],
—222Ii"=constX rr e 'tU(z, [e/(1 —e)]' )+arcsin v e (2zi/v'—I —e) f dx tp(zi[(1 —z2)/(1 e)]~~2), (21)e(1 —e) 0

where

z) ——(Qi —Vp)/(2m2)'~~

is the dimensionless excitation frequency,

and

O=m2 c ge6.~. (n. + )
2

J

e=m2 'b geqzcoJ '(nj+ —,')
1

are the dimensionless interaction parameters for Eg and
Tz~ modes, nJ. [exp(coJ /kT) 1]—— —



3494 V. HIZHNYAKOV 30

mz= y(a e(J+4b ezJ/3)COJ '(nJ+ —,
' ),

J
pi(0) =e(1—e)/(8

~

arcsin We
~

), (22)

and u) (x) is the Dawson integral

—X(J(x)=e " f e~ dy .
0

Expression (20) coincides with the analogous expression
for the case of nondegenerate electronic levels obtained in
Ref. 4; expression (21) in different but equivalent form
was obtained in Ref. 13.

Dividing II)" by Iz" we can find the polarization ratio
for the first-order resonance Raman scattering. This ratio
for excitation near (zi-0) and far (

~
zi

~
&&1) from the

maximum of the absorption is equal to

p((m)= e(1 —e)
(23)

8 I ln[(1+ tanv e/2) /(1 —tanv e/2) ]I

Taking into account that for I" centers in alkali halides e
and 8 are ordinarily in the range 0.2—0.3, we find from
these expressions the following estimation: pi -2—6,
which is in agreement with experiment. Note that ac-
cording to (22) and (23), p)(0) &pi( ao ), i.e., pi(z) decreases
as the excitation is shifted far from the maximum of the
absorption band. [As a function of e, p((0)/pi(oo) does
not exceed 2.4, which is the value for e=e~» ——4.] This
decrease of pi with zi has been observed experimentally in
Ref. 2 for F centers in Kcl.

IV. MULTIPHONON SCATTERING AND EMISSION TAIL IN PARALLEL POLARIZATION

A. Scattering intensities

We consider now the intensity of n-phonon scattering due to A(z and Ez modes at T=O K. This scattering is
described by Eq. (7) if we take into account the nth-order term in the expansion of the exponent in Eq. (18) in powers of

2
(») coilst

d
—i(D( —nz)p( V V ( ) )» d ~ i(n( —v())r mzv /—28'~, p e XX XX 0 0 (24)

Here we take into account that the Fourier transform of (V V ((u))p gives the spectrum of n-phonon transitions,
which is the nth folding of the one-phonon distribution,

p((co)= d)((, e ' "(V V (p))p= z g p)J (a e(J+4b ezj. /3)5(co cd) . —2' J

To find the integrated intensity (I!!"')of the n-phonon
scattering one must integrate Eq. (24) over the emitted
light frequency Qz. This gives

(X)
S (0 )

—Vo )'7—ltd 2 v /2
2

II("' ——const Xmz(n!) ' dry, "e
0

B. Enve1ope

Now take into account that, due to dispersion of the
phonons, the spectra of different orders overlap and, for
Q~ —Qz))m, wash out the phonon structure. Then the
spectrum is well characterized by its envelope, which is
given by

mz[2o)(Q( —Qz)]'~
(29)

We first suppose that excitation occurs in the max-
imum of the absorption band (Q( ——Vp). Then the integral
in Eq. (26) immediately gives

constXn. (2I)! I(zI+)) const 2 '(1!)
2m, 2"(I))' '

m, (21+1).

const X '(/m.I)), n ))1
mzv2n

(28)

(27)

For l»1 one can use, in (27), the Stirling formula.
Then,

Here, we have taken into account that, for the envelope, n
in (28) can be replaced by (Qi —Qz)/co and that the densi-
ty of different-order processes is dn/d02 ——co

To generalize formula (29) for the case Qi&Vp and
T&0 K, one can also proceed from expression (26).
Then, to find the intensity of scattering for Qz ——Q( nco, —
one could consider all (n+2l)-order terms (l=0,1,2, . . . )
and take into account processes with n +l created pho-
nons and l destroyed phonons. A simpler way exists,
however. Indeed, if we consider the envelope of the spec-
trum, a short-time approximation may also be used for
the variable (M, because ~(((,

~

&
~
EQz~ '&&co ' if the

spectral resolution AA2 &)$. Then, expanding
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A, =exp[ m—zv /2+im3(pt p—v /4)], (30a)

where mz ——a /2+ 2b /3 is the third moment of the ab-
sorption band; in order of magnitude, m3-Scp . The
first term in the argument of the exponent in (30) de-
scribes the damping of the correlator A .„with increas-
ing

I
v I, and determines the essential values of v:

I vI & mz &(Sco) ' «cp '. For such v, and be-
cause

I p I
«cp ', the term -pv is small:

I imzpv l4
I

&
I
pcp

I
l4«1. Therefore this term may be

omitted in (30), giving

V V (p })p in Eq, ( 1g) in powers of p and taking into
account the zeroth- and first-order terms, we obtain

C. Emission tail as hot luminescence

V(t)= g (aeij+bezj+bezj/V 3)xj(t) =mzt
J

(34)

We see from (32) that the emission tail in parallel polar-
ization monotonically and rather slowly decreases to the
red, in agreement with experiment. ' ' What is the
physical meaning of this behavior of the emission tail't
To understand this one should take into account that the
5 function in Eq. (32) represents the relation between the
energy of the electronic transition and the relaxation time.
Indeed,

A =exp( mzv /2—+im3pt ) . (30b)

—i(Q& —Vo)v —m2v /2
dve—2t

(31)

For the case Q~ —Q2 &&co, the limits of the integral over v
satisfy the following condition: 2t=2[(Q& —Qz)/m3]'~
»2cp '(cp/S)' . This means that 2t is much larger
than essential values of

I
v

I
& m z

' . Therefore the men-
tioned limits may be replaced by + oo, and we obtain

I~~
—const)&2mA(Q&) I dt 5(Q~ —Qz —mzt )

=const Xm A(Qi }/[m3(Qi —Qz)] (32)

where

A(Q, ) =(277mz) 'l exp[ —(Qi —Vp) /2mz]

is the normalized absorption spectrum. Expression (32) is
the generalization of formula (29) for the case T&0 K
and Qi& Vp. For T=0 K, m3 ——comz, and (32) coincides
with (29) if Qi ——Vp. Equation (32) is our basic formula
for I~~ of the emission tail.

We substitute Eq. (30b) into Eq. (7) and integrate over p.
Then,

I~~ ——const)& dt e z'5(Qi Qz —mzt—)
0

I,i- J dg„p(Q„)5(Qi —Qz —V ) . (35)

This is the semiclassical expression for hot luminescence
when the system is moving downwards from its
potential-energy position just after optical excitation.
Such a result is natural: A continuous scattering spec-
trum means the absence of phase correlation between ab-
sorption and emission transition amplitudes. Such an ab-
sence of phase correlation is characteristic of lumines-
cence. The spectral behavior (32) of the emission tail is
thus determined by the change of speed Q„ in relaxation
of the emitting system.

is the classical time behavior of V for small t. [Here we
have taken into account that in the classical limit
xj(t)=xpJ(coscpjt 1), wh—ere xpj —— (aij+—bezj+bezj/
V 3)coj is the change of equilibrium position of the nor-
mal coordinate xj with electronic excitation. ] Therefore,

I,i- I
Q„(t)

I
'-p(Q„(t)),

where t =(Qi —Qz)/mz, Q„(t) is the classical speed along
the coordinate Q„=const)& V~, and p(Q„) is the proba-
bility for the corresponding value of Q„ in relaxation. It
means that

V. EMISSION TAIL IN PERPENDICULAR POLARIZATION

A. Basic formula

We next consider the enuelope of the scattering spectrum for perpendicular polarization. Using the short-time approxi-
mation for the variable p in Eq. (19), we obtain

7 r'

A„ip,„--e (Q6)p ds ds'expI —ie'mite(v —2vi) —v (1 e)mz/2 —2v, emz+—ipmz[(1 e')t +4e'(ti ——t/2) ]] . (36)

Here, vi ——s —s' —v/2, ti ——(s+s')/2, and e'=b /(a +4b /3)=e Upon subs. titution of (36) into (7), we note that the
essential values of

I
v

I
here are also small in comparison with Zt (for all possible values of e& —,). This allows us once

more to replace the limits of the integral over v by + oo. Analogously, limits of the integral over vi, namely +(2ti —v),
may be replaced by +2t~, which means that the variable v~ may be replaced by v'=s —s'. Then after integration over p,
we finally obtain

00 t
Ii ——C dt dti5(Qi —Qz —mz(1 e')t m3[t +—(t ti—)(t —3ti)])—0 0

+exp
—(Q, —Vp —m, e t, )

I 2 2

2m, (1—e)
dv'exp(2iv'e'm3ti 2mzev' ) .—

1
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Here, C=const&&0{2mmz/(I —e))' . This is our basic
formula for Ii of the emission tail.

VI. POLARIZATION OF THE EMISSION TAIL

A. Analytical considerations

B. Physical interpretation

Although expression (37) seems to be quite complicated,
it may be easily interpreted. First take into account that
the variable ti ——(s+s')/2 is the mean (for two transition
amplitudes) time spent by the system in the primary excit-
ed electronic state

~

x ) before the depolarizing electronic
transition ~x)~ ~y), while the variable v'=s' —s de-
scribes the corresponding phase difference. Consequently,
the last integral in (37) describes coherence effects in the
transition —a weak dependence of the integral on t i would
mean weak coherence. The first exponential in (37)
represents the probability of finding the system in state

~
y ). The 5 function describes the relaxation of the ener-

gy of electronic transition, as will now be discussed.
The third term in the argument of the 5 function de-

scribes the relaxation due to the motion along the Qi and

Q3 directions; this part of the relaxation is not affected by
the

~
x )~ ~y) transition [see Fig. 2 and the matrix ele-

ments V and V~~ in Eq. (2)]. The fourth term in the ar-
gument of the 5 function describes the relaxation due to
the motion along the Q2 direction. The transition

~

x )~
~ y ) instantly changes the sign of the correspond-

ing component of the force (but not the coordinate and
momentum). Therefore the change of the energy of the
electronic transition is equal to e m3ti (before transition)
plus e'm

3 ( t t i ) ——2e'm 3.t i (t t i ) (after —transition).
Here the final term takes into account that immediately
after the transition the motion along Qz occurs in the
direction opposite to the force—that is, for the system
climbing upwards on the potential curve.

We now transform Eq. (37) to a form which is con-
venient for our subsequent work. This is done by intro-
ducing new variables, r, P, and y, according to the rela-
tions

t=r[(1—e')m3] '~ cosP,

t, —t /2=r (4m, e') '~ sing,

v'=y(4m2e) ' sing .

(38a)

(38b)

(38c)

X cos tyz [2(1—e') /e'] '~'sin'p I,
where

Pp
——2 arcsin(e') '

yp
—2'"m,""[ze/m, e'( I —E')]'",

z =(Qi —Q2)/4(1 —e')[2m2(1 —e)]'~z,

zp ——(Qi —Vp )/[2m 2(1 —e)]'

B=const&& &n'~ m3/[8''(1 —e)(1—e')]'~

(39)

(40a)

(40b)

(40c)

(40d)

(40e)

Integral (39) is difficult to carry out analytically. There-
fore let us consider some limiting cases.

First, we suppose e (and e') to be small,

E e((co-/(Qi —Q2) . (41)

In this case the Jahn-Teller effect for the Es modes is
weak. Taking into account that in such a case yp and Pp
are very small, we find

Then the argument of the 5 function takes the simple
form Qi —Q2 —r, and after integrating over r we obtain

40
Ii B f ——d P sing

X I dy exp[ ——,'y sin P —(zp —z sin P) ]

and

~em, (Q, —Q, )'"
Ii =const && A(Q i )

(1—e')(1 —e)'~ m
&

(42)

m3(1 —e')(1 —e)'~
ps=

mp8(Qi —Q2)
(43)

FICx. 2. Triangle connecting the positions of the tetragonal
mimina of the potential surface U and the directions of relaxa-
tion in the (Q2, Q3 ) plane.

For this case the
~

x)~
~
y) transition practically does

not affect relaxation. Therefore from (43) one can find
the time dependence of the transition probability as
w, -p, o: (Q& —Q2) -t This time. dependence of w

means that the transition is totally coherent. This is the
expected result for the case when the vibrational relaxa-
tion goes mainly via the totally symmetric modes, which
do not affect the electronic transition.

As a second case which also can be studied analytically
we consider the condition opposite to (42),

e =e' &&~0/(Qi —Qz)

(recall that e,e'( —,
' ). In this case the essential values of y
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in Eq. (39) are small in comparison with the upper limit
yo. Therefore we may replace yo by ao. Then,

I~=A(Q&)nBm2 J dpexp[ —e(zo ze 'sin p) ] .
0

(45)

If the excitation occurs near the maximum of the absorp-
tion band, then zo-0 and the essential values of P in Eq.
(45) will be much smaller than $0. For this case we re-
place $0 by ao and obtain T(zo) = —,

'
exp[ —(zo —x) ]x ' dx .

0
(52)

from formula (45), Iz strongly depends on the excitation
frequency. This dependence for the long tail can be found
analytically. Indeed, z » 1 &

~
zo

~

the upper limit in the
integral (45) can once more be replaced by oo. This gives

const && Om/m .
2 T(zo )Ij-

2(2' )(Q$ —Q )E" [E(1—6)]'
(51)

where

const&(A(Q, )A. / m2 I ( —,
'

)

8(2' )(Q) —Q )' m3E" [e(1—e)]'

where I (x) is the I function [I ( —,
'

) =3.62]. This gives

gm 1/2~ii/2[2@(1 —e)]
e~~/21-(-')m'"

4 2

1/4

=1.5k-
eS

B. Discussion

(46)
In this case,

2m ' e' [2E(1—e)]'
e~/m'"T(. )

(53)

The main effect described by Eq. (53) is the strong in-
crease of p, with the excitation on the red side of the ab-
sorption band [see Fig. 3 for the T(zo) function]. This ef-
fect has a clear physical basis: If the system is excited
well below the crossing point, the hot-depolarization pro-
cess cannot occur. Note that the function T(zo) also
occurs in the theory of hot transfer of electronic excita-
tion between different centers.

to -c (Q6)oo. =kem2o—1 2 2 —1 —1 (4&)

where o is the characteristic width of the transition. The
time At can be estimated using the condition

We see that in this long-tail limit, p, does not depend
on Q, —Q2. This confirms our earlier qualitative state-
ment that the Jahn-Teller effect can switch off the depo-
larization process after the relaxation has only partly oc-
curred. Moreover, the value [Eq. (47)] of the polarization
ratio is also in agreement with the corresponding qualita-
tive physical model discussed above. Indeed, if the hot
transition

~

x )~
~ y ) can occur only in a limited time in-

terval ht after excitation, then p, '-b, t/to, where to
' is

the rate of the transitions determined in the incoherent
limit by the Fermi golden rule, namely

D. Results of numerical calculations

Equations (42), (43), (52), and (53) apply to limiting
cases. In the general case, one must calculate the integral
(41) numerically. Results of such numerical calculation
are presented in Figs. 4 and 5. We see that, in agreement
with the qualitative statements presented above, for very
small e (see the a=0.03 case in Fig. 4) p,

' continuously
grows with Q1 —02. This means that there is essentially
no switching off of the depolarization in 'relaxation.
However, even for relatively small e (see the a=0.12 case
in Fig. 4) this effect is clearly pronounced for larger
Q& —Q2. One also notes the remarkable dependence of p,
on the excitation frequency in this case. This is a charac-
teristic of our mechanism of the switching-off effect.

em 3(ht ) —0, . (49)

meaning that the electronic energy change in the Eg chan-
nel during this time must be comparable to 0.. Now, tak-
ing into account that the transition

~

x )—+
~ y ) may be re-

garded as two simultaneous transitions
~

x )~
~

A &s ) and

~

A ~s )~
~ y ), one finds that the width o is determined by

the width of the product of two corresponding spectra.
The second moments of these spectra may be estimated as
(1—e)m2 and em 2 [here, (1—e)m2 is the moment for the

~

x )—+
~

A &s ) transition for fixed Q2, and em2 is the mo-
ment of the

~

A &s )—+
~ y ) transition arising from the sta-

tistical distribution of Q2]. Therefore,

1 .0-

0.5—

o.—[e(1—e)m 2]'/2, (50) -2 -'I 0 & 2

and p, '-k[Se/co(1 —e)]'/, in agreement with Eq. (47). (&~ -vo)/)2M
C. Dependence upon excitation frequency

Expressions (46) and (47) are valid only for excitation
near the maximum of the absorption band. As follows

FIG. 3. Function T describing the dependence of hot transfer
of electronic excitation upon excitation frequency Q~, and the
normalized absorption spectrum A.
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(Qq - Q2)/gp
'I 0 20 30

0.4— g = 0.03 ————

8 =0.'l2

0.2
4

2

(Q~ - Q2)/)2M

FIG. 4. Calculated emission tail polarization for 8=0.1 and
v=0.03, or 0.12, and for different z~-. —1.1(1,1'), —0.37Q,2'),
0.37(3,3'), and 1.1(4,4').

with the emission in parallel polarization. Another in-
teresting effect which one sees in Fig. 5 is the red shift of
the above-mentioned maximum. This shift exists only
with respect to Q~', the real spectral position of the max-
imum as a function of Qz approximately coincides with
the maximum of the absorption if Q» Vo, or is to the
red of it if Q~ & Vo. This effect means that the depolari-
zation occurs with maximum probability when the system
relaxes to the crossing point.

One more circumstance which we would like to discuss
in connection with the results presented in Figs. 4 and S is
the behavior of the coherence of the electronic state in re-
laxation. As has been shown above, this coherence re-
flects itself in the linear dependence of p,

' on Q& —Qz
near Q, =Qz. This behavior is present in all of the curves
in Figs. 4 and S. However, only for very small e, 0.03,
does this part have an appreciable extent, -(5—10)co. In
all of the other cases this part is comparable to co. This
means that coherence is remarkably destroyed in the very
beginning stage of relaxation involving only one nontotal-
ly symmetric phonon. Below we will return once more to
a consideration of this phenomenon.

(Q~ - Qg)/gp
10 20 30

8= 0.27 ————
8= 0A8

3

= 0.4

I

2

(Qq - Q2)i)2M

FIG. 5. Same as Fig. 4, but for 8=0.025 and a=0.27 or 0.48.

This effect is especially well pronounced for the case of
strong interaction with Ez modes (see Fig. 5). It is in-

teresting to note that in these cases p,
' passes through a

maximum with increasing Qq —Qz before it obtains its
asymptotic value. Such a behavior of p, '(Q& —Qz) re-

flects the circumstance that directly after the electronic
transition the system moves down the potential surface
more slowly than before (due to the change of the direc-
tion of the force). Therefore the corresponding emission

in perpendicular polarization is enhanced in comparison

VII. HIGH-ORDER EFFECTS

The above considerations are based on perturbation
theory which treats the vibronic coupling with T2g modes

to first order. The results are valid for p, »1. As fol-
lows from expression (53), for sufficiently large Q& —Qz
this condition is fulfilled only when the vibronic coupling
with T2g modes is remarkably smaller than with Eg
modes: k =Ole «ko, where ko is a typical value of k

for p, =l. For example, if 5=508, e= —,', then ko=0.25.

As has been mentioned above, if k ~ 1, then the poten-

tial surface U(Q&, Qz, . . ., Qe) has troughs and minima in

tetragonal directions. This means that for all k &1 the

system will relax to tetragonal minima, but only for
k &&ko will the relaxation occur mainly via one trough.
If ko & k & 1, then a number (N) of electronic transitions

will occur, keeping the system out of the troughs before a
minimum is reached. In this case, higher-order effects
due to interaction with T2& modes are important. Below

we present a qualitative consideration of these effects on

the tail polarization.
Let us first consider the effect of the repeating hot elec-

tronic transitions on the relaxation in the (Qz, Qz) plane

(see Fig. 2). First let us note that the "forward-
side" —type transitions ~x)~ ~y)~ ~z), ~x)~ ~z)~

~
y), etc. will, on the average, restore the initial speed of

the nuclei. Indeed, every transition takes, on the average,
the same time to-k '[(1—e)cu/eS]'~ [see Eqs. (48) and

(50)]. Therefore, all momenta obtained from the three

different directions will compensate Essentia. lly different

is the effect of "forward-back" —type transitions

~

x)~ ~y), ~x)~ ~z), etc. for relaxation in the (Qz, Q3)
plane. Indeed,

~

x)~ ~y) transitions will not affect the
motion along the OA direction (Fig. 2), although they will

slow down the relaxation in the perpendicular direction.
The

~

x )~~
~

z ) and
~ y )~

~

z ) transitions act analogous-

ly. Hence in the case under consideration, X && 1, the sys-

tem will mainly relax close to the OA, 08, and OC lines.
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Secondly, for the case of excitation with polarization in
the (100) direction, the initial condition for relaxation is
nonsymmetrical for the three directions OA, OB, and OC.
Indeed, in this case the

~

x & state is created first and the
system will start to move towards the x minimum (see
Fig. 2}. At the time of the first

~

x & ~
~ y & or

~

x &~
~

z &

transition, the system will acquire a speed which by a
large factor (-k ' for e=0.5) exceeds the speed of zero-
point vibrations. According to the Frank-Condon princi-
ple, such a large speed cannot be remarkably changed dur-
ing the transition. Therefore the system will preferably
move along the OA or OB lines, undergoing forward-back
Ix&~ly& and ~x&~(z& transitions. For such motion

the electronic wave function has the forin

I
( )

—W] + W2 + W3 (56a)

and

about the loss of the electronic coherence in vibrational re-
laxation. The case of excitation with polarization in the
(100) direction was considered. However, more direct in-
formation about this phenomenon can be obtained if
another excitation polarization is used. Indeed, to
describe the polarization characteristics of emission for
the general case, one must also know W3 Wzzyy+ Wzy~y.
For example, in the case of excitation with (110) polariza-
tion,

~
g&- —,'[(1+e ') ~x &+e '~y&+e '~z&], (54)

Iq ——W]+ WP —W3 . (56b)

pt 2 (55)

Moreover, p, must be practically independent of the exci-
tation frequency in the resonance region

~
Qi —Vp

~
(m2 . Still, for sufficiently red excitation,

hot-depolarization transitions will switch off and p, will
grow with decreasing Q~.

VIII. EMISSION TAIL AND THE DAMPING
OF COHERENCE IN VIBRATIONAL

RELAXATION

Above, it was shown that from the dependence of the
tail polarization on Qi —Q2 one can obtain information

where pi, p2, and p& are relative phases, which we may
consider as practically random. Therefore I~~ --2Ii and In this case, excitation initially creates an electronic state

with wave function 2 '
(

~

x & +
~ y & )—a coherent super-

position of ~x& and ~y& states. As relaxation proceeds,
this state will change. The probability to find the system
in these states will nevertheless remain equal, due to x~+y
symmetry. Therefore, in relaxation, the relative phase of
these states will change. The coherence would be lost if
this relative phase would become random. Then Iz ——

I~~

and, from Eqs. (56), W3 ——0. Hence for excitation with
(110) polarization, W3 (Q &, Q2) directly describes the
behavior of the electronic coherence in vibrational relaxa-
tion.

To obtain the dependence of Wq on Qi —Qq for the
emission tail, one can use the expressions (7), (11), (13),
and (14). Then neglecting the small term -c, we obtain

„+A „=& =( ' " "&o= p[ ——,'r'(V'&o ——,
' '(V' &+ '(V V(p)&] (57)

Expanding ( V~ V&& (p ) &p and taking into account the first two terms, we obtain

1&~=exp[ ——,(1—e)m2v —2em2t +im&(1 2e')pt ]-
[here, the small term -pv m3(1 —2e') was neglected]. Then after integration over p, , v, and t we find

(58)

constXA(Qi) (Qi —Vp) e
W3(Qi, Qi)= i&2 exp

2[(Qi —Q2)m3(1 —e)(1—2e')] ~ 2m2(1 —&)

2emi(Qi —Q2)

(1—2e')mi
(59)

if e' (—,, and we find W3 ——0 if e' & —,
' .

We see that for all Q& —Qz, W3 ——W~ when e=O. This
means that relaxation via totally symmetric vibrations
does not destroy the electronic coherence. However, even
relatively moderate interaction with non-totally-
syrnrnetric Eg modes leads to remarkable damping of W3
and coherence for Qi —Q2-co. This agrees with our pre-
vious result that even one non-totally-symmetric E~ pho-
non remarkably destroys the electronic coherence in the
relaxation.

IX. ADDITIONAL REMARKS

In the above theory the interaction with T2g modes
causes the depolarization of the emission. In practical
cases there may be additional interactions causing depo-
larization. For example, in E centers the spin-orbit in-
teraction may serve as another origin of depolarization.
A consideration of this rnechanisrn may be carried out
analogous to our treatment of depolarization via Tzg
modes, because both interactions mix

~

x &, ~y &, and
~

z &



3500 V. HIZHNYAKOV 30

orbital components of the electronic wave function in the
same way. The difference is that the depolarization pro-
cess caused by the spin-orbit interaction leads to spin-flip
transitions, while depolarization due to T2g modes is ac-
companied by the creation or destruction of a T2g pho-
non. In the case of the emission tail for 0& —02 »co, this
difference is unimportant. Therefore the influence of the
spin-orbit interaction can be formally taken into account
in the present theory if the quantity c (Q6)o is replaced
by the sum c (Q6)o+

~

I, ~, where A. =(x
~

X
(+

~
H, , i

—)
~ y ). Here, H, , is the Hamiltonian of

the spin-orbit interaction and
~
+) and

~

—) are the spin
states.

The main assumption of the present theory is that the
vibronic interaction with T2s modes is weak: (1) in com-
parison with the interaction with AI and E& modes
(8«1 for small 0,—Q2), or (2) in comparison with the
interaction with Eg modes only (k & 1 for large 0,—02).
According to existing data for resonance Raman scatter-
ing by F centers, ' the first condition is ordinarily ful-
filled, while the second condition may not be satisfied.
Recall that if k & 1, then the vibrational potential surface
U( Q t, Q2, . . ., Q6) for the excited state has troughs and
minima in trigonal directions. Therefore in the case of
excitation with (100) polarization there will be equal prob-
ability for the system to relax via each of the four trigonal
troughs. Hence for the long-tail emission (occurring after
the loss of coherence in relaxation), the polarization ratio

p, =I~~/Iq must be equal to 1. Recalling that„ for k & 1,

p, is equal to 2 or more, we conclude that for excitation
with (100) direction the expected values of p, are either 1

or )2. This conclusion is in agreement with experiment:
According to Ref. 9, p, =1 for F centers in KI and for

Fz centers in KCI:Li, (for Fzt transitions), while p, &2
for F centers in RbBr(1.9), NaBr(2), KC1(2.2), RbCl(2. 3),
NaC1(2. 9), and KBr(2.9), and for F„centers in KC1:Li(2)
(for Fq 2 transitions) [with the accuracy +(0.15—0.3)].

In spite of this agreement, we cannot yet conclude de-

finitively that our theory is universally applicable to F

centers. First, we mention that there may be other causes
of depolarization switching off in relaxation which cannot
be automatically incorporated into this theory. The pas-
sage to the potential surface of another electronic state
(the E state, for example, whose potential surface is
thought ' to cross the F-state potential surface) may be
mentioned as a possible additional mechanism. Second,
there is not yet available experimental data for the depen-
dence of p, upon the excitation frequency for sufficiently
large variations of Q& —Vo. However, this dependence is
the key feature of the present theory.

Let us also make some final remarks which may be use-
ful for further experimental study of the emission tail po-
larization. We mentioned above that for the case k) 1

the potential surface of the excited state has troughs in
trigonal directions. In the case of excitation with (100)
polarization, all of these troughs are located symmetrical-
ly relative to the direction of excitation polarization, and
this results in p, =1. There is, however, no analogous
symmetry for excitation with other polarizations. There-
fore, for the same centers, p, may differ remarkably from
1 if excitation polarization other than in the (100) direc-
tion is used.

ln conclusion, we emphasize that studying the angular
dependence of the polarization of the tail emission can
provide important information on the basic shape of the
vibrational potential-energy surface for the excited elec-
tronic state.
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