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Within a new type of correlated-effective-field theory we calculate the effective-field parameters
(including their response to external field), critical temperatures, susceptibility, short-range order pa-
rameters, and specific heat associated with an anisotropic, square-lattice, spin-% Ising ferromagnet.

The present formalism, which is shown to recover the Bethe-Peierls thermodynamics for the pure
Z-coordinated-lattice, spin——;— Ising model, yields satisfactory results; in particular, the crossover

from a pure Ising ferromagnet on a square lattice to that on a linear chain is reasonably exhibited in
the behavior of the susceptibility and the specific heat.

I. INTRODUCTION

The Ising model has been one of the most actively stud-
ied problems in statistical mechanics. Rigorous solutions
have been given for the simple model for one-dimensional
and certain two-dimensional lattices.! In three-
dimensional lattices there are series-expansion methods,’
which are valid for temperatures either high or low com-
pared with the critical temperature, as well as
renormalization-group methods.’

On the other hand, the molecular-field approximation
(MFA), because of its simplicity, has played an important
role in the description of cooperative phenomena. The
MFA gives qualitative agreement with experiments for
many of the physical quantities involved in a phase transi-
tion. However, the MFA has some deficiencies, which are
due to the neglect of correlations when MFA results are
compared with experiments. These deficiencies become so
serious when the system studied is complex that the MFA
may not predict important features characteristic of such
a complex system. Improvements in this respect have
been sought in many methods.*

Recently, Lines® has suggested that static correlations
can be partially accounted for by the introduction of an
extra term in the effective field “experienced” by spin S;.
This term is proportional to the instantaneous deviation
of S; from its average value. The constant of this propor-
tionality, called the correlated effective-field parameter, is
determined by imposing consistency on the theory with an
exact sum rule for the susceptibility at the end of the cal-
culation. The correlated effective-field approximation
(CEFA) developed by Lines has been applied to a number
of problems in magnetic systems.® However, this method
gives an accuracy essentially equivalent to that of the
spherical model, and unfortunately the sum rule is only
valid often in the paramagnetic phase’ and in the absence
of the resulting strong, induced anisotropic fields. More-
over, when the CEFA is applied to the two-dimensional
ferromagnetic Ising lattice, the theory generally predicts
vanishing critical temperatures.®

Very recently, Kaneyoshi et al.® developed a new type
of correlated effective-field theory for the spin-5 pure Is-
ing model on a regular lattice. This theory is based on in-
corporating the concept of a correlated effective field into
the exact formal identities, the so-called Callen identi-
ties,'® to which the exponential-operator technique intro-
duced by Honmura and Kaneyoshi!! is utilized. Contrary
to the CEFA, this new type of theory does not use an
effective-field Hamiltonian. The resulting statistical
theory is shown to give critical temperatures equivalent to
that of the Bethe-Peierls (BP) method and should be com-
pared with the CEFA. This statistical theory has already
been applied to a variety of interesting situations such as
pure anisotropic systems,'? dilute ferromagnets,'>!'* and
surface ferromagnets.!”> Most of these works have been
devoted to the analysis of the phase diagram and spon-
taneous magnetization of those systems.

In the present work we study the anisotropic square-
lattice spin-3 Ising ferromagnet. The relevant thermo-
dynamical quantities, namely the correlated effective-field
parameters including their response in a vanishingly small
external field, the phase diagram, the spontaneous mag-
netization, the short-range order parameter, the specific
heat, and the susceptibility, are all calculated within a new
type of correlated effective-field theory (NCEFT). The
present work, the formalism of which has only small
differences from that of Refs. 9 and 12, yields analytical
solutions for all of the above-mentioned thermodynamical
properties. Although, of course, we do not expect the
NCEFT to yield accurate values in the critical region due
to the absence of long-range fluctuations, we do expect
reasonable values for the plot of critical temperature
versus anisotropic parameter, and also for the specific
heat and susceptibility. In particular, since the NCEFT
reduces to the exact solution in the one-dimensional lat-
tice, the cross-over phenomena from the two-dimensional
to the one-dimensional case is clearly exhibited in the
behavior of the specific heat and the susceptibility.

In the next section we briefly review the formalism of
the NCEFT. In Sec. III the theory is applied to the aniso-
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tropic square-lattice spin-% Ising ferromagnet. The
analytical solutions of the most relevant thermodynamical
quantities are also obtained in Sec. III. In Sec. IV the nu-
merical results of such quantities are shown. In Sec. V we
show that the theory is essentially equivalent to BP
method for pure Ising ferromagnets on a Z-coordinated
lattice.

II. FORMALISM: A NEW TYPE OF CORRELATED
EFFECTIVE-FIELD THEORY

Recently, in Ref. 9, we have introduced a new type of
correlated effective-field theory (NCEFT) for the Ising
model. In this section we shall briefly review this approx-
imation for the pure Ising ferromagnet for the sake of
completeness.

The Hamiltonian for the spin-5 (=1) Ising ferromag-
net in an external magnetic field H is given by

(i,j) j
where (i,j) runs over all nearest-neighbor (NN) spins, J;;
is the exchange interaction between NN spins, g is the
Landé factor, and pp is the Bohr magneton.

Formal identities for the correlation functions of the Is-
ing model have appeared in previous literature.!® The
starting point here for the statistics of our spin system is
the exact Callen'® equation

(a,-f_,-)=<f,-tanh [2/3’],70] +h ]) , ()
j

where the angular brackets designate the usual ensemble
average

(- Y=Tr[exp(—B¥x) - -+ |/Tr[exp(—B5)],

where B=(kzT)~!, h =PBgupH, and f: represents any
function of the Ising variables except o;. Following Ref.
11 we now introduce the differential operator D =9/0dx
into Eq. (2) and obtain

(0,-f,~)=<f,~exp [ZDBJijaj >tanh(x +h) | 5 =0
J

z

j=1

+0;sinh(DfJ;; )]>tanh(x +h) | x=0>

(3)
where Z is the coordination number. Since we are in-
terested in the thermodynamical quantities, let us expand
the right-hand side (rhs) of the above equation with
respect to 4 and retain only its first-order terms,

(0:1fi) =(FKY+{f:G)h , @)
where
~ Y4
K= H [COSh(DBJ,J)+Ujsmh(D/3JU)]tanhx |x:0 ) (Sa)
j=1

.z
G=1]1 [cosh(DBJij)+ojsinh(D[J’J,~j)]sechzx |x=0- (5b)
j=1

Equation (4) can generate many kinds of identities, which
give relations among spin correlation functions, upon sub-
stituting some Ising variable functions for f;. Among
them, upon setting f; =1, Eq. (4) reduces to

(0;y=(K)Y+(G)h, (6)

which expresses the single-site magnetization in terms of
multisite correlation functions which- are yet undeter-
mined. However, it is clear that if we try to treat exactly
all the spin correlations present in (6), the problem be-
comes mathematically untractable.

In order to evaluate Eq. (6) many authors'!” have in-

troduced an approximation which decouples next-
neighbor spin correlations,

where ji,j,, . . ., jz are the NN’s of site i. This approxi-
mation, called the effective-field approximation (EFA),
yielded, in spite of its simplicity, quite satisfactory results
in many interesting situations.!® In particular, the EFA
essentially corresponds to the Zernike'® approximation for
the regular lattice system.

On the other hand, Kaneyoshi er al.® (KFHM) have re-
fined this approximation by introducing a NN correlated
effective-field parameter A. Following them, we assume
that the NN Ising variables can be related to the central
site i via

0i+6=0i8) +Aitslo;—(0i)) , (8)

where 8 runs over the NN sites of the central site i, and
Ai s is a temperature- and external-field-dependent corre-
lated effective-field parameter.

Substitution of Eq. (8) into Eq. (6) gives an equation in-
cluding the parameters m, 8J;;, A; s, and h. According-
ly, in order to evaluate thermodynamical properties such
as magnetization and critical temperature, we need an ad-
ditional equation specifically for determining the parame-
ters A; 5 as a function of temperature.

In Ref. 9 we used a second identity

<0'10'i+5>:<0'i+5f<\>+(0'i+86>h .

However, when we use higher-order correlation functions,
such as the three-site identity

A A
<0i0i+80i+8’>:<0i+80i+8’K>+<0i+60i+8’G>h >

we can easily prove that A can be determined analytically.
In the next section we shall clarify the importance of the
higher-order correlation functions in order to obtain the
analytical forms for the physical properties of the aniso-
tropic square-lattice spin-% Ising ferromagnets.

Finally, we should be careful in the selection of func-
tions such as f; in Eq. (4). Recently, Taggart and Fittipal-
di*® have also applied the NCEFT to Ising systems. How-
ever, in order to determine the parameter A, they intro-
duced another identity which is obtained by simply setting
fi=coth(B ¥, J;j0;) in Eq. (4). From the beginning, for
zero external field, their identity neglects the possible spin
configurations resulting in Y, ;Jijo;=0, for which Eq. (4)
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cannot be defined. Accordingly, it does not seem to be
reasonable to use this function as f;.

III. ANISOTROPIC SQUARE-LATTICE
SPIN-—;- ISING FERROMAGNET

In this section we study the thermodynamical proper-
ties of the square-lattice spin-5 Ising model with the an-
isotropic interactions J, for the x direction and J, for the
y direction. Kaneyoshi and Tamura!? (KT) studied this
system on the basis of the NCEFT. Our aim in this paper
is to rederive their results in an analytical form, although
KT obtained them only numerically. Furthermore, the
most relevant thermodynamical quantities, namely sus-
ceptibility and specific heat, are evaluated. In the course
of analysis it is proved that the NCEFT becomes exact in
the one-dimensional lattice limit.

We shall focus our attention on a system of S =+ Ising
spins arrayed on a square lattice interacting through the
Hamiltonian (1), where J;; takes J; for NN spins in the x
direction and J, for NN spins in the y direction.

In the limit that the interaction ratio a=J,/J;— 1, the
model becomes a simple, spatially isotropic two-
dimensional (2D) model, but as a—0 the system separates
into a collection of noninteracting chains. Consequently,
this system admits the crossover from the square lattice to
the linear chain. Our starting point is Eqs. (4), (5a), and
(5b) with Z =4, where o, and o3 (0, and o) are the
“right” and “left” (“up” and “down”) NN spins of the
site i.

At this point we develop the following three identities.
By setting f; =1 in Eq. (4), we obtain

(0;)=2K,+K,){0,)+2K3(010,03) +2K4{010,04)
+h(G,+4G,{010,) +G3{0,03)
+G4(0204) +G5(010,0304)) , (&)
by setting f; =003, we obtain
(0;0103) = 2K +K3){0o)
+2K,{010,03) +2K4{0,0,04)
+h(G{0,103) +4G,{0,0,)+G;
+G4(010,0304) +Gs{0,04)), (10

and by setting f; = 0,04, we obtain

(0;0,04)= 2K, +K4){0;)
+2K {010,04) +2K3{010304)
+h(G{0204) +4G,{010)
+G3(010,0304) +G4+Gs(0o103)) ,
(11)

where obvious symmetrical relations (o)={(03),
(010,03) ={0,0304), and (0,0,) ={0,03) #%(0103)
=(0,0,4) are used, and also where the coefficients K; and
G; (i =1-5) are given in the Appendix, where ¢ denotes
J/kgT.

In order to obtain physical properties from the exact
Egs. (9)—(11), let us now introduce the concept of the
correlated effective field into the multisite correlation
functions of neighboring spins oy, 05, 03, and o4 Since
we are dealing with an anisotropic 2D Ising model, our
central assumption (8) can, of course, be changed into the
following forms:

0'1,3=(01,3)+k1(0,-—(0,->) ’
(12)
0'2,4=(0'2,4>+}kz(0',-—<0'i)) ,

where the correlated effective-field parameters (CEFP’s)
A1 and A, should be different from each other depending
on the ratio a and external field A.

Applying our approximation, Eq. (12), into multisite
spin correlation functions appearing in Egs. (9)—(11), we
obtain

0=(A4;—Bym?*)m +hC;, 1=1,2,3 (13)

where [ =1 is derived from Eq. (9), /=2 from (10), and
1 =3 from (11), and

A;=tanh[2t(14+a)]—1+B;, [=1,2,3 (14)
B, =2K3a +2K;b , (15)
B,=2K,a +2K b +(1—1y)?, (16)
B;=2K3a +2K b +(1—1,)? 17
a=(1—A)2A A, —A;—1), (18)
b=(1—A)2MA—2y— 1), (19)

with t=pJ, and a=J,/J,, and C, is the coefficient for
the A term on the rhs of Eq. (9), C, for that on the rhs of
Eq. (10), and C; that on the rhs of Eq. (11), where the
correlation functions appearing in these equations are now
expressed as follows:

<0102)=m2+(1—m2)7\.17»2 , (20)
(0103)=m2+(1—m?)A?, (21)
(0,04) =m?*+(1—m?)A3, (22)

(01020304) = m*+m>(1—m?)[ A2 +A3
F4AA(1—A 1 —Ay)]
+(1—mA)(143mHAAS . (23)

By using Eq. (13) with Egs. (14)—(23), we can evaluate
some thermodynamical properties of the anisotropic 2D
Ising model.

A. Magnetization and correlated effective-field parameters

We turn to a study of the system with no external field,
h =0. Equation (13) now admits two solutions, namely
the paramagnetic (m =0) and the nontrivial solutions (as-
sociated with the ferromagnetic phase) given by

mi=ll_22 23 (24)
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from which we obtain the following coupled equations for eitla—1)
the CEFP’s A, and A,: A= eha_q "’ T<Tca). 27
(1—Ay)+2(K, —K3)(2A A —A—1)=0, (25a) It §hould be noted that expressions (26) and (27) are only
valid below a critical temperature T,(a), since in order to
determine A; and A, we used the averaged magnetization
(1—22)+2(K | —K4)(2A Ay — A —1)=0 . (255)  equation (24). For temperatures above T,(a), other equa-
tions for A; and A, will be obtained later [see Egs. (36a)
We can easily solve these equations as follows: and (36b)].
Finally, magnetization is given, upon substituting (26)
4t(1—a) i i i
e and (27) into (24), as a function of the temperature and in-
A= Ay T<T.(a) (26) teraction ratio a,
1
172
4
m=|1— (28)
2+2cosh[4t(1—a)]—2[exp(4t)+exp(4ta)] +exp[4t(1+a)]
[
B. Critical temperature where
At the critical temperature T =T,(a), the magnetiza- . tanh(4 )—2tanh(27) (34)

tion reduces to zero. Consequently, we have

—2t —2t.a

l=e “‘+e , (29)
where t,=J;/kgT, (), which provides the critical tem-

perature,

kBTc(a)
J1

2
——-~2.885 fora=1,
I vy or a

0 for a=0. (30)

The results (30) are simply those of the BP method.

C. Susceptibility
The initial susceptibility is defined by

X tim O (&) 3m
= kpT o

H—0 OH
Differentiating both sides of Eq. (13) (for /=1,2,3)
with A, we obtain

. (31)
h=0

0:(A,—3m2B1)—%%l*+m(l—m2)

3B, 3\, 9B; A\,

X\, on T on, on

+¢, 1=1,2,3 (32)

from which, upon using Egs. (26)—(28), the initial suscep-
tibility and response functions
oA 4 oA,
ah |y_o ¢ Tom

h=0

below critical temperature can be calculated. In particu-
lar, as a— 1 the inverse initial susceptibility reduces to

fora=1, T<T. (1),

Ji ~' 24,-F4,)
(gup) "~ t(C —FCy)

(33)

tanh(4t)—2(e¥—1)

On the other hand, the inverse paramagnetic suscepti-
bility is, through Eq. (32), given by
J, - 4, A, A,

mx"m TTC, TG, G

for T>T,(a). (35

By solving the coupled equations above, we can prove that
the CEFP’s are given by

Ay=tanht for T>T.(a),
A,=tanh(at) for T >T.(a) .

(36a)
(36b)

By using these solutions in Eq. (35), the inverse
paramagnetic susceptibility can be evaluated. In particu-
lar, as a—0, Eq. (35) reduces to

N -
(gug)? ™

-2t

for a=0, (37)

where this is simply the exact expression for the one-
dimensional Ising model.

Finally, the response functions of CEFP’s in external
field,

a,

a,
ah an

h=0 oh

b

h=0

are obtained only for the region T < T,(a) by solving the
coupled equations (32). In particular, as a— 1 they reduce
to

o | _ o

oh h=0— oh |h—o
_ 1 A,Cy;—A4,C
T m(1—m?) 9B, 9B,

____A P
2 Lan,
fora=1,T<T.(1). (38)
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The term

oAy
Oh  |h=o

for the region T >T,(a) will be given in the next subsec-
tion [see Eq. (41)].

D. Short-range order parameters and specific heat

Two kinds of short-range order parameters exist in the
system considered: 7, which denotes the NN spin correla-
tion which lies along the x-axis direction and 7, which
lies along the y-axis direction. 7, and 7, are expressed by
setting f;=0; and f;=0, in Eq. (4), respectively, as fol-
lows:

7-,,5(0,~01)=(01f>+(01@)h s (39a)

Tyz(aiaz)z(azl/(\)-f—(azé\)h . (39b)

In order to evaluate 7, and 7, as functions of tempera-
ture with parameter a, we apply our basic assumption,
Eq. (12), to both the rhs’s and lhs’s of Egs. (39a) and
(39b). We can prove that these resulting two equations
again satisfy, for the case of 4 =0, the solutions already
obtained for m, A, and A,: Egs. (28), (26), and (27) below
T.(a), and Eqs. (36a) and (36b) above T,(a), respectively.

Finally, 7, and 7, are, for the system without an exter-
nal field, expressed by

Te=m24A(1—m?), (402)

T,=m?+A(1—m?). (40b)
At this point let us study the response functions
oA oA,
h |y T R

h=0

for the region T >T,(a). Since both the correlations
(o,G) and (0,6 are shown to reduce to zero for
T > T,(a) in the limit # —0, we obtain, upon differentiat-
ing Egs. (392) and (39b) with respect to / and taking
h—0,

al,
ah

o

- —0 for T>T,(a) . 41
Lo o for T> T,(a) (41)

h=0

Finally, let us now study the specific heat per site.
Since the internal energy per site is defined by
—Jy7x —J,7,, the specific heat per site is given by

3
C/kg=— a(kBT/Jl)(Tx+aTy)
Im?
SR - ai—" Y Y 1—A
8y Tay) (R +all=22)]
A oA
—(1—m?) ! 2 42)

NkpT/I0) (kT /)

In particular, for the region T > T,(a), this reduces to

aJ1

kpT

Jy

2coch?
h
kpT +a’sec

C/kB:

2
lsech2

Ji
kgT
for T>T,(a). (43)
It should be noted that Eq. (43) becomes exact as a—0.
We are now in a position to examine the physical prop-

erties of anisotropic 2D Ising spin systems numerically.
These properties will be given in the next section.

IV. NUMERICAL RESULTS AND DISCUSSION

We plot the critical temperature T,(a) against the in-
teraction ratio a=J,/J; in Fig. 1 by solving Eq. (29). As
obtained in Eq. (30), this yields kzT,.(a=1)/J,;=2.885,
to be compared with kpT./J MFA—4  and
kgT,/J{"*=2.2692, and also yields the exact result
kpT (a=0)/J,=0. Thus we understand that Fig. 1 cor-
responds to an extension of T, in the BP method to an
anisotropic 2D system. It should also be mentioned that
Fig. 1 recovers the result obtained by KT.

The thermal behavior of the CEFP’s are shown in Fig.
2, through Eqgs. (26) and (27) below T.(a) and Egs. (36)
above T,(a), for selected values of a. We observe that
both A, and A, for a fixed ratio a increase from the value
of zero at T=0 K, pass through a maximum value at
T.(a), and monotonically decrease with the increase of
temperature. But this behavior is changed when the sys-
tem considered here undergoes, for example, a dilution of
magnetic atoms by nonmagnetic atoms;!* both values of
Ay and A, start from a nonzero value at T'=0 due to the
fact ms~1 even at T =0.

The most important features of A; and A, are that they
show a sharp peak at T,(a) due to the phase transition of

3 AL S S R N BN (&)
- ~
2.885 dg:<
Lo
1 C
w o
w >
e ==
(@]
23 2r 1! Wy
g o w
2= AL
- 22
<L
— > <
I X, 05@ <
1 I v gﬂ_
< 1 o
© 3 O
— (&)
o -
S = % g
0 NS WSS WY NN NN SN SRS SR § E
@
0 05 T
Jo/d,

FIG. 1. Critical-temperature curves for anisotropic square-
lattice spin-% Ising ferromagnet. Two correlated effective-field
parameters Af=A(7.) and A3=A,(T,) at critical temperature
are also shown plotted against the ratio J,/J;.
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FIG. 2. Thermal behavior of two correlated effective-field
parameters A; and A, for selected values of the ratio J,/J;. The
last number in parentheses attached to each curve denotes the
values of J,/J;. Note the differences in the scales between A;
and A,.

the system. The magnitude of parameter A, (A,) at a criti-
cal temperature T,(a) increases (decreases) with the de-
crease of the interaction ratio a.

The slope of A, for each fixed value of o plotted
against the temperature kzT /J, varies with temperature.
The slopes just below critical temperature are particularly
important in understanding the thermal behavior of the
specific heat, as is seen later. Then, the derivatives

LY an,

(kg T/J;) and ST /I))

T,—0

T,—0

are plotted against a in Fig. 3. We observe that both

T 1T T T T 1
D2 |
dkgl/J, ! Te-0
03 <4150 ©
[ a)‘| - ’—0
— KgT /1! T, ~ S
NS Okgl/Jil Tewo £|X
- }_\_ SIS
<|@ )
02 100
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0} 0.5 1.0

NWAS

FIG. 3. Three derivatives of — m?, A, and A, with respect to
kpT /J, just below the critical temperature, plotted against the
ratio J,/J;.
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derivatives increase from their nonzero value at a=1,
pass through a maximum value at different values of «,
and then decrease rapidly toward zero at =0 with de-
creasing a.

The thermal behavior of the magnetization is given by
Eq. (28), from which, as usual in effective-field theories,
the classical exponent is derived. The interaction ratio
a=J,/J; affects the thermal behavior of the magnetiza-
tion in such a way that the decrease of a leads to an in-
crease of the magnetization in the reduced magnetization
curve [m-vs-T /T.(a) plot] over the entire temperature
range for T < T,(a), in comparison with a=1, that is, the
magnetization curve of the isotropic system on the square
lattice.

In Fig. 3, in order to understand the thermal behavior
of the specific heat, the derivative

om?

T AkgT /)

which measures how rapidly the magnetization falls to
zero just below T,(a), is plotted against . We observe
that the derivative

dm?

kT /Jy)

starts at a finite value at a=1, increases, and finally
diverges in the limit a—0 with the decrease of a.

In Fig. 4, by solving the coupled equations (32), the
temperature dependence of the initial inverse susceptibili-
ty is shown for selected values of a. The response func-
tions of A; and A, in an infinitesimal external field are
also shown for selected values of a in Figs. 5 and 6,
respectively.

The system in consideration is essentially two dimen-
sional as long as a@>0. Accordingly, the initial suscepti-
bility should diverge only once at the critical temperature.
This point is clearly illustrated in Fig. 4. Moreover, we
observe that (i) X~! < kz T /J, in the limit T— oo, (ii) the
gradient of [J,/(gup)®X]~! plotted against kzT /J; just
below T.(a) is twice of that just above T, (iii) the gra-

X"(Q#B)Z/JI
@

()]
T

INVERSE SUSCEPTIBILITY
IN

O 1 1

o | 2 3 4 kT, S

FIG. 4. Temperature dependence of the inverse initial sus-

ceptibilities for selected values of the ratio a=J,/J;. On this

scale, it is difficult to distinguish among three curves =0, 0.01,
and 0.001 above T.(a).
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FIG. 5. Curves denoting inverse initial response of A; in a
magnetic external field plotted against temperature for selected
values of the ratio a=J,/J;.
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N

dient slightly below each critical temperature increases
with the decrease of a, and (iv) the inverse susceptibility
has an exact, one-dimensional limit [see Eq. (37)]. The in-
verse susceptibility above T,(a) for the system associated
with very small a cannot be distinguished, in Fig. 4, from
that of a=0.

Let us now focus our attention on the response func-
tions

o g EY®
an -
=0 ' an

oA,

BJ, h

h=0

From Eq. (32), or Eq. (38) for a=1, we realize the rela-
tion
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FIG. 6. Curves denoting inverse initial response of A, in a
magnetic external field plotted against temperature for selected
values of the ratio a=J,/J;.

just below T,(a), from which the relation

Ay,
oh |0

is deduced just below 7 .(a). In fact, this behavior is
clearly exhibited in Figs. 5 and 6 for selected values of a.
The characteristic feature is that the sign of the response
functions is always negative as long as T < T,(a). This
fact may be associated with the resulting decrease of A, ,
when the increase of the h gives rise to the increase of m.
In particular, the thermal behavior of

o !
ﬁlah

BJ, <(1=T/T,)?

is anomalous for the case of small a. This peculiar
behavior may be related to the following fact: by decreas-
ing the interaction ratio a, the parameter A, begins to
show an upward curvature in the temperature range
T < T (a) (see Fig. 2).

On the other hand, the parameters A; and A, do not
respond to vanishingly small 4 for the region 7 > T (a)
as shown in Eq. (41). Although A, and A, sometime
behave anomalously in a way that we have pointed out
previously, this anomaly is not reflected in the actual
physical quantities such as magnetization, susceptibility,
short-range order parameter, and specific heat.

In Fig. 7 the temperature dependence of the short-range
order parameters, or the NN spin correlation on the x
axis, 74, and also that on the y axis, 7, is depicted for
selected values of a by using Egs. (40) and (26)—(28)
below T,(a), and (40) and (36) above T (a). These results
are qualitatively (and to a certain extent, quantitatively)
satisfactory. Finite short-range order parameters continue
even above T.(a). The less the value of a, the more rap-
idly 7, decreases, around T, («a), to a smaller value. This
rapid decrease should be compared with the gradual
change of 7,. The most characteristic feature is that the
situation 7,~1>>7, near and above T, (a) can be realized
for small a or for the quasi-one-dimensional Ising system.

We now turn to the specific heat per site C/kp. As
a—1, Eq. (42) gives only the BP result for a simple spa-
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FIG. 7. Thermal behavior of two short-range parameters 7
and 7, for selected values of the ratio a=J,/J,. Numerical fig-
ures attached to each curve denote the fixed pair of values
(7x,a) or (7,,a). Dashed lines are only to guide the eye to
where the critical temperatures are.
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tially isotropic 2D system, which we shall discuss further
in Sec. V. On the other hand, as a—0, Eq. (42) gives the
exact expression for the 1D isotropic system [see Eq. (43)].

In order to discuss the anisotropic 2D system
(0 <a < 1), we must remember Fig. 3, in which the deriva-
tive at T (a),

dm?

~ 3kpT/J, T=T,(a) ’

increases with the decrease of the ratio o and diverges as
a—0. On the other hand, the factor

1—A;+a(l—A,)=1—tanh(z)+a[1—tanh(at)]

at T.(a) decreases more rapidly toward zero with the de-
crease of a. As a result, the value of the first term on the
rhs of Eq. (42), at critical temperature, decreases toward
zero with the decrease of a. The second term on the rhs
of Eq. (42) only adds small corrections to the first term.
Consequently, the specific heat at T,(a) decreases with
the decrease of a and tends to zero as a—0.

In Fig. 8 the specific-heat curves are shown for selected
values of a. Although the well-known logarithmic singu-
larity is not recovered, an improvement, nevertheless, is
obtained in comparison with the MFA results; a paramag-
netic tail is present within this formalism. Furthermore,
for a* <a < 1, the specific heat exhibits a maximum only
at critical temperature, and for 0 <a <a* there exist two
maxima, one at critical temperature and one at higher
temperature, since in the temperature region 7> T,(a)
the system practically dissociates into the collection of
noninteracting chains where a* lies between 0.01 and 0.1.
Another point is that the peak value at T,(a) decreases
with the decrease of a. This satisfying result is derived
from the fact that our treatment permits us to distinguish
among correlations, for instance, {(0;03), (0,04), and
(0,0,), in addition to {oy0;) and {oy0,). On the other
hand, the MFA and also the effective-field approximation
which assumes Eq. (7) (both of which cannot distinguish
among these correlations), yields an expression in which
any corresponding term to (1—A;)+a(1—A,) in Eq. (42)
does not exist. As a consequence, this expression gives
rise to incorrect behavior;?! the peak value at T,(a) in-
creases with the decrease of a and diverges in the limit
a—0.

C/kg

N

SPECIFIC HEAT PER SITE

o

kg T/J)

FIG. 8. Temperature dependence of the specific heat per site
for selected values of the ratio a=J,/J;.

We have discussed the anisotropic 2D Ising systems.
Within the NCEFT we have calculated the most relevant
thermodynamical quantities, such as critical temperature,
magnetization, susceptibility, short-range order parame-
ter, and resulting specific heat in analytical forms. We
have recovered, in analytical form, all of the results for
critical temperature and magnetization obtained by KT,
whereas they obtained them only numerically. Interesting
features (see Figs. 4 and 8) arise in the thermal behavior
of both susceptibility and specific heat due to the fact that
the system runs from the 2D to the 1D limit. Here the
advantage is the present theory becomes exact as a—0.

Although CEFP’s A; and A, exhibit some interesting
and peculiar behavior, which may be attributed to the fact
that these phenomenological parameters are expressed as a
composite of the magnetization and the short-range order
parameters [see Egs. (40a) and (40b)], the thermodynami-
cal properties obtained behave normally and are quite sa-
tisfactory.

Finally, it is worthwhile to mention the following find-
ings. The present theory starts with three equations,
which are derived upon setting, in Eq. 4), fi=1, 0,03,
and 0,04, i.e., Egs. (9), (10), and (11), respectively. How-
ever, even when we set f;=o0y, 0y, 010,03, 010,04, OF
01050304, and introduce the concept of correlated effec-
tive fields to these equations [Egs. (12)], all such equations
are proved to satisfy, as solutions for magnetization and
the CEFP’s, Egs. (28), (26), and (27) for T < T .(a) and
m =0, and Eq. (36) for T > T (a). In this way we con-
clude that the concept of correlated effective fields is con-
sistent with any kind of identity such as Eq. (4), and ac-
cordingly has good symmetry. But when the system un-
dergoes disorder,? this symmetry may be broken.

V. THREE-DIMENSIONAL ISING SYSTEM;
RELATION BETWEEN THE PRESENT THEORY
AND BP THEORY

Let us consider the simple-cubic system with an isotro-
pic NN interaction J without an external field. Thus the
Hamiltonian is given by Eq. (1), where J;;=J and H =0.
Our starting point is the Callen identity, into which we in-
troduce the concept of correlated effective-field parameter
A for the sake of evaluating the correlation functions in-
volved in the identity,

O'j=(0'j>+}b(0i—(0'i)), (44)

where j (=1,2,...,6) denotes the NN site of a certain
central site ;. The parameter A and the magnetization m
(=(0;)={0;)) should be determined as a function of
temperature to satisfy the following equations:

(o:)=(K), 45)
(0,0;)=(0;K) , (46)
where

K= {cosh(DBJ)+[m +A(o; —m)]sinh(DBJ)}%tanhx| 5 —o ,
47

and j denotes one of the NN sites of i.
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These coupled equations are solved as follows:

2t h(zL*)

m =tanh | ———L* =L, (48)

Z—1 J ecosh(2L*)+1

2

=l-— (49)
T eZcosh(2L*)+1

2
=T (50)

1—m

where Z denotes the coordination number (now Z =6),
and 7 denotes the NN correlation function (o;0;),
t=J/kgT, and L* is given by the following equations:

cosh(2L*)= 4 {e!¥—5¢%
+[(610t—5€2t)2+4(568t— 10e4t+1)]1/2}
for T<T., (51a)

L*=0 forT>T,, (51b)

where
kpT,./J =2(Inl1.5)"1=4.9326 .

At this point it is worthwhile to discuss the L*. Then
we shall consider the Ising system with a NN exchange
interaction without an external field on any lattice with a
coordination number Z. In the so-called BP theory, the
Hamiltonian considered Eq. (1) for the case of H =0 is
replaced by the Z +1 body-truncated cluster Hamiltoni-
an,

—BXpp=B3 Jjoi0;+L* 3 a;, (52)
Jj Jj

where L * represents the effective fields due to Z —1 NN
spins outside of the cluster. We find that the L* which
appeared in Egs. (48) and (49) does completely coincide
with L * defined above. Furthermore, Eqs. (48)—(50) are
valid for any coordination number, provided that

L*=0 forZ =2, (53)
(e —2e¥—1) forZ=3,T<T,,

cosh(2L*)=
1 for Z=3, T>T,, (54)

and
5(e¥—3e%) for Z=4,T<T,,
cosh(2L*)= (55)
1 forZ=3,T>T,,
where
kpT,./J=2/In[Z/(Z —-2)] . (56)

For any Z and in the region of T > T,, Eq. (49) reduces
to 7=tanh(J /kgT) because of L*=0. In this way, we
conclude that the NCEFT gives the same thermodynami-
cal quantities for the Ising model with isotropic NN ex-
change interactions on a regular lattice as does BP theory.
It is quite interesting to note that, although the philoso-

phy on which these two theories is based is different from
each other, they predict the same physical properties.

VI. CONCLUSIONS

We have discussed the spin-3 Ising ferromagnet in an
anisotropic square lattice. Within a new type of correlat-
ed effective-field theory we calculated the theory’s corre-
lated effective-field parameters, including its response in a
vanishingly small magnetic external field and the most
relevant thermodynamical quantities, namely the critical
temperature, magnetization, susceptibility, and specific
heat.

The correlated effective-field parameters A; and A, ex-
hibit interesting behavior with the change of the exchange
ratio a=J,/J;. The CEFP’s response in the infinitesimal
external magnetic field

8}»1,2
oh

BJ,

h=0

is negative and proportional to

—172
T

- T.(a)

just below the critical temperature T.(a); on the other
hand, it is zero above T, (a). In particular, the A, and

57 o,
)

h =0

behave anomalously for small a (o <0.1). These results
may be attributed to the fact that the A; and A, measure,
as a result, the NN correlation function itself above
T.(a); however, the CEFP’s A; and A, measure, as a re-
sult, a composite of the NN correlation function and mag-
netization below T,(«x).

Interesting effects (see Figs. 4 and 8) arise in the
thermal behavior of both susceptibility and specific heat
with the change of interaction ratio a=1 (pure 2D) —0
(pure 1D); inverse susceptibility becomes zero only at
T.(a) and its slope against a temperature slightly below
each T,(a) increases with the decrease of a. The value of
the specific heat at T.(a) decreases with the decrease of
a. In particular, for moderately small a the specific heat
exhibits one peak due to the phase transition and a broad
maximum due to the near separation of the system into
noninteracting chains. Thus the crossover from 2D to 1D
is clearly exhibited even in the level of the so-called MFA.

We have verified that the NCEFT reproduces all of the
thermodynamical quantities derived by the BP method for
the spin-5 Ising ferromagnet on a Z-coordinated regular
lattice. It should be pointed out that our theory is com-
pletely different in its formulation from the BP method
and has an advantage in its conceptual and mathematical
simplicity.

The formalism of the EFA [see Eq. (7)] has been ap-
plied to bond random magnets,'® amorphous systems,!®
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binary alloys,'® spin-glasses,'® the transverse Ising
model,'’® and the Potts model.”> Consequently, the
methods developed in this paper should be able to be ap-
plied to these systems as well as more complex systems.
Moreover, the correlation identities are not restricted to
the spin- Ising model. As a result, the NCEFT may be
suitable even for analyzing these systems.

ACKNOWLEDGMENTS

The author would like to thank Dr. T. Kaneyoshi for a
critical reading of manuscript and valuable comments,
and also thanks Dr. E. F. Sarmento for several helpful
comments. This work was partially supported by Con-
selho Nacional de Desenvolvimento Cientifico e
Technoldgico (Brazil).

APPENDIX

K| =cosh¥(Dta)cosh(Dt)sinh(Dt)tanhx | , _g

= +{tanh[2¢(1+a)]+tanh[2¢(1 —a)]+2tanh(20)} , (A1)
K, =cosh*(Dt)cosh(Dta)sinh(Dta)tanhx | ,

=+ {tanh[2¢(14+a)] —tanh[2¢ (1 —a)]+2 tanh(2ta)} , (A2)
K;=cosh(Dta)sinh[Dt(1+«a )]sinhz(Dt)tanhx | x=0

=+ {tanh[2¢(14a)]—tanh[2¢ (1 —a)]—2tanh(2ta)} , (A3)
K 4 =cosh(Dt)sinh(Dt)sinh*(Dta)tanhx | , _

=+ {tanh[2¢(1+a)]+tanh[2¢(1—a)]—2tanh(20)} , (A4)
G =coshX(Dt)cosh?(Dta)sech®x | , o

=+ {sech?[2¢ (14+a)]+sech?[2¢ (1 —a)] 42 sech’(2t) 42 sech?(2ta) +2} , (A5)
G, =cosh(Dt)sinh(Dt)cosh(Dta)sinh(Dta)sech®s | . _o

=+ {sech?[2t(1+a)]—sech?[2t(1—a)]} , (A6)
G; =cosh?(Dta)sech?(Dt)sech?x | . _

=+ {sech’[2¢(14a)]+sech?[2¢ (1 —a)]+2 sech*(2¢) — 2 sech®(2ta) — 2} , (A7)
G, =sinh*(Dta)cosh’*(Dt)sech’ | , _g

=+ {sech?[2¢ (14 a)]+sech?[2¢ (1 —a)] —2 sech?(2t) 4+ 2 sech®(2ta) —2} , (A8)
Gs=sinh*(Dt)sinh*(Dta)sech’x | , —o

=+ {sech?[2¢(14a)]+sech?[2¢(1 —a)]—2 sech’(2¢) —2 sech?(2ta) +2} . (A9)
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