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We calculate total configurational energies for interstitial aluminum and silicon in silicon. The
calculations, based on the self-consistent Green’s-function technique, are done for a selective migra-
tion path along the “empty” channel in crystalline silicon. Short- and long-range structural distor-
tions are found to be sizable and strongly varying along the migration path. Carrier capture is pos-
sible along the migration path, resulting in a drastic dependence of the migration barrier on the
nominal charge-state of the defect. For aluminum migration in p-type silicon we find a barrier of
Vp=(1.3120.5) eV, which in n-type material can be lowered by AVz=(0.8+0.4) eV due to carrier
capture. Both numbers agree well with experiment. Assuming a similar migration path for intersti-
tial silicon the calculated values are Vjz~(0.4+0.5) and (2.0+0.4) e¢V. In addition, the heat of
tetrahedral formation of interstitial Si is evaluated to be AH; ~4.7 eV.

I. INTRODUCTION

The migration of interstitial atoms in semiconductors is
a long-standing problem and is fundamental to most de-
fect reactions.!™* In contrast to metallic systems, semi-
conductors exhibit the phenomenon of enhanced migra-
tion, which, in some way, represents a coupling to the mi-
gration process of the energy stored in electron-hole pairs.
Enhanced migration has been recognized as an important
feature of defect reactions and device degradation. In this
paper we theoretically investigate the question of migra-
tion and enhancement processes for a particular system,
i.e., interstitial aluminum in silicon. This system has been
studied experimentally in much detail® and is therefore
ideally suited for quantitative theoretical interpretations.

Recently, we proposed a novel mechanism for the
enhancement process in this system.® We were able to cal-
culate the change in the barrier against migration upon
carrier capture without having to calculate the barriers
themselves. In the present paper we calculate barriers by
evaluating total-energy differences, and thus obtain a
complete picture of the migration process of interstitial
aluminum in silicon. We also extend our calculations and
replace aluminum by silicon, thereby simulating a particu-
lar channel for self-diffusion. Unfortunately, and in con-
trast to aluminum, no confirmed, direct observations of
self-interstitial migration exist.” Therefore, our silicon-
in-silicon results can only be gauged as being consistent
with indirect observations (or the lack thereof).

The barriers are calculated by evaluating total configu-
rational energies within the self-consistent Green’s-
function technique.® First, illustrative results using this
technique have recently been proposed by us.” More de-
tailed discussions of theoretical techniques and underlying
fundamental issues will be published separately.’® In Sec.
11 of this paper we briefly present the expressions used to
evaluate the total energy, discuss chosen parameters, and
give other details of the calculations. In Sec. III a variety
of results for Al and Si in different interstitial positions
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will be given and available experimental observations will
be interpreted. The paper is concluded in Sec. IV.

II. CALCULATIONS

The defect energy we wish to calculate is the difference
AE between the total energies of the perfect and defect
crystals. For the present study we are interested in the
diffusion barrier, which we take to be the difference be-
tween two defect energies, one with the defect in its
minimum-energy configuration, the other with the defect
in the saddle-point state it passes through along the pro-
posed diffusion path. Thus, we shall calculate the energy
difference between two distinct defect configurations,
each of which is characterized by a defect energy AE.

We work within the local-density-functional formal-
ism,!! which allows us to express AE as a functional of
the self-consistent electronic charge densities pd:pg]
+ Apg evaluated in the potential of a adiabatically moved
ion cores

Pion(r) =P?on(r)+Apion= 2 pion(r _Rion) .
(R

ion]
As derived in Refs. 9 and 10, AE may be written as
9
AE= Y AE;—pun (1)
i=1

where n is the nominal electronic charge of the defect and
u is the energy of the donor or acceptors which supplied
the n electrons needed to charge the defect. We write

AElzzniei—En,pe?,
i i

the change in one-electron energies, and

[Apion(r)Apion(r’) — Apa(r)Apa(r’)]
|r—r']

b

AE,=% [ [ardr

, [pon(r) +pa(r) 1Apion(r")
AE3=f fdrdr Ir—r|

’
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and

[Apion(r)+Apel(r)]Pgl(r')
r=r]

AE,=— [ [arar

are electrostatic energies. The r’ integration in AE,
would, for a charged defect, diverge if carried over the in-
finite crystal. However, the actual integration is to be car-
ried only over the volume Q; in which the defect potential
is allowed to be nonzero. The necessity and correctness of
cutting off the potential have been already established.”!°
The r integration of AE; gives rise to ®%r), the electro-
static potential of the unperturbed crystal. Its average
value is using arbitrary, but, having chosen it, the eigen-
values €; and the energy u must be calculated using the
same chosen value. We have

AE;= [ drieclpa(n]—Vilpa(]}pa(r
— [ dr{edp(M]—VielpAM1}p%P)

the change in exchange-correlation energy, corrected for
overcounting, and

AEs= [ dr[AVo™(r)— AV(r)]py(r)

arises from replacing the kinetic energy by E; and using
Schradinger’s equation. AV™ and AV°" are the input and
output total defect potentials of the last self-consistency
iteration. AE approaches zero as self-consistency is ap-
proached. We then write
AE‘7= 2 égilf_ 2 E;Oe?f""A gx.rlap ’
removed added
ons ons
which removes spurious ion-core self-interaction and
overlap terms which were introduced by using ion-core
pseudopotentials in evaluating the ionic densities. Finally,

AEg=— [ drpy(r)

corrects for introducing a constant model potential ® in
evaluating the self-consistent charge density Apg(r) (see
below). All integrals are evaluated over the finite volume
Qp over which the defect potential AV is allowed to be
nonzero.

The changes in the electronic charge density Apg(#) and
in one-electron energies AE,; are evaluated using self-
consistent Green’s-function technique. As discussed in
Refs. 9 and 10 this procedure requires the long-range
Coulomb tails in the potential of charged defects to be cut
off. The cutoff introduces two additional features. (i) A
model potential

const inside
“ |0 outside Q;

must be added to the total defect potential AV in order to
obtain the correct amount of screening charge inside Q.
@ simulates the effect of the long-range Coulomb tail for
charged defects. Its value is determined by the macro-
scopic dielectric constant €, of the semiconductor. The
energy term AEg compensates for the effect of the model
potential ® on the energy term AE,;. (ii) In addition, any
bound-state eigenvalue €; in AE; has to be corrected for

long-range Coulomb tails as discussed before.!?

A well-known shortcoming of the use of the local-
density approximation (LDA) is that it predicts band gaps
considerably too small (e.g., 0.5 eV for Si).!* This effect
has recently been traced to the existence of a discontinuity
in the exchange correlation potential for p- or n-type
semiconductors.!* As discussed earlier'’> we introduce
into the perfect-crystal Hamiltonian H, an energy-
dependent nonlocal operator (“scissor operator”)

Mi(r,r)=AS [ &k ¢, (kP (k) (2)

where n runs over conduction bands only, and where A is
an adjustable constant. This operator widens the band
gap to the experimental value and represents a zeroth-
order approximation to the self-energy operator. Since
My operates on the perfect-crystal wave functions it
represents an implicit contribution beyond the LDA to de-
fect ground-state energies when they are calculated within
the Green’s-function formalism. This contribution can be
evaluated to first order as

AE igsor <A [ANCI— [ [ orrtptr,ndrar |, @)

where p° and p=p°+Ap are the single-particle density
matrices for the perfect and defect crystals, respectively,
and where AN, = f dr Ap(r) is the number of electrons
added to or subtracted from the system. AE ., obvious-
ly is the gap-correction energy A times that amount of ex-
tra charge which derives from conduction states.

To account for long-range distortions beyond (1, the
range of our Green’s-function calculation, we evaluate an
additional elastic energy,

AE, =EKeating( {RA }1)‘EKeating( {RA }2) s

where Egeating({R A}) is the elastic energy evaluated, ac-
cording to Keating,'>!6 of a set of atoms inside a volume
Qp>>Qp. The displacements in atom set {R 4}, are iden-
tical to the ones determined by our Green’s-function
total-energy calculations, i.e., the displacements are limit-
ed to Q;, while all atoms in Qy; are held fixed at their
perfect-crystal positions. In set {R,};, the nearby atoms
are displaced as in set {R4},, but, in addition, all other
atoms within Qy; are allowed to relax freely so as to mini-
mize the Keating elastic energy, which is determined by a
bond-stretching constant a and a bond-stretching constant
B. AE, adds an effective “negative” spring which softens
the elastic energies obtained in the short-range Green’s-
function treatment.

The actual calculations start with a self-consistent band
structure for the perfect silicon crystal. Hamann-
Schulter-Chiang—type ionic pseudopotentials are used,!’
with the Ceperley-Alder local potential for exchange and
correlation.!® As in earlier studies,®!? a Gaussian orbital
set with decay constants of a=0.2 and 0.6 a.u. and ten or-
bitals per decay constant (s,p,d,rz), is employed. The use
of this basis with ionic pseudopotentials yields a good
description of the ground state of Si.!° The minimum op-
tical gap, however, is found to be too small by A~0.3 eV.

For the study of diffusion along the “charge-free”
channels in silicon we consider two lattice centers: (i) the
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FIG. 1. Atomic clusters used in expanding the Green’s func-
tion for the interstitial T site (top) and D54 site (bottom).

tetrahedral interstitial site (7; symmetry), and (ii) the
hexagonal interstitial site (D3; symmetry). Around each
site, finite-size clusters of atoms are selected for the
evaluation of the Green’s function. For T, 27 sites dis-
tributed over five shells of atoms are included. As shown
in Fig. 1 (top) this includes all (4 + 6) atoms of the “cage”
around the interstitial and all atoms bonded directly to the
“cage” atoms. On each site the Green’s function is ex-
panded in the same orbital set as for the perfect crystal,
which yields a space of 540 orbitals for the T,; Green’s
function. The use of symmetry reduces the largest matrix
to rank 84.

The cluster used for the hexagonal site, shown in Fig. 1
(bottom), contains 19 sites distributed over four shells, in-
cluding all atoms in the hexagonal ring around the inter-
stitial center and every atom directly bonded to them.
The orbital space contains 380 orbitals and yields matrices
of rank up to 64 using D;; symmetry. Note that the clus-
ters used in the present work are somewhat larger than
those used in our previous study of this problem.®

For both geometries (T; and D;;) only symmetry-
preserving distortions were considered. For T,; symme-
try, radial breathing modes of the four nearest and six
next-nearest neighbors were allowed, while for D;; sym-
metry, radial distortions of the nearest-neighbor hexagon
was allowed as well as an axial change of the pucker of
the hexagon. As discussed, all short-range relaxations are
complemented by long-range relaxations derived from a
Keating model.

The interstitial geometry studied here contains an atom

which is far from where atoms sit in the perfect crystal.
Extra orbitals are needed in the Green’s function to give it
sufficient flexibility to represent this extra atom. In our
earlier study® we included extra orbitals by use of the
cluster-extended Green’s-function technique.?’’ This sim-
ple and approximate method is sufficiently accurate to
produce the eigenvalues and self-consistent potentials
needed for a calculation of the barrier lowering by
minority-carrier capture, the topic which was studied in
the earlier work. However, here we are calculating the
barrier height itself, and we need to evaluate the total en-
ergies for this. The approximation underlying the
cluster-extended Green’s function is not sufficiently accu-
rate for this purpose, and so we now add the extra orbitals
needed by using the ad-space method proposed by Willi-
ams et al.?! We have been able to recast this method in a
form which makes it quite similar to the cluster-extended
Green’s-function technique, differing from it only by in-
cluding a fixed (i.e., a given, not a self-consistent) term in
the perturbation potential, as is explained in a separate pa-
per which compares the two methods in full detail.?
New computational features are the use of complex con-
tour integration to obtain Ap(r) and the use of an effi-
cient Jacobian iteration scheme to reach self-consistency.
About 30 different geometries and charge states were
studied, each of which needed about 20 self-consistency
iterations to obtain a well-converged total-energy value.
A review of some other aspects of the method used here
has recently been given elsewhere,” but these other as-
pects have been described in our earlier papers.® 1?

III. RESULTS AND DISCUSSION

It is instructive to first qualitatively study the electronic
charge density and its changes induced by the insertion of
interstitial atoms. Figure 2 shows the calculated charge
density of the perfect Si crystal (top), as modeled by the
Green’s-function cluster, the density in the presence of an
AI’t tetrahedral interstitial (middle), and the difference
density due to the defect (bottom). The contours are
shown in a (100) plane intersecting the tetrahedral site.
On this scale, the results for other charge states are very
similar. Differences for Si interstitials will be discussed
below.

The interstitial atom is fourfold coordinated and it at-
tempts to establish tetrahedral bonds to its neighboring
atoms, thereby slightly weakening their preexisting four
bulklike bonds. This effect is somewhat more pronounced
for the Si interstitial (see below). The difference defect
density of the interstitial atom (Fig. 2, bottom) shows the
tetrahedral symmetry and resembles qualitatively the neg-
ative of the vacancy defect density obtained in our earlier
calculations.!? Evidence for additional bond formation is
obtained from comparing the breathing-mode stiffness of
the four surrounding crystal atoms in the presence and ab-
sence of the interstitial atom. The interstitial atom in-
creases local stiffness by about 40% (see Table I).

Figure 3 shows the calculated charge densities for AI>+
in the hexagonal interstitial site. The densities are shown
in a (117) plane intersecting the interstitial. The plane
does not intersect any perfect-crystal atoms, but intersects
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FIG. 2. Calculated charge-density distribution for T, inter-
stitial A>*. The unperturbed crystal density (top), the per-
turbed density (middle), and the defect difference density (bot-
tom) are shown as contours in a (100) plane.

instead the midpoints of the six bonds in the hexagon. In-
sertion of an interstitial atom at the hexaponal site creates
a local environment of high and remarkably constant elec-
tron density in the plane of the hexagon. This is even
more pronounced for the silicon interstitial. Figure 4
shows the same densities as Fig. 3, but plotted in a (110)
plane intersecting the hexagon at right angles. The for-
mation of bridging charge across the hexagon is clearly
visible. Again, results for Si are qualitatively similar. To

TABLE 1. List of calculated structural parameters. The
breathing distortion Au is given in units of the nearest-neighbor
distance.

Au (%) K (eV/A?) AE (eV)
T; empty <1 100 ~0
T, ALSi <1 140 <0.1
Dsg Al* ~6 61 0.5
Dsg Sitt ~7 69 0.8

FIG. 3. Charge-density distribution for D, interstitial AI>*
shown in a (117) plane.

highlight the differences between the Al and Si intersti-
tials, in Fig. 5 we show calculated charge densities for
Si2* in the tetrahedral site (top) and the hexagonal site
(bottom). The results are qualitatively similar to those in
Figs. 2 and 3. Quantitative differences, such as, e.g., the
enhanced bond formation for silicon in the T, site, are,
however, clearly visible.

The spectral changes incurred by the insertion of an
AI>* interstitial atom are shown in Fig. 6 for the
tetrahedral site (left) and the hexagonal site (right). Only
important representations are shown. A ‘“hyperdeep”
state of 4, symmetry appears below the valence band. Its
(T4) charge density is shown in Fig. 7 (bottom). It is the
lowest bourid state in the locally attractive defect potential
due to 4 + 1 atoms. The features playing key roles in the
electronic diffusion enhancement are located near the op-
tical gap. For T, these are an A4, bound state near the
top of the valence band (which becomes a strong reso-
nance below the valence-band edge for Si**) and a T, res-
onance near the bottom of the conduction band (which for
Si** just drops below the conduction-band edge). When
the interstitial is moved into the D4 site, the 4; bound
state rises somewhat higher in the gap. The important
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FIG. 4. Same as Fig. 3, but shown in a (110) plane.

feature is the splitting of the threefold-degenerate T', res-
onance into a twofold I'q resonance which moves higher
into the conduction band and into a onefold I'y bound
state which drops into the gap.

These states near the gap are predominantly nonbond-
ing in character, with some antibonding admixture. The
A, state is shown in Fig. 7 (top). Its character remains
rather similar after moving to the hexagonal site (Fig. 8,
bottom).

For the hexagonal case the two I'g-resonance states are
quantized in the hexagonal layer, thus raising their energy
making them slightly more antibonding. The split-off I
bound state is quantized perpendicular to the hexagon
and, due to the absence of nearby neighbors, the state be-
comes more nonbonding (see Fig. 8, top) and drops in en-
ergy.

The distribution of levels near the gap is summarized in
Fig. 9. Here we have plotted the Slater-transition-state
values,?® interpolating between two charge states and
correcting for Coulomb effects as discussed in Sec. I. The
values refer to the distorted defect equilibrium configura-
tions. The calculated deformation potentials for the levels
are small (=~0.5—1.5 eV/A), which is consistent with the
predominantly nonbonding character of the states.

Y

FIG. 5. Calculated charge density for interstitial Si>*, in the
T, site (top) and the D5y site (bottom).

We now discuss the results for the total configurational
energies. In p-type silicon the unrelaxed barrier for
aluminum migration is calculated according to Eq. (1) as
Vp(AI** /AI3*)=(1.8+0.5) eV. This barrier involves a
change in charge state (2 + to 3 4 ) as the atom migrates
from T, to D;; symmetry (see Fig. 9). The theoretical
Al* barrier without change in charge state would be
about 1.9 eV, which is about 50% larger than the value
obtained from recent cluster-MNDO (where MNDO
denotes mutual neglect of differential overlap) calcula-
tions.?*

Virtually no radial relaxations (outwards < 1%) are cal-
culated to occur for the tetrahedral site. For the hexago-
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FIG. 6. Spectral changes in the valence and conduction bands
of silicon for interstitial Al* in the T, site (left) and Dj, site
(right). The spectra are broken down into irreducible represen-
tations.
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FIG. 7. Charge-density distribution for the hyperdeep (bot-
tom) and deep (top) 4, states of interstitial Al* in the T site.

FIG. 8. Charge-density distribution for the deep I'; (bottom)
and I, (top) states of interstitial Al1* in the Dy site.

Ty Dagq
-
T, ———>10
Na
\§<\
+ + NS
si \\\
—— o3
\ 4

T
/TZ»///// /

~ ’ Ty
AL T~ 06
N +
—+ o — 02
ATy % — et o [

FIG. 9. Calculated electrical level structure for interstitial Si
(top) and Al (bottom) for tetrahedral ( T;) and hexagonal ( Dsg)
symmetry.

nal site, a small increase in pucker (=~1%) and a sizable
radial outward distortion (~3%) are predicted by the
Green’s-function treatment for interstitial Al. This will
lower the barrier to Vg(AI2+ /AIP*)=(1.5%0.5) eV. The
outward relaxation will generate a long-range displace-
ment field, which has been calculated according to Sec. II
using a Keating model. We use the modified Keating pa-
rameters a=>51 a.u. and B=4 a.u., as for our Si-vacancy
studies,’? to account for the anomalous flatness of the
TA-phonon branch in silicon. The long-range relaxations
increase the outward breathing to =~6% and lower the
barrier to Vz(AI**/APP+)=(1.3+0.5) eV. Similarly,
they soften the breathing spring constant from ~98 to
~61 eV/A2 In n- type silicon the nominal charge states
are Al*/Al~, and the relaxed barrier is calculated to be
Vg(Alt /A17)=(0.5%0.5) eV. To obtain this barrier we
can also use the p-type value and consult Fig. 9 for the
population of deep levels.

Corrections AE or [EQ. (3)] due to LDA insufficien-
cies are less than 0.1 eV for all barriers. The barrier
lowering from p- to n-type material is calculated to be
AVp ~(0.8+0.4) eV, which is close to the value of 0.9 eV
we previously reported.® Since AVj involves four dif-
ferent charge states, uncertainties in bound-state positions
add up to rather large uncertainties in barrier-height
differences. These shortcomings can partially be circum-
vented by reformulating AE in Eq. (1) using the kinetic-
energy operator rather than eigenvalues. Investigations in
this direction are currently underway. The various results
sults obtained from the total-energy calculations are sum-
marized in Table II.

In Table III we list some individual terms contributing
to the barrier height of unrelaxed Al* (V3 =1.9 eV). The
first column shows the change in eigenvalues, i.e., AE,
the second column shows the sum of all electrostatic
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TABLE II. List of migration barriers for interstitial Al and
Si in silicon calculated with the self-consistent Green’s-function

technique and a long-range Keating model. Vp=AE(D;,)
—AE(T;)ineV.
Va
Vp short- and long-range
unrelaxed relaxed

Al

p type 1.8+0.5 1.3+£0.5

n type 1.0+0.5 0.5+0.5
Si

p type 1.2£0.5 0.410.5

n type —1.1£0.5 —1.6£0.5

terms plus the self-consistent correction, ie., AE,
+AE;+AE,+AEg, and the third column contains the
change in exchange-correlation energy, i.e., AEs. Terms
arising from AE; and AEg are small ( <0.1 eV) and not
listed. We see a strong cancellation between the eigen-
value term and the electrostatic energies. The exchange-
correlation energy, though smaller, remains an important
factor in determining the barrier. Recently, Penetta and
Baldereschi?® discussed the migration of point charges
and small interstitial ions in silicon. They explicitly
evaluated AE; for point charges and remarked upon its
sensitivity to a correct description of the unperturbed
charge density pS, along the channels. We find an overall
small (~0.0 eV for AI’* and 0.25 eV for Si**) contribu-
tion of AE; to Vg. The sensitivity to p21 is, however, as
claimed, sizable. We find AE; increasing by ~0.4 eV
when going from a 500-plane-wave representation of pgl(r)
to a 1500-plane-wave representation. A rather larger
overall uncertainty to +0.5 eV in the total calculated bar-
rier heights should conservatively be assumed due to the
use of finite and different clusters for 7; and D3z sym-
metries.

We now consider the experimental situation. For
tetrahedral Al, the (4 4/+4) level, calculated at
~(E,+0.2) eV, is in good agreement with deep-level
transient-spectroscopy (DLTS) measurements by Troxell
et al.> They identified the so-called H3 level, observed at
(E,+0.17) eV, with the second donor state Al*/A1?* of
interstitial aluminum, and, via EPR measurements, con-
firmed the tetrahedral symmetry of the state. Troxel
et al. also studied the temperature-dependent recovery
rate of this defect in p-type material. In the absence of
free electrons, the annealing process of interstitial Al re-

TABLE III. Individual energy contributions to the unrelaxed
barriers (in eV).

AE AE
one AE exchange AE
electron electrostatic correlation total
Al* 6.0 —4.3 0.1 1.8
Si2+ 24.9 —24.0 0.3 1.2
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FIG. 10. Experimental temperature dependence of the

recovery rate of the interstitial Al defect in p-type silicon. Two
curves are shown: with no free carriers present (V/), and with
tree carriers present, either injected is a junction (O and O,
respectively), or by laser light (A). (From Ref. 5.)

veals a diffusion potential barrier of V3 ~1.3 eV (see Fig.
10). Our calculated value of Vz=(1.3+0.5) eV is in ex-
cellent agreement with this measurement. In the presence
of free electrons, either laser-generated or junction-
injected, this diffusion barrier was lowered to V3 =~0.27
eV (see Fig. 10). Interstitial Al in p-type Si thus shows
enhanced migration with an effective barrier lowering of
AVp~0.93 eV upon minority-carrier (electron) injection
(see Fig. 10). We calculate a lowering of AVz=(0.8+0.4)
eV, again in excellent agreement with experiment. In-
terestingly, the H3 hole trap at (E,+0.17) eV was found
to saturate at low injection current (~10~1 Acm™2),
while the enhanced diffusion saturated only for injection
currents of ~1 Acm™2. It was therefore concluded® that
the observed Al*/AI** second donor state was not in-
volved in the enhancement of the migration, and that an
unobserved state must be responsible.

In our earlier study® of the problem we proposed a new
model for the enhanced migration of interstitial alumi-
num which is confirmed and reinforced by our present
calculations and which is consistent with all reported ex-
perimental findings. The migration path for Al originates
at a stable tetrahedral site and lies along the nearly-
charge-free channels, while the hexagonal site is a saddle
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FIG. 11. Configuration-coordinate diagram for the total-

energy variation of Al diffusing along the channel in silicon.
The lower curve corresponds to the diffusion of Al* without
free carriers present. The upper curve, shifted by Eg, and by
2Eg, respectively, correspond to Al* plus free electrons and
holes. The shallow state for the tetrahedral site (T), Al° be-
comes a deep state for the hexagonal site (H). Upon thermal vi-
bration, a second electron can be captured into the deep state,
resulting in Al~. The set of curves corresponds to the calculat-
ed barrier values.

point on this path. There is a sizable energy barrier (mea-
sured as 1.2 eV and calculated as 1.3 eV in p-type Si) asso-
ciated with unassisted migration (see lowest curve in Fig.
11). This barrier results mainly from the drastic changes
in bonding configuration as illustrated by the changes in
the local charge density, but it is reduced by about 25%
by site-dependent short- and long-range elastic distortions.

Under electron injection, all the tetrahedral AI** con-
verts to Al at low currents,” which according to our cal-
culations, leaves the barrier unchanged. The positively
charged Al* can bind another electron in a shallow
effective-mass-like state A1°. Because of the Coulomb at-
traction similar to that binding Al™, this process should
also saturate at comparably low currents. The strong T,
resonance near the conduction-band minimum drops into
the gap as the Al vibrates thermally from the tetrahedral
position towards the hexagonal one. This allows the
effective-mass-like electron to be localized in the vicinity
of the Al interstitial, lowering the barrier by about 0.6 eV.
A second electron can be trapped, leading temporarily to
Al™ and a further barrier lowering of 0.2 eV. Our calcu-
lations show that the shallow-deep transition of these fwo
electrons acts as a driving mechanism to help move the Al
atom along the tetrahedral-hexagonal path (see Fig. 11).
The participation of fwo electrons in the enhancement
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process contradicts the commonly held belief that the
maximum energy available for enhancement is equal to
the gap Eg. The cross section for this process should, at
anything but the lowest injection currents, resemble that
of an ordinary one-electron process because one of the
donor electrons is, at injection currents greater than those
destroying the Al’* EPR signal, already bound by
Coulomb forces. Because the resonance is so close to the
bottom of the band when the A1° is at the equilibrium po-
sition, the activation energy to capture the next electron
should be small. It would, however, be interesting to test
the two-electron model and search for some superlinear
enhancement cross section for very low injection currents.
Furthermore, the study of counterdoped n-type material
should give additional insight.

Apart from the remarkably large barrier lowering,
which according to our model is due to the participation
of two electrons, a drastic drop in the preexponential fac-
tor for the recovery rate of the defect has also been ob-
served (see Fig. 10). In fact, the factor drops from 3 10°
to 70 sec™!. The value of 3 10° sec™! is typical for a
thermal process, i.e., the lattice-vibrational frequency
(~10" sec™!) divided by the number of migrational
jumps required before the defect becomes trapped (~ 10%).
The value 70 sec™! indicates that many more jumps are
required before the defect is trapped. Presumably, the
negatively charged defect is much harder to trap than was
the positively charged one.

It is instructive to use the model for the Al diffusion to
speculate on the silicon self-interstitial problem. If we re-
peat our Green’s-function calculations for Si, a level struc-
ture as shown in Fig. 9 is obtained. The calculations show
no deep A level in the gap and a 2 + charge state for Si
in the tetrahedral interstitial site. The T, state (a reso-
nance for Al™) becomes slightly bound and drops below
the conduction-band edge. Tetrahedral interstitial silicon
would therefore most likely elude DLTS and/or EPR
detection. A qualitatively similar finding has also been
reported by Pantelides et al.?6 The calculated barriers for
Si moving along the silicon channels are listed in Table II.
For p-type silicon the unrelaxed silicon barrier
V(Si®*/Si?*)~(1.240.5) eV is somewhat smaller than
that found for aluminum. Here, this value is in close
agreement with recent MNDO results (1.2 eV),?* but it is
about 0.6 eV lower than recent pseudopotential supercell
calculations.”” Short- and long-range relaxation contribu-
tions are somewhat larger than those obtained for alumi-
num, which lowers the barrier in p-type material to
Vp(Si**/Si**)~(0.4+0.5) eV. For n-type material the
barrier is drastically changed, in accord with the level
structure in Fig. 9. The barrier lowering is about
AVp=(2.31£0.4) eV, shifting the minimum from the
tetrahedral to the hexagonal site. Provided the migration
path is along the channels, this could produce athermal
recombination-enhanced diffusion (Corbett-Bourgoin—
type) which would make Si interstitials very mobile even
at low temperatures, provided carriers are present. These
are speculations, however, since no direct experimental
data are available to indicate that the channel is the
correct migration path. In fact, other theoretical studies
seem to favor an entirely different migration path for in-
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terstitial Si, namely weaving through Si bonds?®?° rather

than along the nearly-charge-free channels—a conjecture
recently opposed by some pseudopotential supercell stud-
jes.?” In addition, more extended, fully bonded self-
interstitial complexes have been proposed. It has been
pointed out?® that both mechanisms may be correct at low
and high temperatures, respectively.

Our Si interstitial calculations also allow us to estimate
the formation energy AH, of self-interstitials in the
tetrahedral site. We define AH; as the difference between
AE, evaluated for the interstitial atom according to Eq.
(1), and the total energy of a perfectly bonded crystal
atom (i.e., half of the unit-cell energy). For intrinsic sil-
icon we find AH;=(4.7+0.5) eV for tetrahedral Si’*, as-
suming that the two charge-compensating electrons are
placed midgap. This includes a AE g0, ~0.9 €V due to
the gap correction. The value AH; is almost identical to
the vacancy-formation energy AH,.3° The two values are
related to the threshold energy Egp for Frenkel-pair pro-
~21 eV. We may write Exp=AH,+AH;+E;, where
E; denotes the lattice distortion and bond-breaking ener-
gy at the saddle point of the Frenkel-pair—formation pro-
cess. Comparing our calculations to the experimental
threshold, E; >4 eV, a reasonable value. We add that the
calculated value AH;=4.7 eV is about 50% smaller than
an empirical estimate by Van Vechten.> As mentioned
above, no direct low-temperature data on AH; (for
tetrahedral Si) are available. High-temperature—diffusion
data® suggest a value of AH;~2.8 eV which is presum-
ably associated with a different (equilibrium) interstitial
configuration.

IV. CONCLUSIONS

In this paper we present calculations of total configura-
tional energies evaluated within the Green’s-function for-

malism. The calculations focus on the diffusion of Al in
silicon for which detailed experimental information is
available. From these calculations emerges a consistent
picture which is qualitatively able to describe the experi-
mental situation. . The main results are (i) the existence of
large short- and long-range lattice distortions significantly
lowering (up to 25%) the rigid barriers obtained from
electronic energy differences, and (ii) the existence of a
barrier-lowering mechanism associated with the charging
of defects. This latter effect is unique to semiconductors
and insulators. However, we believe that the particular
shallow-deep alternation mechanism proposed here for the
enhanced migration of interstitial Al is a quite common
phenomenon in defect migration. The mechanism has
some similarities with the “electron excitation” mecha-
nism invoked for the photostimulated F-center production
in KCL,? but it differs from the “common” models for
enhanced migration in semiconductors, i.e., the charge-
state mechanism, the saddle-point mechanism, or the
energy-release mechanism.> 34

Note added in proof. In a recent letter [R. Car, P. J.
Kelley, A. Oskigama, and S. T. Pantelides, Phys. Rev.
Lett. 52, 1814 (1984)] the diffusion of Si in silicon was
considered. Their results are similar to those reported
here.
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