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The density of states (DOS) in amorphous silicon is a key parameter in assessing the performances
of photocells made of this material. The principle of the determination of the DOS by the study of
the space-charge-limited current (SCLC) had first been given by den Boer in an approximate but
very physical model. We have found that a precise determination of the DOS in amorphous silicon
by this method requires special precautions, both theoretical and experimental: it is only after elim-
ination of most of the pollution by the electrodes and walls of the chamber that we have found that
the “scaling law” is valid with good precision, and only for films thicker than d =1.5 um; in the
usual experimental conditions (current density <1 A/cm?), the situation is intermediate between the
low-injection condition (Ohm’s law) and the high-injection condition, so that the asymptotic solu-
tions given by the “regional approximation,” as used by previous authors, are not valid. By compar-
ing the experimental curves with the exact solutions obtained by numerical integration of the SCLC
equations, we have determined the DOS in amorphous silicon films with an estimated uncertainty of
15%. The application of the method to a series of films produced by capacitive glow discharge
shows the following: (a) the DOS at the Fermi level is very sensitive to the quality of the pumping
system (pollution by air, H,O, pumping oil), the best value obtained in our films being 5X 10"
cm~3eV~!; (b) for films produced in identical conditions, there is a well-defined minimum of the
DOS at a preparation temperature T, =260°C, which explains why most of the best photocells are
prepared at this temperature; (c) the DOS in the first 2000—4000 A of the films is larger by a factor
of 3—10 than that in the rest of the film. This has a direct implication for the fabrication of photo-
cells which have a thickness only 2—3 times this perturbed region. The cause of this effect, whether
it is an intrinsic surface effect or external effect, corrected by self-cleaning after a few minutes of

plasma, remains to be determined.
I. INTRODUCTION

The density of states (DOS) in amorphous silicon is a
key parameter for determining the semiconducting prop-
erties of this material. To measure this quantity, different
methods have been used with all their advantages and
their limitations. The pioneering work of Spear and
LeComber,! based on the measurement of field effect, was
the first to show that hydrogenated amorphous silicon
was characterized by a low DOS in the gap. This method,
however, measures the properties of the material very
close to the surface>? and is very sensitive to the possible
presence of surface states: The results of field-effect mea-
surements are expected to give only an upper limit of the
DOS at the Fermi level. The results given by different
groups*> range from a few 10! to 10! cm~3eV 1.

Another type of determination of the distribution of
DOS is based on the study of dynamic trapping of carriers
by localized states. This includes the frequency- and
temperature-dependence study of the capacitance of
Schottky diodes.®” The method of deep-level transient
spectroscopy (DLTS), currently used for crystalline semi-
conductors, has also been applied to the study of lightly
doped amorphous silicon®® with results quite different
from those obtained by other methods.!® The interpreta-
tion of these methods is complicated by the existence of a
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very wide range of trapping times!! which can, in some
cases, be of the order of several hours at room tempera-
ture.

Recently, den Boer'? has shown that the study of
space-charge-limited current (SCLC) in the n *nn* struc-
ture provides a reliable method for the study of the DOS
in amorphous silicon. In principle, the measured values
are characteristic of the bulk of the material. Besides, it is
a steady-state method and should not be perturbed by un-
controlled trapping dynamics of the carriers.

In the present study, we have used this method for the
determination of the DOS in a series of samples prepared
by decomposition of silane in a capacitance glow-
discharge reactor described previously.!* The standard
conditions of preparation were followed: The pressure
was 20 mTorr of pure SiH,, with a flow rate of 1 1/h and
power density of 0.2 W/cm?. We have solved exactly the
equations of current injection in a ntnn* structure, and
the comparison with the experimental results provides a
direct determination of the DOS of the material, without
any other adjustable parameter.

II. SPACE-CHARGE-LIMITED CURRENT:
THE SCALING LAW

The problem of current injection into solids has been
extensively studied by Lampert and co-workers.'*#!> A
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geometry presenting the considerable simplification of a
single type of carrier in one dimension is that of the
ntnnt sandwich, which is the structure studied in the
present work. Except at very low current densities, a
large number of electrons are injected in the central n re-
gion (which can be slightly doped or naturally n type) and
the problem is that of the transport by SCLC.!?
For such a sandwich the characteristic equations are

J=eun(x)F(x)=const , (1
Efgi15'-@—)—=n(x)—no+N,(x) . (2)
e dx

The first equation is the usual drift-current equation, with
J the current density, e the electronic charge, u and n(x)
the free-electron drift mobility and density, and F(x) the
electric field at the transverse position x, the origin being
taken at the interface between the n+ and the central re-
gion. Equation (2) is the Poisson-Boltzmann equation
taking into account the space-charge effects due to the in-
jected and trapped carriers. € and €, are the dielectric
constant and the vacuum permittivity, n(x)—ng is the
density of excess delocalized carriers, and N,(x) is the to-
tal density of trapped charges which is determined in each
case by Fermi-Dirac statistics based on the assumption of
the existence of well-defined quasi-Fermi-level. In Eq. (1)
we neglect the diffusion currents which can be shown to
be very small in general.!®

A direct consequence of these equations is the “scaling
law,” valid only for homogeneous samples.'* For a series
of films, different only by their thickness L, the J(V)
curve must satisfy at a given temperature the general law

J/L=f(V/L? . (3)

In the early stage of this work, we have found that this
scaling law is poorly verified for films of amorphous sil-
icon. The same discrepancy has been found by Mackenzie
et al.'7 with spread in currents as large as 1 order of mag-
nitude.

For a quantitative comparison between the experimen-
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FIG. 1. Diagram of the preparation of films of different
thickness during the same run. The sliding mask covers the
substrates in succession after variable deposition times.
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FIG. 2. Plot of J/d as a function of ¥ /d? to test the scaling
law for three films of different thickness d. The samples were
prepared in the same run, as shown in Fig. 1.

tal results and the theoretical predictions, we felt it neces-
sary to investigate systematically the origin of this poor
fit of the scaling law and possibly correct it.

(1) We found that the thin samples (1 um or less) are on
the average more conducting than the thicker samples.
Since the intrinsic deposition follows the highly doped n*
deposition, this effect can be explained by the residual
phosphine gas remaining in the chamber or adsorbed on
the walls. And indeed this effect could be decreased by
stopping the plasma after the first n™ deposition and
pumping for about half an hour, until a vacuum of 10~¢
Torr was reached. To decrease the adsorption, the whole
system was maintained at 100°C during the pumping.

(2) One origin of the nonreproducibility is certainly the
pollution due to the layers deposited on the walls of the
chamber and on the rf electrodes and partially etched by
the plasma. In particular, the properties of the deposited
films depended on the whole history of the chamber. In
the absence of a multichamber system!® a considerable im-
provement in the fluctuations was obtained by starting
each run with a “clean” chamber, where all traces of pre-
vious depositions were removed from the walls and rf
electrodes by a hot concentrated sodium hydroxide bath.

(3) As remarked by Mackenzie et al.,'’ it is extremely
difficult to obtain a perfect reproducibility of deposition
conditions for the intrinsic material from one run to the
other. To avoid this difficulty, we have deposited the
series of samples of different thicknesses in the same run
by masking the substrate with a sliding mask during the
deposition (Fig. 1).

With all these precautions, the improvement was
dramatic, at least for the films of 1.4 um or thicker (Fig.
2), where the scaling law is verified to better than 15% in
currents, even in the strong-injection regime. In spite of
these experimental precautions, the discrepancy still
remains for thin samples (less than 1.4 pm). This is be-
lieved to be a real physical effect and will be discussed in
Sec. IV.
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III. THE “EXACT” SOLUTION
OF THE SCLC PROBLEM

In general, the SCLC equations (1) and (2) cannot be
solved analytically and different approximations have
been used to obtain physically acceptable solutions. In
particular the widely applicable “regional approximation”
has been described in detail by Lampert et al.'* However,
this approximation does not provide a good fit to the ex-
perimental results and the limitations of the approxima-
tion will be discussed in Sec. V.

In this article, we present an exact numerical resolution
of the equations which provides an unambiguous compar-
ison with experiment, giving a reliable determination of
the density of states. In the absence of a precise
knowledge of the distribution of states in the gap of amor-
phous silicon, we shall use the convenient analytical form

g(E)=Nyexp| —(E,—E)/kT,] , “@

where N, and T, are parameters characterizing the
electron-trap distribution and E, is the energy of the
conduction-band edge. Of course, this distribution is arbi-
trary and is only justified a posteriori by the fact that the
solution is quite insensitive to the exact form of the distri-
bution. We have tried other shapes g(E) of the DOS, but
for the same g(Er) and as long as there is a fast increase
of the DOS when one gets nearer the band edge, the calcu-
lated results are essentially the same (see next section).
For the form given by Eq. (4), the “steepness” of the dis-
tribution can be characterized by the parameter

I=T,/T, (5)

where T is the actual temperature of the sample. For a
variation of about 103 of the DOS from the center of the
gap to the conduction-band edge,! the value of [ at room
temperature is expected to be approximately /=5. In
fact, the experimental fit gives values ranging from /=4
to /=9. The final solutions will be discussed in terms of
the two parameters g(Er) and /.

With this distribution, in the limit of / >>1, we can use
the low-temperature approximation (T <<T,) and the
density of trapped electrons is easily calculated
Ep+A
Ni(x)= f ’

Ep

—=g(Ep)kTI{exp[A(x)/kTI]1—1} , 6)

g(E)dE

where Ep+A(x) is the position of the quasi-Fermi-level
at x. From the definition of A(x), we have

n(x)/no=exp[A(x)/kT], (7)
so that Eq. (6) can be written

N (x)=g(Ep)kTI{[n(x)/no]""—1} . (8)

For practically attainable injections (J <1 A/cm? the
number of surplus free carriers n —n, is smaller than the
trapped charges N, so that we can neglect the former in
Eq. (2).

It is convenient to rewrite the SCLC equations in terms
of dimensionless variables
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v=V/V,,
flx)= 5(;‘2 , ©)
. J
A
with
V,=(e/e€y)g(Ep)KTIL? . (10)

We shall see below that V, has a typical value of a few
volts. With these variables, Egs. (1) and (2) become

j=25 piy (11)
ho
11
df (x) |[n(x) _
L= —no 1. (12)

The voltage V across the sample is given by

v= [ Fix)x (13)
or in terms of the variables (9)

v= foLf(x)dx/L . (14)

The resolution of this set of equations, with the boundary
condition

F(0)=f(0)=0 (15)

will give, for each value of /, a universal curve j(v) to be

compared with experiment. It is convenient to use as an
14,15

integrating variable
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FIG. 3. Numerical solutions for the SCLC equations in re-
duced coordinates v=V/V, and j=J/J, [Eq. (9)]. The DOS
has been taken with the form g(E)~exp(E /IkT) [Eqgs. (4) and
(5)] and the SCLC curves for different values of / are shown in
the figure. The dashed line is the extrapolated Ohm’s law, valid
in the limit of very small currents.
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u(x)=ngy/n(x) . (16)
With this variable, Eqs. (11) and (12) can be written

du —
T axsL ="

and Eq. (14) becomes

-1, (17

fll(L) udu
v=J Ldu/dx

Thus, the j(v) curve is given explicitly in a parametric rep-
resentation!’

Jlug)= lf —1/1

(18)

-1

. 4 (19)

L
vtur) =) *—*_—1
where the running parameter is u; =u(L)=ny/n(L).
From the definition, u <u; <1, and 1/u; is a measure of
the surplus injected electrons remaining at the collecting
electrode (x =L) of the film. The integrals in Eqgs. (19)
have been performed numerically and the resulting j(v)
curves for different values of / ranging from /=3 to /=9
have been plotted in Fig. 3. As expected, in the limit of
v << 1 (V <« V,) we obtain Ohm’s law, which in our nota-
tions is simply written j =v.

s

IV. COMPARISON WITH EXPERIMENT

The fit between the calculated curve and the experimen-
tal J(V) curve is excellent for a wide range of voltage and
current values, as can be seen in Fig. 4. Of course, this
perfect fit is not a crucial proof of the validity of the

V(V)

FIG. 4. Comparison between the calculated J(¥) curve and
the measured values (solid circles). The fit is obtained with a
single adjustable parameter (the DOS at the Fermi level) which
is, for this particular sample, g(Ep)=5.8%10" cm—3eV~—1.
The dashed line is the extrapolation of the Ohmic region.

model. It simply indicates that if our starting hypothesis
[boundary condition F(0)=0, constant mobility u, well-
defined quasi-Fermi-level across the sample, transverse
homogeneity of the film] are valid, the present calculation
gives a value of g(Er) that can be considered as reliable
and precise.

In principle, the fit with the experimental points is ob-
tained with two adjustable parameters, ¥, and /. In fact,
the shape of the curve is very insensitive to the value of /
and the adjustment to the measured curve depends almost
exclusively on a single parameter, the value of the DOS at
the Fermi level g(Ef).

This is illustrated in Fig. 5 where the calculated values
of Fig. 3 have been plotted as a series of curves having the
same g(Er) and different values / of the exponential dis-
tribution of states [Eq. (4)]. This is obtained by a plot of
J/Jog vs V/Vy, where Jo=J./l and Vy=V,_/I are current
and voltage scales independent of /. Indeed from Eq. (10),
we have

Vo=V, /l=-g(Ep)kTL? . (10)
€€y
Vo depends only on the density of states at the Fermi lev-
el, all the other quantities in this equation being known.
In particular it is interesting to note that quantities like
the number of carriers at equilibrium n, and the mobility
1, which are difficult to estimate, do not enter in its value.
Thus the fit between theory and experiment yields a pre-
cise and unambiguous value of g(Er) with an error es-
timated to be in most cases less than +15%. On the other
hand, as can be seen in Fig. 5, the sensitivity of the calcu-
lated curves to the value of [ is very weak, so that the
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FIG. 5. Plot of three of the curves of Fig. 3 reduced to the
same DOS at the Fermi level g(Er): The voltage scale Vj is
proportional to g(Er) [Eq. (10')] and the ! dependence is found
to be very weak. The crosses represent the SCLC curve calcu-
lated with the density of states shown in the inset [curve a; Eq.
(4")]. It is almost indentical with the curve calculated for an ex-
ponential DOS (curve b) with an [ value of /=9 and having the
same g(Er). It shows that the SCLC curve is very insensitive to
the exact form g(E) of the DOS in the gap.
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method is not suitable for the determination of the distri-
bution of the states in the gap. To illustrate this point, we
have calculated numerically, with the same method as
described in Sec. III, the J(¥) curve for a more general
form of the DOS

g(E)=g(E)+go 4"

where g(E) has the exponential shape of Eq. (4) and g, is
constant. This is shown as the crosses in Fig. 5 which
have been calculated for g,(E) having an [ value of 2.5
and the constant part being go=10g;(Ef) as indicated in
the inset. The curve thus obtained is almost indistinguish-
able from the curve calculated for a purely exponential
DOS having the same g(Er) and an / value of /=9.

It is thus quite clear that the important parameter in
the solution of the SCLC equations is the DOS at the Fer-
mi level g(Er) and not the exact form of the distribution.
This has already been seen experimentally by Mackenzie
et al.'” who have shown, by the temperature dependence
of the SCLC, that the levels controlling the SCLC are si-
tuated close to the Fermi level. The physical reason that
we can give for this result is that the electric field is larger
in regions where the number of injected electrons is small-
er [see Eq. (1)] so that the voltage drop is dominated by
the regions where the quasi-Fermi-level is nearer the
equilibrium value.

The values of the DOS obtained by this method have
been found to depend critically upon some of the deposi-
tion parameters. In particular, the details of the pumping
system seem to play an important role and the work to
evaluate this effect is in progress and will be reported
later. As an illustration of the method, we have measured
the DOS of a series of samples with variable deposition
temperatures T, the other parameters being the same.
We obtain (Fig. 6) a well-defined minimum for a value of
T;~260°C, with a density of states g(Ep)=5Xx10"
cm~3eV~L. This is consistent with the empirical result
that most of the best photocells are prepared at this tem-
perature.

Another interesting effect is shown in Fig. 7. For the
same conditions of preparation the DOS increases when
the thickness of the films decreases below L=1.3—1.5
pm. This explains why the scaling law is obeyed only for

o
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100 200 300 400 T, (°C)

FIG. 6. Density of states at the Fermi level g(Er) as a func-
tion of the deposition temperature Tp.
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FIG. 7. Density of states at the Fermi level g(Er) for a series
of samples of different thickness d deposited at 250°C (@). W,
value deduced from Ref. 12 (T, =300°C); ¢, value deduced
from Ref. 17 (Tp =300°C).

the thick samples with L > 1.4 um. The question of the
cause of this effect is still unresolved. It could be an in-
trinsic surface effect, for example due to the strains in the
material that are relaxed only for the thicker samples.
But it could also be an external pollution effect corrected
by self-cleaning after a few minutes of plasma exposure.
The deposition in a separate chamber system'® which is
under construction in our laboratory should help clarify
the cause of this effect.

V. DISCUSSION OF THE “REGIONAL”
AND OTHER APPROXIMATIONS

In the absence of a numerical resolution of Egs. (11),
(12), and (14), the only available published result was that
of the “regional approximation” as discussed in detail by
Lampert and Mark,'* and these were partially used by
previous authors'?!”!° for comparison with experiment.
The result of this approximation, transposed in our nota-
tions [Eq. (9)] are

. ) ? (I+1)
”“’[1"’(1+1)(21+1) forv <3t
20)
1/1+1
_ 141 1+1 /141 (l+1)2
Y R I forv> 7ok -

The corresponding curve, for /=6, is plotted in Fig. 8
along with the exact solution for comparison. As can be
seen, the curve obtained by this method shows a much
sharper transition around the critical voltage ¥V, than the
exact numerical solution. The solutions obtained by the
regional approximation are in fact asymptotic solutions
valid in the two limits V' >>V, and V << V.. In the tran-
sition region (¥V'~V,) obtained by the matching of the two
asymptotic solutions, the approximation is rather poor as
can be seen in Fig. 8. Unfortunately, the experimental
limitations restrict the comparison to conditions close to
this transition region. For example, the application of
more than 10 V across a L=1 pm film (100 kV/cm) is
dangerously close to the destruction of the sample. Now
for typical conditions [e=12, g(Er)=10' cm~3 eV~
I=6, L=1 um], V,=2.35 V so that the applied voltage
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FIG. 8. Comparison between the solutions of the SCLC
equations obtained by the “regional approximation” of Lampert
and Mark (Ref. 14) (dashed curve) and the exact calculation [Eq.
(19)] for /=6.

cannot be much larger than the critical voltage V,. We
have plotted in Fig. 9 the ratio of the approximate solu-
tion to the exact one for the case /=6. It is apparent that,
for the available experimental region of SCLC, the ap-
proximate solution is off by 1 or 2 orders of magnitude,
which prevents a valid quantitative comparison with ex-
periment. In particular, it is not practically possible to
reach the very high injection limit which, according to
Egs. (20) should give the power law j~v’+!. On a limit-
ed range, the high-injection part of the experimental curve
becomes close to a straight line on a log-log plot, but the
comparison with the numerical calculation shows that the
assymptotic value [Egs. (20)] has not been reached and
that the experimental power coefficient is less than the
limiting theoretical value /+ 1.

The limitation, due to experimental conditions, to injec-
tion levels that are not very high suggests the use of
another approximation which has been found!>?° to give a

Jr /Jexact

o
Q

102 10! 1 10’ 102
v=V/Ve

FIG. 9. Ratio of the solution of the SCLC equations obtained
by the regional approximation (Ref. 14) to the exact solution for
I=6. For most of the transition region (V~V,) the approxi-
mate solution is off by more than 1 order of magnitude.
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good fit with experiment in the transition region. This
approximation, which gives an exponential variation in
the J(V) curve can be justified theoretically, with a slight
modification, by comparison with the exact solutions of
the preceding section. If the displacement A of the
quasi-Fermi-level is sufficiently small so that A <<kT,,
then the distribution of states can be considered as con-
stant: g(E)=g(Er). This is obtained in the limit of
I>>1 and V<< V,. The case of a constant density of
states has also been solved in the regional approximation
limit by Lampert and Mark,?’ and the result is a J(¥)
function having the form

J~Vexp(V/Vg) (21)
with

Ve=Lt € o(EpkTL? . (22)
2 eg

This is the asymptotic form for V>>Vy. We remark
that, by comparison with Eq. (10),

Ve=V./2 23)

so that Eq. (21) is valid for injection levels of about 1 or-
der of magnitude less than the form of Eq. (20) valid only
in the limit V' >>V,.

The same exponential form of the J(¥) curve has been
found by den Boer,'> who was the first to apply the SCLC
method for the determination of the DOS in amorphous
silicon films. He has used an extremely simplified model
which nevertheless contains most of the physical features
of the problem.

In den Boer’s formulation, all the quantities varying
along x are replaced by “average” quantities. For exam-
ple, the injection of carriers (electrons) is described by a
single quasi-Fermi-level displaced by A from the equilibri-
um Fermi level. The average carrier and trapped charge
densities n and N, are thus given by

n=ngexp(A/kT) , (24)
N,=gA, (25)

where g is the density of states at the Fermi level. Equa-
tions (1) and (2) now take the simplified form

J~enuV/L , (26)
€€,
—e—°§f—z . @7)

From the simplified Poisson equation (27), we calculate
the voltage across the sample

eN,L*?
€2

L
V= [, Fdx= (28)

In the original work,!? a finite variation of voltage is
applied to the sample resulting in a variation of the
current density. From these measured quantities, one can
deduce the variation of the quasi-Fermi-level [Eqgs. (24)
and (26)] and then the value of the density of states g
[Egs. (25) and (28)].

It is perhaps more illuminating to calculate directly,
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FIG. 10. Semilogarithmic plot of the reduced conductivity
j/v as a function of v=V/V, for I[=6. For V <0.4V,, the
curve is well approximated by the function j /v ~exp(a2lv) with
a=0.61 (dashed line).

from this model, the predicted J(¥) curve in the case of a
constant value of the DOS. By elimination of A and N,
between Eqgs. (24) to (28), one obtains exactly the same
form of the J(¥) curve as given by Eq. (21)

J= % Vexp(V/Vg), 29)

where the quantity o=enqu is simply the Ohmic conduc-
tivity of the material.

This exponential form of the J(¥) curve gives in gen-
eral a fairly good fit with experiment in the transition re-
gion. Of course, this is not evidence for a uniform density
of traps,!® but simply indicates that the form given by Eq.
(29) is a good approximation for medium injection levels.
This is illustrated in Fig. 10 where log,oj /v as a function
of v has been plotted for the case /=6. We see that for
v <0.4 the numerically calculated curve is very close to a
straight line. However, the slope of this line is not the one
given by Eq. (21) or (29). In fact the correct approxima-
tion valid to within 20% for v < 0.4V, is given by

=%Vexp(aV/VE) , (30

where the correcting factor a can be numerically comput-
ed and varies very little from 0.52 to 0.66 in the range
=3 to [=9. The determination of the DOS by the ex-
ponential from [Eq. (29)] which has been used explicitly'®

or implicitly by the step-by-step method!*'7 is essentially
valid, except for a correcting factor of the order of
a~0.6. However, this form of the J(V) curve is valid
only for low injection levels and cannot be used for large
displacement of the quasi-Fermi-level in order to study
the distribution of the DOS in the gap, as has been tempt-
ed with the step-by-step method.

VI. CONCLUSION

The study of the space-charge-limited current in a
n*nnt sandwich configuration, provided certain experi-
mental and theoretical precautions are being taken, pro-
vides a convenient method for the determination of the
density of localized states in the gap of hydrogenated
amorphous silicon.

(a) It is representative of the true bulk density, free
from the perturbations dues to surface states.

(b) It is a steady-state method, so the influence of a
wide range of trapping times is minimized.

However, for a correct comparison between theory and
experiment, it is necessary to solve the SCLC equations
numerically. Fortunately this can be done with a limited
number of parameters because the results are very insensi-
tive to the exact distribution of the states in the gap. The
method is therefore well adapted for a precise determina-
tion of the DOS at the Fermi level, g(Er), but provides
little or no information on the distribution g(E) of states
in the whole gap of a given sample.

We have applied the method to a series of samples
satisfying the scaling law and have found a well-defined
minimum of the DOS at a preparation temperature of
T;=260°C, with the best value obtained in our reactor
being g(Er)=5%10"% cm—3eV—1

In a preliminary study, we have found that the DOS is
very sensitive to the quality of the pumping system and
work is in progress for the determination of the polluting
agent (air, H,O, pumping oil).

We have_ also found that the DOS in the first
2000—4000 A of the films is larger by a factor 3 to 10
than the rest of the film. This has a direct implication for
the fabrication of photocells which have a thickness only
2 to 3 times this perturbed region. The cause of this ef-
fect, whether it is an intrinsic surface effect or external
pollution corrected by self-cleaning after a few minutes of
plasma exposure, remains to be determined.
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