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The embedded-cluster method is modified to treat electronic spectra in ternary alloys and is ap-
plied to the calculation of the electronic density of states for the one-dimensional, one-state-per-

atom, ternary alloy A„BI „Cin the nearest-neighbor tight-binding approximation. As a test of this
method, the spectra for some representative cases of alloys in the "persistence" and "amalgamation*'
regimes are presented and compared with "exact" spectra for the same cases obtained for 10000-
atom random chains by the use of the negative-eigenvalue theorem. For a cluster containing eight
unit cells embedded in a coherent-potential-approximation effective medium, the embedded-cluster
method reproduces all of the major features of the exact spectra for all a1loy compositions and over
wide range of atomic energies of the alloy constituents.

I. INTRODUCTION

Recently, there have been a number of experimental
aild thcorctlcal 111vcstlgatloiis of thc clcc'tl'oliic plopcitlcs
of the ternary semiconducting alloys. ' These studies
have been stimulated in part by the increasing technologi-
cal iinportance of these materials for use in such diverse
device applications as hght-emitting diodes, infrared
detectors, and solid-state lasers. However, these materials
are also interesting in their own right as prototypes for the
study of the basic physics and chemistry of disordered
electronic systems. The first comprehensive theory of the
ternary semiconducting alloys which can be used to make
predictions of their electronic pmperties over the entire
range of alloy compositions was formulated by Chen and
Sher. Ehrenreich and Hass have also recently developed
such a theory. These workers have treated the effects of
alloy disorder on the electronic band structure in these
materials by the use of the coherent-potential approxima-
tion (CPA). While such a theory is sufficient for treating
the dependence of global electronic pmperties on the alloy
composition, it is well known that the CPA neglects all
short-range order due to local clustering of alloy constitu-
ents. It will thus be expected to be inadequate to explain
experiments which measure such short-range-order ef-
fects. Measurements which fall into this category are
those which are sensitive probes of the local electronic
state density, as for example, photoluminescence from im-
purities. ' A theory which includes such short-range-
order effects and which is also computationally tractable
for application to real semiconductor alloys does not, at
pl cscnt, exist.

Gonis and Garland" laid the foundation for such a
theory with their general treatment of clusters of atoms
embedded in effective media. Using this general theory as
a basis, Myles and Dow' ' developed the embedded-
cluster method, in which the effective medium used is the
onc appropriate for the s1nglc-sltc CPA and 1n which an
average of the state densities of all possible configurations
of alloy constituents in a duster embedded. in an appropri-

ate effective medium is used to approximate the alloy-
state density. These same workers also tested this method
in application to the calculation of the frequency distribu-
tion spectra of lattice vibrations in model one-dimensional
binary' and ternary' *' alloys. For these model systems,
this technique has successfully and easily reproduced the
exact numerical spectra obtained for several-thousand-
atom random chains by the use of the negative-eigenvalue
theorem. ' '

The first application of the embedded-cluster method to
realistic three-dimensional models of alloys has very re-
cently been made to metallic binary alloys by Gonis
et al. '7 Using a Korringa-Kohn-Rostoker' (KKR)
Hamiltonian as input, these workers have embedded clus-
ters of alloy constituents in a CPA effective medium and
have, in this manner, successfully treated the effects of
clustering on the electronic density of states in Ag& „Pd„
alloys. They have furthermore shown that this method
may be used to systematically investigate charge transfer
and short-range-order effects in such alloys.

The purpose of the present paper is to modify the
embedded-cluster method for application to electronic
spectra in ternary alloys and to further test this method
by applying it to the calculation of the electronic spectra
for the one-dimensional, one-state-per-atom, nearest-
neighbor, tight-binding model ternary alloy, This model
is clearly much too crude to enable us to obtain any quan-
titative understanding of electronic spectra in semicon-
ductor alloys. Nevertheless, it can be used to obtain a
qualitative understanding of how clustering and short-
range order can affect such spectra without the compli-
cations of a realistic, three-dimensional, multiband,
multineighbor model. The initial treatment of such a sim-
ple model also has the advantage of enabling us to develop
a calculational technique and to test it on a system which
is simple enough that the physics of clustering and short-
range order is not obscured by other effects. We compare
the results of our calculations on this model to "exact"
spectra for 10000-atom random chains obtained for the
same cases by the use of the negative-eigenvalue
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theorem. ' ' We find that the embedded-cluster method
shows an advantage over even these exact calculations and
is complementary to them in that it can easily be used to
identify and label peaks in the spectra which are due to
persistent' electronic states associated with small clusters
of atoms containing particular configurations of alloy
constituents. ' '"' It is hoped that the present calcula-
tions will be useful because they may be used to obtain a
qualitative understanding of the effects of clustering and
short-range order on electronic spectra in ternary alloys.
A more quantitative understanding of these effects must
await more realistic calculations, which we are presently
pursuing.

The present paper is the third of a series. The first two
papers in this series may be found in Ref. 13 (referred to
henceforth as I) and Ref. 14 (referred to henceforth as II),
respectively.

The remainder of this paper is organized as follows. In
Sec. II the notation to be used and the basic model to be
considered are discussed, and the electronic properties of a
perfect diatomic chain are briefly reviewed. Section III
contains a brief discussion of the coherent potential ap-
proximation' ' ' as applied to electronic spectra in
ternary alloys. The embedded-cluster method for elec-
tronic spectra in ternary alloys is discussed in Sec. IV, and
Sec V. presents results of embedded-cluster calculations of
the electronic spectra of several model one-dimensional
ternary alloys and comparisons with exact results obtained
for 10000-atom random chains by the use of the
negative-eigenvalue theorem. This comparison shows
that, using an eight unit-cell cluster embedded in a
coherent-potential-approximation medium, the embed-
ded-cluster method reproduces all of the major features of
the exact spectra for all alloy compositions and over a
wide range of atomic energies of the constituents. Finally,
Sec. VI contains a brief discussion of the results and some
conclusions. The reader not interested in the calculational
details may proceed directly to Sec. V.

II. MODEL AND NOTATII

A. Hamiltonian and Green's function for the alloy

In this paper we consider a one-dimensional model ter-
nary alloy A„B& „C in the one-state-per-atom, nearest-
neighbor tight-binding approximation. Although all of
the explicit calculations are done for this simple model,
much of the formalism described below is applicable in a
straightforward but tedious manner to three dimensions
and to alloy systems with more realistic electronic struc-
ture.

The alloy one-electron Hamiltonian in the tight-binding
approximation is

II=+
~
n, a)e„(n,a

~
+ g ~

n, a)t„„(n',a' ~,

the sublattice with A or 8 (C) atoms. Here we consider
diagonal disorder only; thus the on-site matrix element e„
has the form

~na 'ba, lan 1+5a,2&C ~ (lb)

+5 p5 )(5„„+(+5„,„)], (lc)

where the nearest-neighbor interaction energy t is as-
sumed to be the same for the two possible pairs AC and
BC and to be independent of x.

The alloy Green's-function matrix is defined as

G =(E 0+i0—)

where E is an energy and i 0 is a positive imaginary infin-
itesimal. One of the primary quantities of interest in the
present paper is the configuration-averaged alloy density
of states, which is defined in the usual manner' as

D(E) = — Im[Tr((G)) ],
mX

where the trace runs over all unit cells in the crystal, Ã is
the total number of unit cells, and the double angular
brackets here and henceforth denote an average over all
alloy configurations.

B. Solutions for the ordered diatomic crystal

In the limit where the atoms A and B become identical,
the "alloy" becomes the ordered diatomic lattice BC,
atom B occupies sublattice 1 and e„& is always equal to
ez. For this case in one dimension, the energy bands, the
corresponding eigenfunctions, the real-space matrix ele-
ments of the Green's function, and the density of states
can all easily be obtained in closed form. The energy
bands are

E~(k)=@++[@ +4t cos (ka/2)]' (4)

where k is a wave vector in the first Brillouin zone, a is
the lattice constant (the nearest-neighbor distance is a/2),
e+=(ec+ez)/2, and for j=u (valence band) the minus
sign applies, while for j= e (conduction band) the plus
sign applies. The orthonormalized eigenfunctions corre-
sponding to these eigenvalues are given in Appendix A.
As is also discussed in Appendix A, the Green's-function
matrix elements for this case can, after much manipula-
tion, be brought in the form

where e„1 is a random variable taking on the values ez
and e~ with probabilities x and 1 —x, respectively, and
e~, e~, and ec are the atomiclike energies of the A, B,
and C atoms. Furthermore, the nearest-neighbor
transfer-matrix element is

t„„=t[5 $5 p(5„„]+5,,, )

n, a I
n, n,
a,a'

where
~

n, a) is the atomiclike orbital of the ath atom
(a = 1 or 2) in the nth unit cell and a = 1 (a =2) refers to and

G (n, n', E)=[(E—ec», i+(E —ea )5,z]

)& A (n, n', E),
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Giz(n, n', E)=[Gzi(n', n, E)]'

=t[A (n, n', E)+A (n —l, n', E)], (Sb)

where we have used the shorthand notation
(n, a

I
G (E)

I
n', P& =G ~tt(n, n', E) for the real-space

I

Green's-function matrix elements and the superscript
denotes that this function is for the ordered diatomic
chain. As is discussed in Appendix A, the function
A(n, n', E) can, by using standard mathematical tech-
niques, be expressed in closed form as

A (n, n', E)=+

(E ett )—(E —ec) (E ett
)' —(E ec)—' (E E„)—'/ (E E, )'—/

1 +
2t 2 2t2

(E E—c)' (E —es)' (E E„)' —(E —E, )' (5c)

where the upper (lower) signs apply for (E E, )(E— E, ) &—0( & 0) and E„(E,) means E„(k=0) [E,(k =0)]. In Eq. (Sc)
and in what follows, the square roots must be evaluated in their complex sense; that is, if the argument of the square root
is positive, the positive square root is taken, while if the argument is negative, the positive imaginary root is taken. The
density of electronic states for the perfect chain can be evaluated by combining Eqs. (3) and (5). The result is

D (E)=——Im0 1

7j

2E ~a —Ec I—
(E & ) I/2(E & )i/2(E E )i/2(E E )i/2

Several features which are present in this function tend to
persist to some extent in the alloy electronic spectra dis-
cussed below. In particular, D (E) is symmetric about
the center of the band gap and is norinalized to

f dED (E)=2, the bottom of the valence band occurs
at E„=a+—(e +4t )'/, the top of the valence band
occurs at e~, the bottom of the conduction band occurs at
e~, the top of the conduction band occurs at
Eq =E+ + (E +4t )', and the band gap is equal to
c—Es. (We have'implicitly assumed Ec & Eii in this dis-

cussion. ) It is often possible to, at least grossly, view the
spectra for the alloy A„B& „C as some combination of
the spectrum of the pure BC chain [Eq. (6)] with the pure
AC chain spectrum [Eq. (6) with ez replaced by ez], su-
perimposed upon the "impurity" spectra of A defects in
the BC chain or vice versa. Thus it is useful to keep the
perfect-chain spectrum in mind when discussing the alloy
spectra.

ternary alloys. The following discussion is a generaliza-
tion of the theory of Sen and Hartmann24 to electronic
spectra and closely parallels the discussion of phonon
spectra in their paper.

One approach to the theory of the electronic properties
of the alloy A~B& „C is to begin by considering this alloy
as a BC crystal containing a large number of randomly
distributed A impurities with concentration x. The alloy
Green's function for a specific configuration and for A
impurities occupying the a= 1 sublattice then satisfies the
Dyson equation

G=G +6 VG,

where G is the perfect BC crystal Green's function and
the defect matrix Vhas the form

or

III. COHERENT-POTENTIAL APPROXIMATION V =gv„=X I
n, 1 &(e„i —es )(n, 1 (8b)

Although theoretical investigations of substitutionally
disordered alloys began a number of years ago, no
theory has as yet been more than partially successful in its
prediction of alloy electronic spectra. A coherent poten-
tial theory of ternary alloys was first discussed by Tay-
lor in 1973 and independently by Sen and Hartmann in
1974. Both of these investigations were of the vibration-
al spectra of such alloys. Recently, both Chen and Sher
and Ehrenreich and Bass have developed CPA theories
of the electronic energy bands of real ternary semicon-
ducting alloys.

Since the best single-cell effective-medium theory is the
coherent-potential approximation' and since we have
found that the CPA is also the best effective medium to
use as a cluster boundary condition in implementing the
embedded-cluster method discussed below, it is worth-
while to briefly review this theory for electronic spectra in g =((G» . (9)

Here Ho is the perfect crystal Hamiltonian and Eq. (8b)
follows in the present model from the assumption of diag-
onal disorder. An exact solution to Eq. (7) is not possible
for arbitrary composition x. Furthermore, for this gen-
eral case, the distinction between "defect" and "host"
atoms becomes arbitrary and any correct theory should
predict results which are independent of this choice.
Thus, in what follows, we arbitrarily denote the defect
atom as an A atom, the host atom as a 8 atom and label
the disordered sublattice with the index a = 1.

A common approximation to the solution of Eq. (7) is
to replace the random alloy by a translationally invariant
effective medium. The effective-medium Green's func-
tion is defined as the configuration average of the alloy
Green's function 6,
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In the single-cell CPA this function satisfies the equation

g =G +G Xg =(E —Ho —X+iO)

bining Eqs. (10) and (5). Considerable manipulation leads
to the expression

where X is the (to be determined) self-energy matrix. In
the single-cell CPA the Green's function g is determined
self-consistently by requiring that (i) the effective
medium's quasiparticles scatter the minimum amount;
that is, that the single-cell effective-medium transition
matrix vanishes when averaged over all possible alloy con-
figurations and that (ii) the self-energy assumes the form

g p(n, n', E)=B p(E)G p(n, n', Z),

B p(E)=(E —ec)(Z —ec) '5 p5

+(Z —~c)(E —~c) '5 p5. ,
+~o,, 1~P,2+ ~P, ]~~,2 (16b)

X(E)=go„=g!n, 1 )Epo(E) (n, 1!,

T =( V —X)[I—g( V —X)] (13a)

Here I is the unit matrix. In the single-cell CPA one as-
sumes that T is the sum over the unit cell index of single-
cell transition matrices t„which have the form

where cr(E) is the single-cell self-energy. Requirement (ii)
physically means that the effective medium is translation-
ally invariant and that all unit cells in the medium are
equivalent. Sen and Hartmann have shown that the
2)&2 matrix o„ is nonzero only on the defect (a = 1) sub-
lattice for cubic lattices in one, two, and three dimensions.

In order to carry out the CPA, Eqs. {7) and (10) are
combined to obtain an expression for G in terms of the
effective-medium Green's function g:

G =g+g {V —»G =g+gTg *

where we have defined an effective-medium transition
matrix Tas

Z =a+ +[(E E+—) (E—ez)F—po(E)]'i (16c)

Upon setting n =n' in Eq. (16a) and combining that equa-
tion with Eqs. (16c), (5), and (15), a cubic algebraic equa-
tion for the self-energy o {E)of the form

I,O-

(&) A0g B 0g C

C= —
B =~ t &p =00

l

I

l

I

, ~ I) I~
I

It

II I
(I l

tI j

I
I' If!I

and where the complex variable Z is expressed in terms of
o(E) as.

t„=(u„rr„)[1—g„(u„—cr„)]— (13b)

where I means the 2&2 unit matrix and g„ is the Green's
fllllc tl Oll

(n!g!n) =(n =0!g!n =0)
=g(n! n, a)g p(n, P!n) .

Comblnlng Eqs. (12) and (13) alld 1'eq1111lllg tllat, tile
effective-medium Green's function satisfy Eq. (9) leads to
the self-consistency requirement that the configuration
average of t„vanish [which is just requirement (i) above]
This results, after some manipulation, in the 2+2 matrix
equation

0.0

5.0 '

-2,0 0.0
E!t

(b) A0gB0gC
EC= -E.B= t, F@=0.0

4.0

o„—xu+o.„g„(o„—u) =0 .
where u is a 2 X 2 matrix defined by

u p=(eg eg)5 p5—
Use of Eqs. (14a), (14b), and (11) finally yields a scalar
equation for the single-cell self-energy o(E):.
&tto(E) x(e~ —e—~ )

+~a~(E)[Ep~(E) (e, —e, )]g„(E)=0, (—15)

where gl&(E) = (n, 1!g ! n, 1 ).
One can easily obtain closed form expressions for the

CPA Green's functions in the site representation by corn-

-2.0 4.0
E/t

FIG. 1. Density of states 8(E) for the one-dimensional ter-

nary aHoy Ao 5BO 5C w1th Ec = —Eg and 6g =0.0~ obtained by
the negative-eigenvalue-theorem method for a 10000-atom ran-

dom chain (histograms), by the coherent-potential approxima-
tion (dotted-dashed curves), and by embedded-cluster method
with %,=8 (dashed curves) for the cases (a) e~ ——2t and (b)

ec ——t. These two cases illustrate typical spectra for an aHoy in

thc pcls1stcIlcc aIld thc axIlalgaIIlatlon limits respectively.
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is obtained, where ao, a i, a2, and a3 are functions of e~,
Eg, 6'c, x, E, and t. Explicit expressions for these quanti-
ties are shown in Appendix B.

The CPA density of states has the form

1
Dept (E)= — Im[gii (n, n, E)+gq2(n, n, E)]

This CPA result is illustrated for x =0.5 in Fig. 1

(dotted-dashed curves) for two different ternary alloys.
Figure l(a) shows the case of an alloy in the "per-
sistence"' regiine (x =0.5, ec = —

equi =2t, e„=0),where
three bands (two valence bands and one conduction band)
are distinguishable. On the other hand, Fig. 1(b) shows
the case of a typical "amalgamation"' type alloy,
(x =0.5, ec ———ez t, ez————0), where two bands (one
valence band and one conduction band) are present. For
comparison, the negative-eigenvalue theorem results for a
10000-atom chain (histogram) and the embedded-cluster
method results, obtained using an eight-unit-cell cluster
(dashed curves) are also shown in these figures. The evi-
dent failure of the CPA to reproduce the fine structure of
the exact spectra is due to the well-known fact that it
neglects the short-range order which is responsible for this
structure. (The CPA was not designed to reproduce such
spectra, but to provide a self-consistent interpolation be-
tween the x =0 and 1 limits. '

) The embedded-cluster
method, by contrast, accurately mimics all of the major
features of the exact spectra.

«G)& =k-'g(G), , (21a)

where (G)J is the function given by Eq. (2) for the jth
configuration. From « G )) one calculates the cluster den-
sity of states, which is given by

C

g Im[ « G„(n, n, E) ))
C pg=}

D(E;N, ) =—

+«G„(,.E)))] . (21b)

The primary approximation of our theory is that the den-
sity of states obtained by this procedure is the configura-
tion averaged density of states for the random alloy.

Other varieties of state density are as easily calculated
using our theory as is the total density of states. For ex-
ample, here we consider the total density of states for a
specific cluster configuration

(22a)

This equation is solved numerically for atoms within the
cluster (since G =g outside the cluster).

The electronic density of states in this approximation is
obtained by first calculating the average of G over all k
configurations of the N, cell cluster

IV. EMBEDDED-CLUSTER THEORY

The present theory is very similar to the treatment of
vibrational spectra in binary and ternary alloys discussed
in I and II, is similar in spirit to the general treatment of
clusters in effective media done by Gonis and Garland, "
and is also similar to the recent treatment of clustering in
metallic alloys by Gonis, Butler, and Stocks. ' The start-
ing point for our theory is an effective-medium represen-
tation for the random alloy A„B& „C; in the usual case
we take this to be the CPA medium. The medium is
thus characterized by a self-energy X and has a Green's
function of the form given by Eq. (10). A cluster contain-
ing N, unit cells [with xN, of them containing AC and
(1—x)N, of them containing BC] in a particular configu-
ration is embedded in this medium. The cluster Green's
function for this configuration has the general form given
by Eq. (2) for sites within the cluster. Our approximation
for the alloy Green s function is that it be of this form in-
side the cluster and take the form of the effective-medium
Green's function, Eq. (10), outside the cluster. We then
define an effective scattering potential, which has the
form

G =g+gV"G=(1 —gV") 'g . (20)

(19)

inside the cluster and which vanishes outside the cluster.
Using this potential, the cluster Green's function, Eq. (2),
may be related to the effective-medium Green's function,
Eq. (10), by the Dyson equation

and the local density of states for the nth unit cell within
this configuration

(22b)

Here Tr, means a trace over all sites of the cluster. The
quantity b„should be independent of n if the cluster size
is sufficiently large. In practice, we select a central cell to
minimize boundary effects.

Following I and II, in the results presented below we
have included only configurations of a given cluster size
whose composition is equal to the average composition x.
As is discussed in II, the resulting small increase in accu-
racy which would be obtained by keeping the atypical
configuration whose compositions differ from x would
not be worth the tremendous increase required in the
number of configurations computed.

V. NUMERICAL RESULTS FOR
THE DENSITY OF STATES;

COMPARISON OF EMBEDDED CLUSTER
AND EXACT CALCULATIONS

We have calculated the total density of states for a
number of different one-dimensional ternary alloys using
the embedded-cluster method, Eqs. (19)—(21). For com-
parison, we have also ealeulated the exact spectra for the
same cases for 10000-atom random chains using the
negative-eigenvalue theorem.
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FIG. 2. Density of states D(E) for the one-dimensional ternary alloy A„B~ „Cfor the case ez ———e& ——2t and e~ ——0.0 obtained by
the embedded-cluster method with an N, =8 unit cell cluster (dashed curves) and by the negative-eigenvalue theorem for a 10000-
atom random chain (histograms) for the composition x equal to (a) 0.125, (b) 0.375, (c) 0.625, and (d) 0.875.

A. Dependence of composition x; alloys
in the persistence and amalgamation limits

The composition dependences of the spectra for two
different one-dimensional alloys are displayed in Figs. 2
and 3 for the compositions x =0.125, 0.375, 0.625, and
0.875. The spectra shown in Fig. 2 are for an alloy in the
persistence limit (ec ———e~ =2t, ez ——0), where the bands
of the constituents AC and BC persist in the alloy. On
the other hand, the spectra shown in Fig. 3 are for an al-
loy in the amalgamation limit (Ec= —Eg=r, E~ ——0),
where the alloy spectra are characteristic of neither AC
nor BC, but instead are a mixture which is charaeteristie
of the alloy itself. These two cases have been chosen for
illustration in order to display, at the same time, the
dependence of the spectra on the constituent atomic ener-

gy differences. The spectra of these same two alloys for
composition x =0.5 are shown in Fig. 1.

The exact calculations are shown in Figs. 1 —3 as histo-
grams, while the embedded-cluster-method results are
shown as dashed curves. All of the embedded-cluster-
method results are for a cluster size of N, =8 unit cells.
As may be seen from an inspection of these figures, the
embedded-cluster-method calculations reproduce all of the

principal features of the exact spectra. The two unsatis-
factory features of these results are essentially the same as
those noted for phonon spectra in II. These are that (1)
due to our choice of the CPA medium at the boundary,
the band edges and gaps are sometimes incorrectly
predicted by the theory (the embedded-cluster theory will

produce no states where the CPA has a gap) and (2) due to
our choice of cluster size and the fact that we have includ-
ed only clusters with the average composition x, the peak
intensities are sometimes in slight disagreement with those
obtained in the exact calculations. These difficulties
could, in principle, be overcome by the use of one of the
many cluster CPA theories, ' ' ' ' which include the clus-
ter self-consistently and/or by using larger clusters and in-
cluding the less probable configurations in our calcula-
tions. ' However, as is discussed in more detail in II,
each of these possibilities would greatly increase the com-
putational complexity of the method and decrease its po-
tential practicality for application to real alloys.

We have also calculated the electronic density of states
for crude one-dimensional models of a number of techno-
logically important alloys. For purposes of illustration
here we only show results for GaAs& „P„and
Hg~ „Cd„Te at x =0.5. These two particular cases
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FIG. 3. Density of ~t~t~s D(E) for the one-d~mens~onal ternary ~ll~y ~ +~ „~for the case ~c= —~a-
the embedded-cluster method with an N, =8 unit-cell cluster (dashed curves) and by the negative-eigenvalue theorem for a 10000-
atom random chain (histograms) for the composition x equal to (a) 0.125, (b) 0.375, (c) 0.625, and (d) 0.875.

were chosen because they represent a wide variation in the
atomic energy differences of the alloy constituents. The
tight-binding parameters for these models of the alloy
A„Bi „Cwere chosen in the manner discussed in Ref. 33
using the band gaps of Refs. 34 and 35. The spectrum for

GRAsp 5Pp g (e'c =2.35t Eg =0.80t 6g =0 0) is sho. wn
in Fig 4(a), w. hile that for "Hgp&Cdp5Te" ( ec0.0,
Ez ———0.28t, ez ——1.59t) is shown in Fig. 4(b). The exact
calculations are again shown as histograms, with the
embedded-cluster-method results, obtained with N, =8
unit cells, shown as dashed curves.

B. Discussion of the features of individual spectra

The individual spectra displayed in Figs. 1 —4 are rich
in detail which would be missed by an effective-medium
theory such as the CPA. Furthermore, they exhibit a
large amount of complex structure which is due to clus-
tering effects.

The major spectral peak energies are independent of al-
loy composition on the scale of the figures. Each peak
can be shown to correspond to a characteristic energy of
an "island" of several atoms within the long chain. ' *'

Because the probability of a specific island occurring

varies significantly as the alloy composition is altered, the
height of an island's spectral density peaks will vary in a
corresponding way, even though the characteristic ener-
gies of that island do not depend on x. The specific is-
lands or configurations of atoms which are responsible for
the various peaks in the spectra would be difficult to iden-
tify using the negative-eigenvalue-theorem method. ' '
On the other hand, such identifications are easily made
using the embedded-cluster method, since it requires the
calculation of the spectra for every possible cluster config-
uration. An example where these identifications are made
is shown in Fig. 4(a) for GaAsp 5Pp 5. The numbers label-
ing the peaks in that figure correspond to the cluster con-
figurations shown in Table I. Since the peaks merely
change in intensity, but do not significantly shift as x is
changed, all of the principal peaks in the spectra for other
compositions could be identified using this table.

A detailed examination of the spectra in Figs. 1 —4
shows several interesting features which are worth a few
comments. The spectra for the typical alloy in the per-
sistence limit, Figs. 1(a) and 2, and the spectra for the typ-
ical alloy in the amalgamation limit, Figs. 1(b) and 3,
share the characteristic that the majority of the clustering
effects occur in the host-valence or impurity-valence
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TABLE I. Major clusters responsible for the peaks in the electronic density of states of GaAso 5Po 5,

labeled in Fig. 4(a). The abbreviations A—:GaP and B:—GaAs have been used.

Peak

6
7
8
9

10

11
12
13

E/t
—2.66
—2.58
—2.46
—2.42

—2.34

—2.10
—1.74
—1.44
—1.28
—1.06

—0.98
—0.92

1.94

Major Clusters

AAABBA; BBBAAA; BBAAAABB; BAAAABBB; BBBAAAAB
ABAABB; BBAABA; BABAAB; BAABAB; ABAABABB; BBABAABA

AB; BA; ABBA; BAABABAB; BABABAAB
ABAB; BABA; BBABAA; AABABB; AABBAB; BABBAA
BBABBAAA; AAABBABB; ABBABBAA; AABBABBA
BAAABB; BBAAAB; BABBAAAB; BAAABBAB;
AABABABB; BBABABAA; BAABABAB; BABABAAB
BAAB; ABAABB; BBAABA; ABBAABAB; BABAABBA
BBAA; ABABBAAB; BAABBABA
ABBBAA; AABBBA; BAABBBAA; AABBBAAB
ABBBABAA; AABABBBA; AABAABBB; BBBAABAA
ABBABA; ABABBA; AABBAB; BABBAA; ABABBAAB;
BAABBABA; BABABBAA; AABBABAB
ABBBAA; AABBBA; BAABBBAA; AABBBAAB
AAABBB; BBBAAA; AABBBBAA
ABAABB; BBAABA; ABBBABAA; AABABBBA

band, while the conduction-band spectra only show the
sharply peaked fine-structure characteristic of these ef-
fects at their high-energy ends. This is due to our choice
of sublattice 1 as the disordered one and the choice of the
atomic energy of the constitutents of that sublattice as
lower than that of the atom on sublattice 2. Interchang-
ing the roles of sublattices 1 and 2 or choosing the atomic
energies of the atoms on the disordered sublattice to be
higher than that of the ordered one would interchange the
role of the clustering effects in the valence and conduction
bands.

In the typical persistence alloy spectra, Figs. 1(a) and 2,
it can be seen that an impurity band with a sharply struc-
tured spectrum begins to form between the conduction
and valence bands for small compositions x=0.125. At
the same time, the conduction-band spectrum begins to
show a sharply peaked structure at the high-energy end.
For larger compositions (x=0.375) the impurity-band

spectra have broadened and increased in intensity, while

still showing sharply peaked structures. At the same

time, the valence-band spectrum displays a large number

of spectral peaks, while the conduction-band spectrum is
still peaked at its high-energy end. For x =0.5, there is
no distinction between impurity and valence bands, and

the spectra of both consist almost entirely of a large num-

ber of sharp peaks. The peaked structure in the spectrum
at the top of the conduction band is still there for x =0.5,
but it has decreased in intensity and has nearly merged
with the rest of the band. For x & 0.5 the roles of the im-

purity and valence bands are interchanged from their roles
for x ~0.5 with the trends in the spectra with increasing
x being essentially the reverse of those just discussed.

The spectra for the typical alloy in the amalgamation
limit, Figs. 1(b) and 3, show that, again because of our
choice of atomic energies for the disordered sublattice, the
majority of the peaked structures occur in the valence-
band spectra, although the high-energy end of the
conduction-band spectra also display some fine structure.
Of course, for all x there is only one valence band and one

conduction band, although the valence band appears to al-
most break up into two to three subbands for some com-

(a)

5.0
GaAs

0.5 0.5

I.O-

4

5
1 I)

0,0
-4.0

0.0

-2.0 0.0
E/t

2.0

H g {"„d Te

I.O

0.0
-40 -2.0 0.0 2.0

FIG. 4. Density of states for the one-dimensional ternary al-

loys (a) GaAs05P05 (ec ——2.35t, e~ ——0.80t, e& ——0.0) and (b)

Hg05Cd05Te (ec=O.O, e~= —0.28t, ez =1.59t) obtained by the
embedded-cluster method with a N, =8 unit-cell cluster (dashed
curves) and by the negative-eigenvalue-theorem method for a
10000-atom random chain (histograms).
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positions (x=0.5), and displays a distinct sideband for
both small (x=0.125) and large (x=0.875) compositions.
For intermediate x, the valence-band spectrum shows a
very large number of closely spaced peaks.

C. Dependence on cluster size

4.0 AQ58Q5 C

~C= -~8 =~ ~, Cq=QQ
BCBCACACACACBCBC

—d(E)
----& (E)0

To illustrate the effects on embedded-cluster-method
calculations of changing the cluster size, we have calculat-
ed the density of states using this method for clusters con-
taining X,=2, 4, 6, and 8 unit cells for a typical alloy in
the persistence limit (ec ———e~ ——2t, e~ ——0.0, x =0.5).
In Figs. 5(a) and 5(b) we display the results of this calcula-
tion. The results for the cluster-size dependence of the
spectra of an alloy in the amalgamation limit are qualita-
tively similar to the results for this case.

The results shown in Fig. 5 illustrate how the various
peaks originate from the various size clusters. The
embedded-cluster method simulates the exact, negative-
eigenvalue theorem spectrum very well for X,=8 [see
Fig. 1(a)], reasonably well for N, =6, and obtains most of
the major peaks for X, =4. From the difference between

I.O-

0.0
2.0-2.0-4.0 0.0 4,0

E/t

FIG. 6. Global and local central-cell densities of states d {E)
(solid curve) and hp(E) (dashed curve) for a particular cluster
configuration obtained by the embedded-cluster method. The
cluster size used was N, =8 unit cells, the configuration chosen
for illustration is the one where the alloy constituents are ar-
ranged in the form BCBCACACACACBCBC and the case illus-
trated is for the one-dimensional alloy Ap 5Bp 5C with
e~ ———e~ ——2t, ez ——0.0.

40

3.0.

(&) AQ5 B Q5
{-

~C= -&8 =2 f, Ep=QQ
----N -2c

C=4 the X,=6 and X, =8 spectra, it is clear that the depen-
dence of the spectra on cluster size is beginning to satu-
rate at X, =8.

bJ PO
C5

D. Results for single-configuration
densities of states

I.O-

0.0

4.0

2.0

I.O-

-4.0 I-2.0 0.0
E/t

2.0

Nc =8

(b} A05805 C

Fc=-cB =2t, r&=0.0

4.0

For purposes of illustration, we consider here the global
and local densities of states, Eqs. (22a) and (22b), for a
single configuration of alloy constituents within the clus-
ter, each of which can also easily be calculated via the
embedded-cluster method. It is, on the other hand, diffi-
cult to see how to apply the negative-eigenvalue-theorem
technique to such a calculation. Figure 6 shows typical
results for the global and local densities of states d(E)
and bo(E) for a particular configuration. The results in
that figure have been computed for a X,= 8 unit cell clus-
ter for a typical alloy in the persistence (ec———ez 2t, ——
ez ——0, x =0.5) limit. The configuration chosen for
display in this figure is the one where the alloy constitu-
ents in the cluster are arranged in the form
BCBCACACACACBCBC. As is also discussed in II, a
knowledge of such single-configuration spectra along with
the already discussed identification of spectral peaks in
the total density of states could be potentially useful infor-
mation for the analysis of the spectra of nonrandom al-
loys.

0.0
-4.0 -2.0 0.0

E/t
2.0 VI. DISCUSSION AND CONCLUSIONS

FIG. 5. Dependence of the density of states D(E), obtained
by the embedded-cluster method, on the number of unit cells N,
in the cluster for the one-dimensional ternary alloy Ap 5Bp gC in
the case ec———e~ ——2t, e~ ——0.0. (a) N, =2 (dashed curve) and
N, =4 {solid curve); (b) X,=6 (dashed curve) and X,=8 (solid
curve).

We have shown that the embedded-cluster method can
successfully reproduce the exact numerical electronic den-
sities of states for the one-dimensional ternary alloy
A„B& C for all alloy compositions and over a wide
range of atomic energy differences of the alloy constitu-
ents. Furthermore, it can reproduce these spectra with
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relatively small cluster sizes. As inay be seen in any of
the figures, the spectra obtained for the model alloys con-
sidered here are very rich in structure, most of which
would be missed in a simple coherent-potential-
approximation theory. The fact that the spectra obtained
by the use of this method converge for a reasonable clus-

ter size makes the method appear promising for applica-
tion to the calculation of electronic spectra for real semi-

conductor alloys. The recent successful use of this

method by Gonis et al. ' to treat electronic spectra in real

metallic binary alloys further strengthens this potential
practicality. In order to successfully apply this theory to
realistic models for semiconductor alloys, however, it
would be necessary to extend it to include the effects of
off-diagonal disorder, which are important for such al-

loys. The inclusion of such effects into the theory would

be straightforward in principle but tedious in practice.
It should also be noted that, in contrast with even the "ex-
act" calculations, the embedded-cluster method permits

the easy identification of various peaks in the density of
states with specific alloy configurations. This is an in-

teresting and useful feature of the method because it has

potential applications to the study of nonrandom alloys in
which the atoms of one species cluster together.

The principal unsatisfactory features of the spectra cal-
culated by the embedded-cluster method as presented here
are essentially the same as those we found for vibrational
spectra in I and II have also already been briefly discussed
in Sec. VA above. Hence, they will not be discussed in
further detail here; the reader is referred to I and II for a
detailed discussion.
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APPENDIX A: GREEN'S FUNCTION AND ORTHONORMALIZED EIGENFUNCTIONS
FOR THE PERFECT CHAIN

It is not difficult to show that, for the perfect diatomic chain, the real-space matrix elements of the Green s function

have the form

CJ (I )[CJ (k)]»elk(» —»')»eik»(~ —P~&2

(n, a
~

G (E)
~

n', P) =Glott(n, n', E)=—g E —EJ(k)
(A 1)

where the sum on k is over all wave vectors in the first
Brillouin zone, the superscript on the Green's function in-

dicates that it is for the ordered diatomic crystal, j is a
band index, EJ(k) is the energy-band function for band j,
the C~~(k} are the corresponding orthonormalized eigen-
function, and the sum on j goes over all bands.

The energy-band eigenvalues for the diatomic chain are

given by Eq. (4} of the text and it is straightforward to
find the corresponding orthonormalized eigenfunctions.
These have the form

Finally, the use of Eq. (4) of the text in Eq. (A4) results,
after standard techniques are employed, in the expression
for this function given by Eq. (5c).

APPENDIX B: COEFFICIENTS
IN THE CUBIC EQUATION

A considerable amount of algebra will reduce the com-
bination of Eqs. (16), (17), and (6) to a cubic equation of
the form given in Eq. (18). The coefficients in that equa-
tion which result from this manipulation are

2t cos(ka /2)
[(E (k) eti) +4t cos (—ka/2)]'~

(A2) ai ——2eii[b, (1 x)(E —ec)—g —],
a2 (E e~)(g —2t——)+4xbg'—

—a'(1 —x')(E —e,),

(Bl)

CJ(k)= [EJ(k) hatt ]Cji(k)—
2t cos(ka /2)

(A3)

and

(B3)ai —— [2t (E ez) —g (x5+—E eii)], —2xb 2

Eg

By using Eqs. (4), (A2), and (A3) in Eq. (Al), the
perfect-chain Green's-function matrix elements can, after
much manipulation, be brought into the form given by
Eqs. (5a) and (Sb), where the function A (n, n', E) in those
equations has the form

(B4)

(B5)
and

2

ao ——
2 b, (E —eii)(e —2t ) .

Eg

In these expressions, the abbreviations

g =(E eii)(E F.c) 2t— — —

1 ik(,n —n')a
A (n, n', E)=—gN k [E E,(k)][E—E„(k)]—(A4) 6=Kg —Eg

have been used.
(B6)



30 THEORY OF ALLOYS. III. EMBEDDED-CLUSTER. . . 3293

W. Y. Hsu, J. D. Dow, D. J. %01ford, Rnd 8. G. StfcctITlan,
Phys. Rev. 8 16, 1597 (1977), and refex'ences thex'ein; D. J.
%'olford, 8. G. Streetman, and J. Thompson, J. Phys. Soc.
Jpn. Suppl. A 49, 232 (1980).

2G. 8. Stungfellow and H. Kunzel, J. Appl. Phys. 51, 3254
(1980).

3H. J. Lee, L. Y. Juravel, and J. C. %'oolley, Phys. Rev. 8 21,
659 (1980).

~H. Temken and V. G. Kefomidas, J. Appl. Phys. 51, 3269
(1980).

5P. A. Fedders and C. %. Myles, Phys. Rev. 8 29, 802 (1984).
6Sec, foI' example, D. J. %'olford, %. Y. Hsu, J. D. Dow, and 8.

G. Streetman, J. Lumin. 18, 863 (1979).
~A. B.Chen and A. Sher, Phys. Rev. B 23, 5360 (1981);23, 5645

(1981);J. Vac. Sci. Technol. 21, 1381 (1982).
8H. Ehrenxeich and K. C. Hass, J. Vac. Sci. Technol. 21, 133

(1982); K. C. Hass, R. J. I.empert, and H. Ehrenreich, Phys.
Rev. I.ett. 52, 77 (1984).

9S. S. Chan, M. T. Maracyk, and B. G. StI'eetman, J. Elect.
Matex'. 10, 213 (1981).

IOFGI R discUss10Q of thc theory of alloys, particulally CPA
theories, up thx'ough 1974, see, for example, R. J. Elliott, J. A.
Krurnhansl, and P. I.. I eath, Rev. Mod. Phys. 46., 465 (1974),
a,nd fcfcfcnccs thefciQ,

1IA. Gonis and J. %. Gax'land, Phys. Rev. 8 16, 2424 (1977).
~2C. %. Myles and J. D. Dow, Phys. Rev. Lett. 42, 254 (1979),
I3C. W. Myles and J. D. Dow, Phys. Rev. 8 19, 4439 (1979).
~~C. %.Myles, Phys. Rev. 8 28, 4519 (1983).
~5Fof 8 fcv1cw of th1s and other numerical RttcIIlpts at solving

the alloy problem, see P. Dean, Rev. Mod. Phys. 44, 127
(1974), and I'eferences therein.

I6M. J. O'Hax'a, C. %'. Myles, J. D. Dow, and R. D. Paintex', J.
Phys. Chem. Solids 42, 1043 (1981).

~7A. Goni. s, %'. H. Butlex, and G. M. Stocks, Phys. Rev. Lett.
50, 1482 (1983); A. Gonis, G. Stocks, W. H. ButleI', and H.
Winter. , Phys. Rev. 8 29, 555 (1984).

ISJ. Koxringa, Physica (Utrecht) 13, 392 (1947); %'. Kohn and
N. Rostoker» Phys. Rev. 94, 111 (1954).

~9A pcfsistcnt spcctf Um conta1ns fcRtuf cs wh1ch arc character is-
tic of the quasilocalizcd natUfc of thc clcctfonic states associ-
ated W1th 8 single alloy constituent. By conti Rst» Rn amal-
gamRtcd spcctI'UIIl 1s hybridized an«I cha1actc11stic of thc al-
loy Rs 8 whole» father than of any component. Scc» fox' exam"
pie, Y. Onodefa and Y. Toyozowa, J. Phys. Soc. Jpn. 24, 341
(1968).

2oY. T. Shen and C. %.Myles (unpublished).
21For a review of the CPA as applied to electronic spectra in

disox'dered alloys, see H. Ehrenreich and I.. Schwartz, in SOIid
State I'hysies, edited by F. Seitz, D. Turnbull, and H. Ehren-
reich (Academic, New York, 1976), Vol. 31,

22D, W. Taylor, Solid State Commun. 13, 117 (1973).
23P. Soven, Phys. Rev. 156, 809 (1967); D. %.Taylox', ibid. 156,

1017 (1967); B. Velicky, S. Kix'kpatrick, and H. Ehrenx'eich,
ibid. 175, 747 (1968).

24P. N. Sen and W. M. Hax'tmann, Phys. Rev. 8 9, 367 (1974).
An cRfly fcfcfcncc is» foI example» F. J. Dyson» Phys. Rcv. 92»
1331 (1953).

26The same method will work, in principle, for any translation-
Rlly 1nvRI'1Rnt effective medium.
In gcncl'81, foI' 8 X~ Unit-cell clustcf containing I =xX~ AC
unit cells and (1—x)X, 8C unit cells, there a,re k =(I ') pos-
sible configurations. Of course, not all k configurations ax'e

pilysically Unique.
28For the treatment of impurity spectra in a.lloys via the

embedded-cluster method» wc have sllown in Rcf. 29 that 1t is
Qcccssary to include a/I possible conf lguf Rtions foi 8 given
clustcf s1zc, cvcIl those whose composition diffcfs from thc
average composition x. In that case, the atypical configura-
t1ons, whose compositions differ significantly frGIIl x, Rfc thc
ones which make the most important contributions to the
wings of the impurity electronic state density. However, in
the prcscnt case» wh, cfc thc clcctroQic spcctfa of thc 8110y 1t"
self arc being calculated» thc Qcglcct of thcsc 8typ1cal configu-
fRtions is 8 less scfious RppioxiIIlatioQ since thc 1ntcnsity of 8
given peak in the spectrum ls px'oportional to thc pfobabllity
of occUI'icncc of thc clUstcI' which p10dUcc«I it. Thc intensi-
ties of the peaks due to the atypical configurations would thus
be significantly smaller than those due to the Inore typical
ones. If we weI'e to keep all possible configurations for a X,
unit-cell cluster, the number of required configurations would

N
be g =g, '0(g '). See Ref. 29 for further details.

29C. %. Myles, J. D. Dow, and O. F. Sankey, Phys. Rev. 8 24,
1137 (1981); C. W. Myles and J. D. Dow, ibid. 25, 3593
{1982).

soThere are a large number of cluster CPA theories, many of
wh1ch suffcf from nonanalyticlty problems, 1Q Mklit10Q to
thc1I computational complexity. Onc which docs not have
this problem is given in Ref. 31.

3'R. Mills and P. Ratanavararaksa, Phys. Rev. 8 18, 5291
(1978); R. Mills, L. J. Gray, and T. Kaplan, ibid. 27, 3252
(1983).

3~Spectra fox' other compositions and foI' parametex's corre-
sponding to Othcf scImconducting alloys RI'c RvMlablc ffom
thc RuthoI's upon written I'cqucst.

33%C first assumed that the txansfer energy t is equal to 1 CV.
Thc valcncc-band cdgc of Gnc OI' thc other of thc constitUcnt
semiconductors was then arbitrarily chosen to bc thc zcfo of
cncfgy, thereby fiixlng thc cofresponding Rtomiclikc cIlcI'gy
(cithcf Ec» Eg» GI' 6'g ) at zero. Thc fcIIlain1ng two Rtomicllkc
cncfgics wcfc then determined by fitt1ng thc onc-«I1mcns1oxlRl

bandgaps of tllc model Rt x =0 Rnd x =1 to thc known
three-dimensional bandga, ps (at T =OX) of the two alloy con-
stitUcnts BC Rnd AC. Thc ban«I gaps wc have Used Rrc Rs fol"
lows: GaAs, Eg ——1.55 CV (Ref. 34); GaP, Eg ——2.35 cV (Ref.
34); CdTe, Et=1.59 eV (Ref. 35), and HgTC, Eg= —0.28 eV
(Rcf. 35) (HgTc 1S 8 scmiIIlctal).

3~P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chexn.
Solids 41, 364 (1983).

35A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. 8 25,
6367 (1982).

36P. A. Fedders, 8. A. Schrauner, and C. W. Myles, Hull. Am.
Phys. Soc. 28, 554 (1983),and unpublished.


