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The electron diffusion contribution to the thermoelectric power is calculated for a layered super-
lattice in a high magnetic field. The shape of the quantum oscillations is shown to depend signifi-
cantly on the ratio of the temperature to the interlayer bandwidth ( W) divided by Boltzmann’s con-
stant (kp). When the highest occupied Landau level is partially filled, the thermopower is linear in
temperature at low temperatures and saturates to a constant value for temperatures approximately
comparable to or larger than Wk '. When the highest occupied Landau level is nearly filled, the
thermopower occurs via activation to the adjacent higher level. The effect of electron localization is
discussed. This study provides useful information about some of the important properties of layered
superlattices, such as the carrier densities, the Fermi temperatures, the electronic structures in the
superlattice direction, and the effect of carrier localization.

I. INTRODUCTION

The thermoelectric phenomenon gives valuable infor-
mation about electron-transport processes in metals and
semiconductors. In this paper we study the temperature-
dependent and the magnetic-field-dependent behaviors of
the thermoelectric effect in quasi-two-dimensional sys-
tems such as layered superlattices and heterostructure in-
version layers, which are the subject of increasing current
activities.! We deal mainly with superlattices while an in-
version layer is treated merely as a special two-
dimensional case where the interlayer overlap vanishes.
In the latter case the detailed form of the potential well in
the direction perpendicular to the layer does not affect the
final result. These systems are characterized by a nearly
two-dimensional metallic conduction with very low Fermi
temperatures less than a few hundred degrees kelvin and
with low densities of carriers compared to ordinary met-
als. As a result a large electron-diffusion thermopower is
expected in comparison to ordinary metals, although it is
smaller than that in a nondegenerate semiconductor.
Apart from an academic interest it is hoped that this
study will provide useful means of looking into some of
the important properties of layered superlattices such as
the carrier densities, Fermi temperatures, electronic struc-
tures in the superlattice direction, and the effect of carrier
localization.

This study is applicable to a wide variety of quasi-two-
dimensional systems. A good example is the strained
layer superlattice In,Ga;,_,As/GaAs where large-
amplitude quantum oscillations in the magnetotransport
were observed recently by Shirber et al.? This system
consists of alternating sheets of conducting and insulating
layers of widths on the order of 250 A or less, each form-
ing quantum wells and barriers stacked in the superlattice
direction. Electrons are then introduced by Si doping
with layer densities 7, =(1—8)X 10'! cm ™2 corresponding
to the Fermi temperatures in the range 7»=30—300 K.
For an effective mass m /m(=0.06 and a quantum-well
width of 125 A, for example, the energy separation be-
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tween the ground and first excited subbands is about 1400
K. Therefore, only the ground subband is assumed to be
occupied at low temperatures in the following analysis.
The bandwidth ( W) in the superlattice direction is small,
roughly on the order of W=(50 K)kp or smaller. Here,
kp is Boltzmann’s constant. Later applications are made
with the above physical parameters in mind.

The magnetic field (H) is assumed to be in the super-
lattice direction (to be designated as the z axis). Because
of the small effective mass, the cyclotron angular frequen-
cy (w) is quite large for a moderate field. For example,
for H=40 kG the Landau-level separation equals
#iw =tieH /mc=(88.8 K)kp where e and c are the elec-
tronic charge and the speed of light. The field is assumed
to be sufficiently large to be in the quantum limit, namely,

#iw >>kgT (1.1)

and

or>>1. (1.2)

Here, 7 is the transport relaxation time for the electrons.
These conditions are readily satisfied in the superlattice
cited above.?

The energy of an electron is given by

e(H)=(I+ 3o +e, » (1.3)
where / is an integer. An application will be made to a
tight-binding model with the kinetic energy in the z direc-
tion given by

€, =W|[1—cos(ka)]/2 . (1.4
Here k, and a are the momentum and electronic period in
the superlattice direction, respectively. A general band
structure in the z direction can be easily treated numeri-
cally. Here we do not necessarily assume a coherent
motion in the z direction. The degeneracy of the Landau
levels (including spin) equals

g=eHL?/m#c , (1.5)
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where L2 is the area of the conducting x-y plane.

The temperature gradient is in the x direction in the
conducting plane. The temperature gradient produces an
electric field mainly in the same direction if the electric
current is not allowed to flow. We study the temperature
dependence and the field dependence (i.e., quantum oscil-
lations) of the electron-diffusion contribution to the ther-
moelectric power. The effect of a finite interlayer band-
width is examined.

The organization of this paper is as follows. In Sec. Il
a basic formalism of the thermopower is introduced. This
result is used in Sec. III to investigate the electron-
diffusion thermopower. A brief conclusion is given in
Sec. IV.

II. BASIC FORMALISM

The charge and heat currents T and U are written in a
linear-response regime as a linear combination of the elec-

tric field E and the temperature gradient®

J=6(H)E+LzH) VT, 2.1a)
U=Y,x(H)E+Lp(H) VT, 2.1b)

where the proportionality coefficients represent second-
rank tensors. The Onsager relationship yields®

Ter(H)=—Lp(—H)/T 2.2)

with the tilde meaning the transpose.

The tensors in (2.1) except for ITT are mainly off diag-
onal, namely, the electronic heat and charge currents are
in the transverse (i.e., y) direction due to deflection by a
Lorentz force. If the electric current is not allowed to
flow in the y direction (i.e., J, =0), the off-diagonal terms
in (2.1a) yield in view of the Onsager relation (2.2) a ther-
moelectric power

x T
S(H >=E,/€xr=£i€i—ﬂ—’ ) 2.3)
oy (H)T

Here, use is made of the relationship
L% (—H)=L¥%H) .

In (2.3) a small contribution arising from a finite-
temperature gradient in the y direction present under the
usual adiabatic boundary condition (U,=0) is ignored.*
The problem is then reduced to calculating the ratio of the
transverse heat and charge currents per temperature for
an electric field in the x direction in the absence of the
temperature-gradient term in (2.1).

III. THERMOELECTRIC POWER

The contribution to the electrical conductivity and the

heat current tensors G(H ) and fm(ﬁ ) is conveniently ex-
pressed in terms of the energy-dependent conductivity ten-

sor &(€) [to be distinguished from &(H )] by
G(H)= [[—f%eT5(e)de ,
Lp(H)=(1/e) [ fO(e)e—pF(e)de

(3.1a)
(3.1b)

where ¥ and p are the derivatives of the Fermi function
and the chemical potential. In a strong field [cf. (1.2)] we
need only the Hall conductivity tensor

n(eec
HQ

In (3.2) n(e) is the number of the states within the energy
shell € for the sample of volume Q,

n(e)= [ D(&)de (3.3)

oyxl€)= (3.2)

and D (e) is the density of states.
Inserting (3.1)—(3.3) into (2.3) we find

S(H)=—(1/eTN) [[—f"(e))e—pIn(e)de, (3.4)

where N is the total number of electrons

N= [ f%e)D(e)de . (3.5)

In the above we have assumed that o,, is negligible com-

pared with o,, for ®7>>1, which is not valid in the ex-
treme disordered limit. The present semiclassical ap-
proach is valid for static disorder. Note that the quantity
n(e) in the integral of (3.4) is not the usual density of
states which enters the field-free thermopower formula
but an integration of the density of states [cf. (3.3)].
Nevertheless, the dominant contribution to the heat flow
still comes from the states near the Fermi level as in the
field-free situation owing to the “electron-hole” cancella-
tion factor e—pu. On the other hand, all states inside the
Fermi surface contribute to the Hall current ( < N) in the
denominator of (3.4) in contrast to the field-free case
where the concomitant charge current in the denominator
reflects the contribution only from states near the Fermi
level. For this reason the low-temperature magnetother-
mopower becomes very small when the Fermi level lies in
the gap or in the region of localized states, whereas the
field-free thermopower is very large, as in semiconductors
in this situation.

In the presence of the Landau levels, the density of
states is written as

D(e)=(N, /m) [[d(k,a) 3, sle—Fioll ++)—e; ) ,
1=0

(3.6)
which yields for the tight-binding band in (1.4)
D(€)=(gN,/mW?*) 3 [(W +Hio(l +5)—¢€)
=0
X(e—#o(l +5))]"12. (3.7)

Here, N, is the number of periods in the superlattice
direction.

The chemical potential is obtained as a function of N in
the following way.” Let Iz be the number of occupied
Landau levels. The chemical potential then lies between
fio(l—+) and #iw(lp++). Assuming that the Landau
levels do not overlap and that fio— W >>kp T for simpli-
city, we need to consider only the levels / =Ip—1 and Ir
in (3.6) separately. Otherwise, the level / =Iy—2 should
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be included. Inserting (3.6) into (3.5), we find
1 pm 1
B=—[ d(k,a)§

e**41’
where B~!=kyT and B is the occupancy of the highest
occupied level (0 <B < 1) given in terms of the filling fac-
tor p by

B=p—[p]l, p=N/gN, (3.9)

zy =Pe +xty (3.8)

with [ p] meaning rounding off p to an integer value. The
quantities x and y in (3.8) are defined by

x =B(fiwlyp—p), y=Pphw/2 .
In the limit BW << 1, (3.8) yields®
x =In{[(1—B)coshy +(14(1—B)%*inh%)!/]/B} .
(3.11)

(3.10)

At extreme low temperatures [i.e., kg TD(u) << 1] the ex-
pression in (3.4) reduces in view of (3.3) to

S(H)=—7m*k3TD(u)/3eN . (3.12)

Here, the Fermi level is assumed to lie in the conducting
region. Otherwise the thermopower is exponentially small
as argued above. Another way of justifying this claim is
to use Mott’s formula

dlno, ()

au
[obtained from (2.3), (3.1), and (3.2)] which vanishes in the
quantum Hall effect plateau regime. The thermopower is
then proportional to the density of states at the Fermi lev-

el. For the tight-binding band in (1.4) the chemical poten-
tial is obtained from (3.8) and equals

y —x =BWsinXwB/2) ,
yielding for (3.7) and (3.12),

S (H)«

D(u)/N =2[mpW sin(wB)]~! . (3.13)
The thermopower is then given by
S(ﬁ)=—ﬂ—~ So=—2wk3T /3eW . (3.14)
psin(7B)’

In Fig. 1 the thermopower is plotted in units of S, as a
function of the filling factor p. The latter equals unity,
for example, for H=40 kG and n,=2.0X 10" cm~—2
All states are assumed to be conducting in the x-y plane.
If there is any mobility edge, the thermopower drops to
zero in the localized region. If all states below the Fermi
level are localized, as may occur in the extreme quantum
limit (p > 1), then both heat and Hall currents are via ac-
tivation to the mobility edge. The thermopower is then
large as in a semiconductor. In Fig. 1 the Landau levels
are assumed not to overlap (i.e., #io> W). For large
values of p, namely, for small fields they will eventually
overlap and the thermopower as well as the density of
states [cf. (3.7)] will rise near each band edge as in Fig. 1
showing more structures.

In general the thermopower is given by (3.4) with

15 -

BW=0o

S(H)/So

1 1 1 1 1

[}

FIG. 1. Very-low-temperature thermopower in units of S,
[cf. (3.14)] vs the filling factor p.

n(e)=(N/pm) [[d(k,a) 3, Ole—e)) (3.152)
1=0

and

e=fio(l +7)+e_, (3.15b)
where O(x) is a unit step function. In the limit BW «<1
the expression in (3.4) reduces to the two-dimensional re-
sult.’ The quantity n(e) in (3.15) can be viewed as a sum
of steplike densities of states which are independent of en-
ergy for €>¢€;. If we assume B(#iw — W) >> 1, then the in-
tegrand in (3.4) becomes approximately symmetric for
Il <lp—1 and the net contribution is negligible. On the
other hand, the contribution from /> Ir is exponentially
small. Therefore retaining only / =Ir—1 and I, we find

G tin(14e”%)

z

. ky o
S(H)=———| d(k
(H) e,mfo (ka) 3 o

j=+,—-
(3.16)

The high-temperature (BW << 1) thermopower can be
evaluated analytically. When the occupancy B is nearly
unity, we find from (3.11) and (3.16) a very small thermo-
power

S(H)=—4kgye ™7 /ep . (3.17)

In this case, the Fermi level lies halfway between two
Landau levels (i.e., x =0). For a filled band the entropy
(i.e., heat per temperature) vanishes and heat can be car-
ried only by activation to the next level.

When the highest occupied Landau level is partially
filled [i.e., 1— B >>exp(—y)], we find from (3.11) and
(3.16)

kg 1—-B

S(H)=—— |BlIn—= —In(1—B) | .
ep B

(3.18)

The quantity in the large parentheses of (3.18) is sym-
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FIG. 2. Thermopower vs the filling factor p for W =0
(solid curve), BW =5 (dotted curve), and BW =20 (dashed

curve).

metric with respect to B = % with a peak value of In2 and

vanishes as BInB~! at B=0. This behavior reflects the
fact that the entropy and thus the heat flow becomes max-
imum (i.e., In2 per state) at half-filling of the band and
drops as the band is gradually emptied or filled.

In Fig. 2 the high-temperature thermopower is plotted
in a solid curve as a function of the filling factor p. The
filling factor p can be varied either by changing the mag-
netic field or by changing the electron density, yielding
the same curve independent of the temperature except at
near the exact filling. For the latter, however, the thermo-
power is negligibly small as was noted in (3.17).

For intermediate values of the interlayer bandwidth W
Egs. (3.8) and (3.16) are evaluated numerically. The re-
sults are displayed in Fig. 2 in a dashed curve for BW =20
and a dotted curve for BW=S5. The curves clearly display
a gradual change from a two-dimensional behavior
(BW=0) to a three-dimensional behavior (BW =) ex-
hibited in Fig. 1. The shape of the quantum oscillations

depend significantly on the ratio of the temperature to

Wkg .

Finally the thermopower is plotted as a function of the
temperature in Fig. 3 for p =1.5. The latter corresponds,
for example, to H =40 kG and n,=3.0% 10!! cm™2. The
thermopower is linear at low temperatures as in (3.12) and
saturates to a constant value near SW=1. At integer

values of p the thermopower occurs via activation [cf.
(3.17).

IV. CONCLUSION

The electron-diffusion contribution to the thermoelec-
tric power was examined for a layered superlattice in a
high-magnetic field. The shape of the quantum oscilla-
tions was shown to depend significantly on the ratio of
kpT to the interlayer bandwidth. When the highest occu-
pied Landau level is partially filled, the thermopower is
linear in temperature at low temperatures and saturates to
a constant value for kpT larger than the interlayer band-
width. When the highest occupied level is nearly filled,
the thermopower occurs via activation to the adjacent

higher level. The effect of electron localization was dis-
cussed.
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