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The thermoelectric power (Seebeck coefficient) a of a small polaron in both ferromagnetic and an-
tiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we ob-
tain the contribution to the Seebeck coefficient arising from exchange interactions between the
severely localized carrier (i.e., small polaron) of charge g and the spins of the host lattice. In
essence, we study the heat transported along with a carrier. This heat, the Peltier heat, II, is related
to the Seebeck coefficient by the Kelvin relation: II=qTa, where T is the temperature. The heat
per carrier is simply the product of the temperature and the change of the entropy of the system
when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is there-
fore directly related to the change of the magnetic entropy of the system upon introduction of a
charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small
polaron and the spins of a spin—% system. These magnetic interactions produce two competing con-
tributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom
(e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby
producing a positive contribution to the Peltier heat. Second, however, the additional exchange be-
tween the carrier and the sites about it enhances the exchange binding among these sites. This gen-
erally reduces the energetically allowable spin configurations. The concomitant reduction of the
system’s entropy provides a negative contribution to the Peltier heat. At the highest of tempera-
tures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier
heat is simply augmented by k7 In2. Alternatively, at temperatures well below the magnetic transi-
tion temperature, the second effect dominates. The Peltier heat then garners a negative contribu-
tion. In the experimentally accessible range between these limits, both effects are comparable.
There the magnetic contribution to the Seebeck coefficient is generally sizable, ~100 uV/K. Fur-
thermore, this magnetic contribution to the Seebeck coefficient is distinguished from the usual non-
magnetic contribution by its temperature dependence; it rises with temperature. Thus, the exchange
interactions between a small polaron and its magnetic environment produce a significant and dis-
tinctive contribution to the carrier’s Seebeck coefficient.

I. INTRODUCTION a= [ ale)ole)de / [ oterde .
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The thermoelectric power (Seebeck coefficient) a is the
average entropy per unit charge, g, transported along with
a charge carrier.! In the absence of energy flow associated
with the specific transport process (e.g., phonon drag for
itinerant motion® and vibrational energy transported in a
jump for hopping motion>*#), the basic quantity can be
calculated from thermodynamics. Namely, one computes
the change of the entropy of the system when a carrier is
added to it. This amount of entropy is transported with
the carrier as it passes through the material. For free car-
riers, the Seebeck coefficient associated with carriers of
energy €, a(e), is simply |e—pu | /qT, where T is the tem-
perature and u is the chemical potential. The net Seebeck
coefficient a is then the average of this quantity weighted
by the partial conductivity attributed to carriers of energy
€, o(e), and

For convenience, we discuss the energy corresponding to
the Seebeck coefficient: the Peltier heat, [I=qTa. For
free carriers of energy €, II=| e—pu |. However, the situ-
ation becomes more complex when one explicitly consid-
ers the interactions of the carriers with one another or
with the atoms of the solid. For example, the free-carrier
formula is altered by that interaction of the carrier with
the lattice that is responsible for the shift of the energy
levels of an insulator with temperature.>® In magnetic
semiconductors, in addition to the electron-lattice interac-
tion, the carrier interacts with the solid via exchange in-
teractions. Here we consider the effect of these magnetic
interactions on the Peltier heat of a severely localized car-
rier (i.e., small polaron) in a magnetic semiconductor.
Small-polaron formation occurs when a carrier is bound
in the potential well produced by shifts of the equilibrium
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positions of the atoms surrounding the carrier. These
(trapping) atomic displacements are themselves stabilized
by the carrier’s occupation of this potential well. Such
“self-trapping” is a result of the carrier’s electron-lattice
interaction. When small-polaron formation occurs in a
magnetic solid (e.g., MnO) the self-trapped carrier also in-
teracts with the magnetic moments of the solid via ex-
change interactions. In this paper we study the effect of
these interactions on the Seebeck coefficient (Peltier heat)
of a small polaron. For simplicity, we ignore the modifi-
cations of our calculations arising from the dependences
of the exchange energies on atomic displacements (the
- magnon-phonon interaction). This is consistent with our
purpose: understanding the basic effect of exchange in-
teractions on the small polaron’s Seebeck coefficient. In
small-polaron hopping a charge remains localized on an
atomic site for a long time (>> 1072 sec) and only makes
occasional rapid jumps between adjacent atomic sites.
Thus, the magnetic interactions of a small polaron are
those of a charge carrier confined to a single atomic site.
As such, the results of this paper are not directly applic-
able to band transport or to shallow-impurity conduction
where the presumption of such severe localization is inap-
propriate. Nonetheless, the general method of this paper
can be applied to the calculation of the Peltier heat of an
itinerant carrier.>® In particular, the Peltier heat of an
itinerant carrier is found by computing the change of the
entropy of the system when a carrier is added to a state of
quasimomentum K.

The effect of spin on the Peltier heat of a small polaron
in a magnetic semiconductor has been considered before.

In particular, Heikes et al.”8 introduced the term
2S +1
Hmag =kT lnm

for the magnetic contribution to Peltier heat above the
magnetic transition temperature, in the paramagnetic re-
gime. Here S and S, denote, respectively, the net spin of
a magnetic site with and without the presence of the car-
rier spin at the site. We show that in the paramagnetic re-
gime, in addition to this spin-degeneracy contribution,
there is another term of comparable magnitude and oppo-
site sign. It originates from the exchange between the car-
rier and the surrounding magnetic sites. This result
represents just one regime of a general calculation of the
magnetic contribution to a small polaron’s Peltier heat.
We also consider the magnetic effect in the low-
temperature magnetically ordered state.

To calculate the Peltier heat IT we compute the product
of the temperature and change in entropy of a system of #
carriers on N sites upon adding an additional carrier:

—_ __a__ n+1__pn
II= TaT(F Fr) . (1)

Here F” denotes the free energy of a system with n car-
riers. Ignoring interactions among the carriers them-
selves, as is appropriate for low carrier concentrations
(c=n/N <<1), the above expression reduces to

i)

II=—Tﬁ(Fl—F°)+len[(l—c)/c] . )

The final term on the right-hand side is simply of com-
binatorial origin. It is the change of the entropy of a dis-
tribution of particles among N equivalent sites when the
particle number is increased from »n to n+1. Using the
Fermi relation

c={exp[(e—u)/kT]+1}71,

this term may be rewritten as e —pu. The first term on the
right-hand side,

_ 79 (F1_F%=
T (F' —F)=Tlp,, , (3)

is the contribution to the Peltier heat due to the magnetic
nature of the carrier and the host lattice. For example, in
the absence of interactions when the carrier has equal
probability of having its spin up or down, II,, is simply
kT In2. Our purpose here is to calculate IL,,, in the pres-
ence of spin interactions between the carrier and the mag-
netic host atoms. We consider temperatures both below
and above the magnetic transition temperature.

We shall first consider a one-dimensional chain of
spin-+ sites and calculate the change in entropy resulting
from adding a carrier to this system. Two models of the
carrier-host exchange interaction are treated. (A) To be-
gin, we consider a mean-field treatment in which all spins
interact by Ising exchange. (B) Next, we extend the model
so that the intrasite coupling of the carrier to the occupied
site is via Heisenberg exchange and the intersite coupling
is via Ising exchange. Here the mean-field approximation
is only applied to sites which are neither occupied nor
nearest neighbors of the carrier. Finally, we extend the
idea used in model B to a simple-cubic lattice. The ex-
pressions for the Peltier heat derived from different
models contain the same qualitative features. Namely,
below the magnetic ordering temperature, I1,,,, is small
and negative. At temperatures between the transition
temperature and the temperature corresponding to in-
trasite exchange (typically ~ 10* K), I, is the sum of a
negative term associated with the intersite exchange and
the positive (Heikes) contribution which arises from spin
degeneracy (except for model A as we subsequently show).
Significant cancellations can occur between these terms
because they are of comparable magnitude. Finally, at the
highest of temperatures, above that associated with in-
trasite exchange, I1,,, is simply kT In2. This corresponds
to all spin states being equally occupied. It should also be
pointed out that our results are independent of the sign of
the intersite exchange. That is, they apply to both fer-
romagnets and antiferromagnets. This is because it is
only the degree of canting of the spins about the carrier
that changes the free energy.

In the following sections we first present calculations of
I, for a one-dimensional chain of magnetic sites. We
then generalize our formulation to a three-dimensional
crystal where the magnetic sites comprise a simple-cubic
lattice. The paper concludes with a synopsis and discus-
sion of our work.
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II. CALCULATION OF I,
FOR A ONE-DIMENSIONAL CHAIN

A. Ising model in the mean-field approximation

Consider an Ising model of a one-dimensional fer-
romagnetic closed chain of N spin-% magnetic sites with
nearest-neighbor exchange. In the absence of a carrier,
the Ising exchange Hamiltonian is

N
H=—-J 3 0,041, (4)
i=1

where J denotes the exchange integral between adjacent
spins, o; at site i and o; . at site i +1. The Ising spin

takes the value o; =21 with oy, ;=0;. We rewrite x°
as
=
fz
ij

where .% is the thermal average of a spin; it is indepen-
dent of the site index i. In the mean-field (MF) approxi-
mation, the first term on the right-hand side, representing
spin fluctuations, is neglected. The remaining two terms
yield

N
%ﬁ,ﬂ:=NJy2—2Jf 21 O'J .
1 =
The corresponding free energy is

O— _kTInZYr ,
where the partition function Z 3y is
Z&F =Tre—*#
—e— M S exp [Uzajﬁl
(Op-nns oy j

and B=1/kT. It is straightforward to carry out the sum-
mation over all the spin configurations in Z%r:

N
Zgﬂ::e_myﬂﬁn > exp(2JFo;B)

j=1 crj=il

=e 'NJyZB[Z cosh(2J.# )1V

and

F°=NJ.#?—NkT In[2 cosh(2J.#13)] . (6)

We now introduce a carrier with Ising spin oy at site n

to the above-described -carrier-free magnetic system.
I

F'= (N—4)S%J +2J(25¢+5)S;

Again considering only nearest-neighbor exchange, the
corresponding Hamiltonian is

N
1__
' =—J 2 UjO'j+1—J(O’oﬂ'n_1+0'00'n+1)—-J0U00'n s
j=1

(7

where Jj, taken to be positive, is the intrasite exchange in-
tegral linking the carrier spin o, with the spin of the oc-
cupied site, 0,. The coupling strength between the carrier
spin and its two nearest neighbors, o, 4, for simplicity, is
taken to be the same as that between o, and 0,4+, namely
J.

We again introduce the mean-field approximation for
the intersite exchange, but treat the intrasite coupling ex-
actly within the Ising model. To begin, we note that the
thermal averages of the carrier spin o and the host spin
at the same site, o, share a common value, Sy:

(o9)=(0,)=5S, . (8a)

Similarly, by symmetry the thermal average of the two
spins adjacent to the occupied site, o, _; and o0, ., equal
one another,

<Un—1>=<0n+1>:S1 . (8b)

As a zeroth-order approximation, the next-nearest and
higher-order neighbors of the carrier, which are not
directly coupled to the carrier, are presumed to have a
common thermal average denoted by S,

(0;)=S fori#0,n,n*l. (8¢)

That is, the presence of the carrier is taken to affect only
the occupied site and its neighbors. Employing the
mean-field approximation and neglecting spin fluctuations
about the average spins Sy, S;, and S of Eqgs. (8a)—(8c)
reduces the Hamiltonian for the Ising ring with a spin
added at site n to

N

Hhp=(N—4)SU +2J(2S,+5)S1— 3, Hio;—Jy000, -
i=0

9)

Here the effective intersite exchange field acting on spin
o;, namely H;, is

Ho=H,=2JS,,

Hypp1=J(S+250) ,
(10)

Hni2=J(S+S1) )
H,;=2JS, j=1,2,...,n—=3,n+3,...,N.

Using Egs. (9) and (10) we obtain the free energy in the
presence of a carrier,

_kT(N —1)In2—kT(N —5)In[cosh(2JSB)] —2kT In{cosh[J(S +S)B]}

—2kT In{cosh[J(S +250)B]} — kT In(2{cosh[(2JS, +Jo)B1}exp(2JS) B)+2{cosh[ (2JS} —Jo)Bl}exp( 275, 8)) .

(1D
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The magnetic contribution to the Peltier heat can be
readily calculated by substituting Egs. (11) and (6) into
Eq. (3). Foregoing the complicated algebra, we present
the main features of II,,, for the following limiting cases.

1. Paramagnetic regime: T >T,

Above the transition temperature T, =2J/k (appropri-
ate to a ferromagnetic linear chain) the thermal averages
of the spins vanish. The change in free energy upon add-
ing a carrier is then simply

F'—F%= kT 1In[2 cosh(JyB)] . (12)

Employing Eq. (3) with Eq. (12) then yields the magnetic
contribution to the Peltier heat,

s =KkT In2+ kT In[cosh(JoB)] —Jptanh(JoB) . (13)

The magnitude of the corresponding magnetic contribu-
tion to the Seebeck coefficient, I1,,,,/ | ¢ | T, is plotted in
Fig. 1. The intersite exchange J is not contained in Egs.
(12) and (13). This is because we have subjected each site
to the mean-field approximation. Our subsequent discus-
sion transcends this oversimplification. It is now instruc-
tive to examine two limits of Eq. (13).

(a) T>Jyg/k. At extremely high temperature, i.e.,
T >>Jy/k (>>T,), Eq. (13) is dominated by the first term
on its right-hand side,

Mpae~kT1In2, T>>Jo/k . (14)

This result corresponds to the interaction of the carrier
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FIG. 1. Magnitude of the magnetic contribution to the See-
beck coefficient, In,./ | g | T, is plotted against Jo/kT in the
paramagnetic regime for a one-dimensional Ising chain in the
mean-field approximation.
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with the magnetic host being insignificant. In particular,
for T >>J,/k Hund’s-rule and non-Hund’s-rule states are
equally occupied. Hence the change in entropy on adding
an electron to a spin-% system arises solely from the two-
fold degeneracy of the carrier.

(b) Jo/k>T>T,.. At temperatures above 7, but
much less than the intrasite exchange we expand the
second and third terms of Eq. (13) for large values of JB.
This leads to a very small positive magnetic contribution
to the Peltier heat which depends only on the intrasite ex-
change and the temperature,

—2J,8

M pag=~2J e , Jo/k>T>T, . (15)

We note that the Heikes spin-degeneracy term (kT ln%)
does not appear in Eq. (15) despite the fact that for
T <<Jo/k the spin of the added electron lines up with the
host spin. This is an artifact of the Ising model. Within
the Ising model the degree of spin degeneracy at the occu-
pied site is unaltered by the presence of the carrier. How-
ever, as we subsequently show, this is not true with
Heisenberg exchange.

2. Ordered regime: T << T,

At temperatures well below the transition temperature,
the thermal average of the spins in the presence of a car-
rier approaches that of the -carrier-free case, i.e.,
So~S;~S~.%.° There the thermal averages of the spins
reach their common temperature-independent saturation
value. In this limit Egs. (3), (6), and (11) yield

Mpog=—12Je %78, T T, . (16)

The small negative value of Il,, is a general feature of
the low-temperature regime. It occurs because the added
exchange ' interactions associated with the added spin
cause an increased fanning out of the system’s magnetic
energy levels. Thus the occupation of excited energy lev-
els, which is a measure of the system’s entropy, is reduced
when the spin is added.

B. Three-site cluster embedded in a mean-field magnet

In the preceding treatment we modeled the exchange in-
teraction by the Ising Hamiltonian and then employed the
mean-field approximation. We found that for
Jo/k >>T >T, neither the intersite exchange nor the
correct spin degeneracy appear in II,,, Eq. (15). In order
to investigate these features, we now treat the problem in
a more realistic manner.

As before, we consider an Ising ring. However, we
“rescue” the occupied site n and its neighbors » —1 and
n+1 from the mean-field approximation. That is, we
treat our system as a three-site cluster embedded in the ef-
fective field produced by the remaining spins. Without
the carrier there are three spins on the three sites of the
cluster. Adding a spin at site n increases the number of
spins of the three-site cluster to four. The added spin has
a Heisenberg intrasite exchange. However, its intersite ex-
change is treated on the same footing as the other intersite
exchange, i.e., by the Ising model.

In the absence of a carrier the reduced Hamiltonian is
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N
HUp=(N =20 F?—Jo,(0y _1+0n41)— 3 Hioy , (17)

i=1
where % is the thermal average of spins outside the clus-
ter (' =(o0;), is~n, n*1) and H; is the effective field at
site i:
J&Z, i=ntl
H i= 0, i =hn (18)
2J.#, all the other sites .

The corresponding partition function is

Z0=e— V=178 cosh(2J.7B) 1N —32° , (19)
where
2°=4[1+cosh(2J.% B)cosh(2JB)] (20)

is the partition function for the three sites of the cluster.

With a carrier of spin 3 at site n, we write the Hamil-
tonian in terms of site spin operators (e.g., $;) and their z
components (e.g., s;,) instead of the z components of the
Pauli spin matrices, the o;’s where s; ,=0;/2. With this
notation the Hamiltonian for the magnetic system with a
carrier on site n is written as the sum of the Hamiltonian
of the three-site, four-spin cluster, #%°,, and the reduced
(effective-field) Hamiltonian for the remaining sites of the
closed chain,

N
Hoyg=H +(N—=2)JS’— 3 4JSs;, , 1)
i;&‘r:nli'l
where S is the thermal average of the spins outside the
cluster. The cluster Hamiltonian 57, is

He=—2s, —t,zFSn 41,z WS
—4J(50,2+Sn,2)(5p —1,2F5n +l,z)“4J0§0'§n . (22)

The three terms of the Hamiltonian are readily under-
stood. First, the Ising spins at site n+1 (5,41, =0,+1/2)
experience the mean field JS of their neighbors from out-
side the cluster. Second, these spins are coupled to the
two spins at site n, $( and §,, by Ising exchange. Final-
ly, the coupling between the carrier and the host spin at
site n is described by the Heisenberg exchange. Again, we
take J to be positive.

To calculate the partition function Z! in the presence
of a carrier, we diagonalize the cluster Hamiltonian 5.
The eigenfunctions of 57, are simply the products of the
eigenfunctions of $g+7%, with those of §,_;+7%§, ;.
Using these eigenfunctions, we find

Z'=e~(N=2I"[2 cosh(2JSB) 1V ~2! (23)
1

where the cluster partition function z" is

z1=4 eJOB[ 1+cosh(2JSB)cosh(4JB)]
+4e P14+ cosh(27SB)] . (24)

With % equaling S, as before, the change in free energy
upon adding an electron is just that of the cluster, namely
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Fl—FO— _kTIn(z!/z% . (25)

Using Egs. (3), (20), (24), and (25), we find Il,;. The
magnitude of the corresponding magnetic contribution to
the Seebeck coefficient, I,/ | g | T, in the paramagnetic
regime, is given by curve a of Fig. 2. In the three physi-
cally significant temperature regimes we have

kTIn2, T>>Jy/k
o= 1kTIn(3)—572/3kT, Jo/k>>T>T, (26)
—8J(S+1)e_21(s+””‘T, Tc >T.

At extremely high temperatures, i.e., T >>J,/k, the
carrier-produced change of the spin degeneracy dominates
all exchange effects. By adding an electron to site n, the
spin degeneracy of the occupied site changes from two
(corresponding to o,==1) to four (corresponding to a
triplet and a non-Hund’s-rule singlet). This change con-
tributes the dominant term, k7 In2, to II,,. At tempera-
tures above T, but much less than J,/k, occupation of
the non-Hund’s-rule state becomes unimportant. Thus, in
this case the spin degeneracy contributes kT In3 to Il
In addition, exchange between site n and sites n-+1 and

GOV_

40

Mimog /lal T (wV/K)
o

1 1 1 1
o] 0.2 04 0.6 0.8

T/ T

FIG. 2. Magnitude of the magnetic contribution to the See-
beck coefficient, Il,,/|gq | T, in the paramagnetic regime is
plotted against T,./T. Curve a is for a three-site cluster embed-
ded in a mean field in one dimension. The transition tempera-
ture T, in the mean-field approximation is 2J /k. Curve b is for
a seven-site cluster embedded in a mean field in a simple-cubic
lattice. The transition temperature T, in the mean-field approx-
imation is 6J /k. For both curves a and b the ratio J,/J is tak-
en to be 100.
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n —1 yields the term —5J2/3kT. This originates from a
decrease of the entropy of the spins of the cluster when a
carrier is added. This spin-polarization effect is, of
course, lost within the complete mean-field approximation
because there intersite interaction vanishes for 7> T; cf.
Eq. (15). Finally, this spin-polarization effect yields the
small negative value which dominates Il,,; at low tem-
peratures, T <<T,. In this low-temperature regime this
effect survives the mean-field approach. - Specifically, at
low temperatures with ¥ ~S~1, Egs. (26) and (16) differ
only in their numerical prefactors.

III. CALCULATION OF Il
FOR A SIMPLE-CUBIC LATTICE:
SEVEN-SITE CLUSTER EMBEDDED
IN A MEAN-FIELD MAGNET

To generalize our formulation to three dimensions we
consider a seven-site cluster appropriate to a simple-cubic

J

spin-é— lattice. The site to be occupied, G, is the center of
the cluster at (n,m,l), and n+1, m+1, and /+1 denote
the six nearest-neighbor sites along the cubic directions.
In the absence of a carrier the intersite exchange between
the sites within the cluster is represented as Ising ex-
change. Interaction of the cluster with ions outside is ap-
proximated by the mean field J.¥. Here, ¥ again stands
for the thermal average of the spins outside the cluster
(the maximum value of . is chosen to be unity in order
to be consistent with our prior definition of .# in the
one-dimensional case). In the absence of a carrier, the
cluster partition function is given by

2= ¥

{og=1%1}

exp [JB(S +og) D05 | »
g

g=nxlm=*1l,l+1.

Carrying out the summations, we obtain

29=4[ 10+ cosh(6J.% B)cosh(6J 8) + 6 cosh(4J B.7 )cosh(4J B) + 15 cosh(2J ¥ B)cosh(2JB)] . (27

In the presence of a carrier spin § at site G, the cluster now consists of eight spins. As in model B, we describe the in-
trasite coupling by the Heisenberg exchange, the nearest-neighbor coupling by the Ising exchange, and the exchange in-
teraction involving sites outside the cluster by the mean field. The cluster Hamiltonian is diagonalized by using the
product wave functions of the form U;V;W; X;, where U;, V;, W;, and X; each stand for one of the four eigenstates of
$0+386, Sn1+Sns> Sm_1+Sm41 and $;_;+7;, ;. Using the 2% eigenvalues (many of them are degenerate), we
obtain the cluster partition function,

zl= 2eJ°ﬂ{cosh(6JSB)[ 142 cosh(12J8)]+ 6 cosh(4JSB)[1+2 cosh(8JB)] + 15 cosh(2JSB)[ 1+2 cosh(4J 5)] + 30}
+2¢ 7 P[10+ cosh(6JS )+ 6 cosh(4JS B) + 15 cosh(2JS B)] . =

In a manner similar to our derivation of Eq. (26) for the
one-dimensional case, we obtain Il,, for our three-
dimensional model. The magnitude of the corresponding
magnetic contribution to the Seebeck coefficient,
M./ g | T, in the paramagnetic regime, is given by
curve b of Fig. 2. Simple analytic expressions for three
temperature regimes are

kT2, T>>Jo/k
Mpeg= {kTIn(3)—5J2/kT, Jo/k>>T>T, (29)
—12J(S+ e~ YES+VAT T ST .

Comparing these with the corresponding expressions in
one dimension, Eq. (26), we see that contributions to IT,,,,
from the spin degeneracy are independent of the dimen-
sionality. This is simply due to the fact that these contri-
butions are determined only by the occupancy of the spin
states at the carrier site. Furthermore, we see that terms
due to the intersite coupling assume the same qualitative
form in both Egs. (26) and (29). Only the numerical pre-
factors of these terms are different. Hence our results for
I, are essentially independent of the dimensionality of
the system. '

IV. DISCUSSION AND CONCLUSION

We derive the magnetic contribution to the Peltier heat
of a small polaron, I1,,,,, by calculating the change in en-
tropy upon adding a carrier, at a site of a spin-3 magnetic
semiconductor or insulator. Since the added carrier’s ex-
change interaction is limited to the occupied site and its
nearest neighbors, we treat these sites as a cluster. Within
each cluster we describe the positive intrasite exchange by
the Heisenberg coupling and the intersite exchange by the
Ising coupling. The exchange interactions involving sites
outside the cluster are treated within the mean-field ap-
proximation. At temperatures well below the magnetic
transition temperature T, Il,, is both small and nega-
tive. This negative term arises from the local-spin align-
ment induced by the carrier’s exchange interaction with
the sites adjacent to it. That is, the augmentation of the
intersite exchange arising from the added spin enhances
the exchange binding of the cluster, thereby reducing its
entropy. This contributes a negative term to the Peltier
heat. At temperatures between T, and that corresponding
to the intrasite exchange coupling, Il is the sum of two
comparable terms of opposite sign. The first is the high-
temperature manifestation of this carrier-induced spin
alignment (spin-polaron) effect, —yJ?/kT, where y
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equals 5 and 5 for one- and three-dimensional models,
respectively. The second term is the previously pro-
posed’-® spin-degeneracy factor kT In(3). Finally, only at
the unrealistically high temperatures, T >>Jy/k, does
I, assume the simple form kT In2.

It should be emphasized that both the mean-field ap-
proach and the Ising model are inadequate if applied to
all the spins of the system. In particular, these two sim-
plifications eliminate the two most important contribu-
tions to the magnetic portion of the Peltier heat in the
paramagnetic regime. Namely, these oversimplifications
eliminate the carrier-induced spin alignment and the
carrier-induced change of the spin degeneracy, respective-
ly. It is for this reason that we have adopted the cluster
models of Secs. II B and III. Comparison of the results of
these calculations, Egs. (26) and (29), with that of a
mean-field Ising calculation, Eq. (15), illustrate these
points.

Finally, although the calculations presented in this pa-
per are for ferromagnetic systems, we have also carried
out similar calculations for a two-sublattice antiferromag-
net. The results for Ily,; are as in the ferromagnetic case,
except that the intersite exchange integral J (defined as
positive in the ferromagnetic case) is replaced by its abso-
lute value in the antiferromagnetic case.

Electrical-transport experiments on MnO provide one
example of a system to which this work is applicable. In
particular, the Peltier heat of a hole small polaron has
been measured above the Néel temperature in the Li-
doped antiferromagnetic insulator MnO.!%!! The Peltier
heat is found to increase linearly with temperature be-
tween 200 and 900 K. As shown in the present work, the
magnetic contribution to the Peltier heat does increase
with temperature, albeit not as rapidly as these experi-
ments indicate. However, the nonmagnetic contribution
to the Peltier heat can also increase with temperature.'!
This is caused by the shift of the Fermi energy with tem-
perature. This shift reflects temperature-dependent
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changes of the occupation probabilities of various dopants
and (unknown) defects of this compensated semiconduc-
tor. Clearly, unambiguous observation of the magnetic
contribution to the Peltier heat in such a complicated situ-
ation is extremely difficult.

Nonetheless, one conclusion of the present work is that
the magnetic contribution to the Peltier heat is generally
significant. As such, it should be included in an analysis
of the Peltier heat of a magnetic semiconductor. Present-
ly this has not been done. Instead, the temperature depen-
dence of the Peltier heat is often totally attributed to
temperature-dependent shifts of the chemical potential
contained in its nonmagnetic contribution.!! In effect, we
have shown that this is not generally correct. To obtain
the shift of the chemical potential with temperature, one
must first obtain the nonmagnetic contribution. This re-
quires a subtraction of the magnetic contribution from the
total Peltier heat. The present work provides a calcula-
tion of the magnetic contribution to the Peltier heat.

In summary, the addition of a carrier to the system pro-
duces two competing effects. First, adding the carrier
provides an extra degree of freedom (spin up or spin down
of the carrier). This tends to increase the entropy of the
system, producing a positive contribution to the Peltier
heat. Second, however, the added intersite exchange be-
tween the occupied site and its neighbors enhances the ex-
change binding between these sites. This reduces the ener-
getically allowable spin configurations, thereby reducing
the entropy of the system. This produces a negative con-
tribution to the Peltier heat. The first effect dominates at
high temperatures, and the second effect dominates at low
temperatures. Between these two limiting regimes both
effects are comparable.
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