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Universal critical amplitudes in finite-size scaling
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It is argued that there is no nonuniversal, system-dependent, multiplicative metric factor in the

finite-size scaling relation for the singular part of the free energy near a bulk critical point. New

universality properties for various critical-point amplitudes follow: one universal ratio is L/g~~{T, )

in finite-size transfer-matrix calculations.

I. INTRODUCTION

The universality of critical exponents and of certain
critical amplitude ratios' is a central concept in the
modern theory of critical phenomena. For an ordinary
continuous transition or critical point of, for instance, a
ferromagnet, renormalization-group (RG) theory predic-
tions may be summarized in asymptotic scaling relations.
For example, for the singular part of the reduced bulk
free energy densi-ty of a simple ferromagnet one has, ast:(T —T, )—/T, +0 and h—=H/kgT~O,

f"=F"/VkgT=Ai
I
t

i

8' +—(A2h
i
t

i
),

where + refers to t&0. The exponents ct and 6—=P+y,
and the scaling functions 8' +—

, are the same for all systems
in a given universality class. ' Within the universality

class, lattice structure, coupling constants, etc. may vary,
but all such variation is summarizecl in the values of the
nonuniversal metric factors, A& and Az. In recent years
there has been an increasing interest in the properties of
systems with one or more finite dimensions when bulk pa-
rameters are close to their critical values (i.e., h=O,
T=T, ). A phenomenological account of the behavior is
given by finite-size scaling theory which finds diverse

applications in Monte Carlo, transfer-matrix, and other
numerical calculations, as well as in analyzing experirnen-
tal data. In this paper we consider the question of
scaling-function universality and the role of the
nonuniversal metric factors in finite-size scaling.

For simplicity, we restrict attention mainly to cubes, of
dimensions 1.&&I, )& . )&I. =I. , and cylinders, of di-
mensions I." '&& m, with periodic boundary conditions.
The corresponding asymptotic finite-size scaling relation
may then, quite generally, be written as

f"=L F(CitL' ' C2hL ') .

However, we argue {in Sec. II) that for spatial dimen-
sionalities, d, less than the upper critical dimension d &,
the metric factors Cl and C2 are the only nonuniversal,
system-dependent parameters entering: In other words,
the scaling function I'(x,y) is universal (for cubes or
cylinders, respectively), but no further nonuniversal pre-
factor Co is required. In Sec. III we discuss various irn-

plications of this conclusion and its generalization to oth-
er boundary conditions. More specifically, we address, in

Sec. IV, the universality of the ratio L /g~ ~( T, ) in
transfer-matrix calculations. A calculation of this ratio
for the honeycomb-lattice Ising model illustrates and con-
firms the general conclusions. Finally, we present the
generalization appropriate to other shapes of the finite
system.

II. FINITE-SIZE SCALING FOR THE FREE
ENERGY

In order to establish the common umversality of, let us

say, the fcc and the sc lattice Ising models, one first
demonstrates that they can both be represented by the
same more general, all encompassing model, say G [e.g. ,

by the same class of Ginzburg-Landau-Wilson Hamiltoni-
ans in the context of, for instance, e=(4—d)-expansion
RG calculations' ' ], but with different "initial" parame-
ters. Next, one needs to establish that the critical points
of both models lie on critical manifolds in the domain of
attraction of the same RG fixed point. Now a bulk RG
transformation in the vicinity of a given fixed point can,
in general, be represented in terms of a complete set of
nonlinear scaling fields of the general model G." '3 For
ordinary continuous transitions, as in simple ferromag-
nets, there are two relevant scaling fields: temperature-
like, g„and fieldlike, gz, with eigenexponents A, , =l/v
and A, I, ——6/v, respectively. ' Upon approaching criticali-

ty, one may normally neglect corrections to scaling arising
from the irrelevant scaling fields and from the nonlineari-

ty of g, and gI„' one then has g, =c&t and gh =czh, where

c& and c2 depend on the particular system for which t
and h represent the reduced temperature and magnetic
field. Hence, one can then represent ' " the asymptotic
bulk RG transformation, with spatial rescaling factor
b))1, in the form

f"(t,h)=b f "(citb' ' c2hb "0,0, . . . ),
where f„(g„gh,0,0, . . . ) denotes the free energy of the
model 6, with all irrelevant scaling fields set to zero.
Note that we have here implicitly excluded the occurrence
of any marginal or dangerous irreleuant variables. ' '
Thus our conclusion is restricted to d & d &, as are our
subsequent considerations, since only then may one expect
that the irrelevant thermodynamic variables are not
danger'ous.

Now, on the basis of field-theoretic calculations for fin-
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lim f"(t, h =0)[g„(t) ] =Q &

——universal,
t~0+

(2.4)

where, in (1.1), we have adopted the normalization
8'+(0) =1, while

ite systems with periodic boundary conditions, it has been
argued recently by Brezin' that for dimensions L, greatly
exceeding all fixed microscopic lengths ao (e.g. , lattice
spacings), the renormalization-group transformation and
the scaling fields are affected by L only through correc-
tions to the leading scaling behavior. If we accept this hy-
pothesis (which is discussed briefly below) the conclusion
(2.1) may be generalized to yield the asymptotic behavior
of the singular part of the free energy of a finite system in
the form

f"(t,h;L)=b "f"(c&tb' ', c2hb ";0,0, . . . ;L/b),
(2.2)

where the dependence of f"on L may be regarded as
entering through appropriate infrared cutoffs on momen-
tum variables.

Now one may choose b =L/10 where lo is some fixed,
arbitrary, system-independent reference length satisfying
only lo »ao. Then for L » lo, the relation (2.2) reduces
to

Ldf ~s~( ,th; L)

= lo f"[(c,tL' ")l() ' ', (c2hL ')lo ',0, . . . ;Io] .

(2.3)

But the left-hand side (for L »ao) cannot depend on the
choice of lo. Consequently, it must be a definite, and
hence universal function only of the two combinations
c, tL '~ and c2hL ~'. Hence we obtain the assertion (1.2)
(with C~/c~ and C2/c2 universal constants). Likewise,
by choosing b =B

~
c, t

~

" with a system-independent
proportionality constant B, one obtains (1.1) from (2.1) [or
from (2.2) with L~oo] with A~/~ c~

~

and

A2/c2
~
c~

~

universal constants. Note that both these
thermodynamic metric factors and the finite-size metric
factors, C& and Cq, depend only on the two system pa-
rameters c& and cz. We have thus obtained a finite-size
form of the so-called "two-scale factor universality" hy-

pothesis, ' ' or "hyperuniversality" hypothesis,
which, in its bulk form may be stated as'

phenomenological derivation of (1.2) which is, hopefully,
more transparent physically and which one may expect
will also be valid for nonperiodic boundary conditions.

III. PHENOMENOLOGICAL APPROACH:
UNIVERSAL AMPLITUDES

In a bulk system the analytic "background" of the
free-energy density, f' '(t, h), can be identified unambigu-

ously. Then, for a finite system the singular part of the
finite-size free-energy density may be defined by

f"(t,h;L)=f(t, h;L) —f' '(t, h) . (3.1)

The relevance of this definition to microscopically based
RG calculations will be discussed briefly below. Now the
original finite-size scaling prescription ' asserts that
all lengths diverging at bulk criticality should scale with
the bulk correlation length g (t) =cot [see (2.5)]. This
provides for the natural generalization of the bulk scaling
relation (1.1) to

f"(t,h;L)=A,
i
t i' 8"-(A,h

i
t

i
~;L/g'„), (3.2)

where W (w, x) is universal. This universality embodies,
of course, the fact that the near-critical fluctuations in a
large system should not be sensitive to detailed structure
with characteristic dimensions shorter than ao&&L so
that g must set all length scales.

However, even though the argument L/g„ itself entails
no further nonuniversal factor, an additional metric factor
co does enter the finite-size scaling relation through the
variation of g„(t); but this same metric factor must,
equally, enter into the scaling of the net two-point correla-
tion function in a bulk system through

G(R;t, h)=DER "X+(R/g„; D2h
i
t—

i
), (3.3)

where X+—(x,y) is universal. Granted this relation, one
may invoke the fluctuation-susceptibility relation to link
the metric factors D& and D2 to A& and Aq (see Appen-
dix A). Furthermore, for d & d &, the corresponding scal-
ing form should also hold for the total correlation func-

tion, I (R;t,h)=(s-s- ), which, when
~

R
~

~oo, relates

to the squared magnetization. ' As shown in Appendix
A, this closes the circle and yields

g„(t)=c,t ", as t~0+, (2.5) A, =Q, /co,d (3.4)

is the zero-field bulk correlation length (measured, for ex-

ample, by the second moment of the two-point correlation
function in the infinite system). Alternatively, one may
say that A &co (=Q& ) is universal (see also Appendix A).

Note that the condition L » lo (i.e., b »1) enters into
the derivation so that corrections due to the nonlinearities
of the scaling fields, g, and gi„may be neglected, and in
order to justify setting the irrelevant variables to zero.
The conditions L »ao and lo »ao likewise enable us to
formally neglect finite-size corrections in f" which de-

pend explicitly on ao/L. However, Brezin'" has not real-

ly established that such dependences are not dangerous
(even for d &d& ). Thus it is worthwhile to consider the
problem from a somewhat different viewpoint. Accord-
ingly, in the next section, we present an alternative,

where Q& is universal. This is just the hyperuniversality
relation' already alluded to in Sec. II. The hyperscal-
ing relations dv=2 —a, etc. ' also follow, and the metric
factors D~ and D2 are seen to be universally related to A

&

and Aq [see (A8)]. Finally, if (3.4) is substituted into the
finite-size scaling relation (3.2) and this is rescaled, in the
standard way, in terms of L instead of t, we recapture the
basic result (1.2) with, now, C~/A I

' and C2/A&A&
universal constants.

Since the analytic background f'„'(t,h) cannot contri-
bute to the singular behavior of field derivatives one ob-
tains from (1.2) scaling expressions for the finite-size
magnetization,

m = — "' =C,L. -t""r'"(C,tL"",C,hL"), (3.5)
Bh
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for the susceptibility,

X= =C'L&'"r"'(C rL"" C iL"")=aI= ' 1 ~ 2 (3.6)

and for the fourth derivative (or nonlinear susceptibility),

X"'=— =CfL'&+"""r"'(C,iL "",C,eL"")
ah4

(3.7)

and so on.
One can equally identify amplitudes in the scaling

forms for the singular parts of the entropy, specific heat,
and higher temperature derivatives of f, in terms of
powers of C1. Thereby, one obtains new universal
critical-point ratios, for finite size -(L & oo ) quantities
evaluated at bulk criticality (T = T„with H =0). In par-
ticular, the coefficients of proportionality UJ in asymptot-
ic relations such as

malization process should be those entering in the bulk
limit, as Brezin seems to find for periodic boundary con-
ditions (at least up to exponentially small terms), or if im-
portant additive terms depending on I. should enter, as
would seem plausible for free boundary conditions. Like-
wise, it is not obvious that the simple multiplicative renor-
malization L ~L/b, invoked in (2.2), is always ade-
quate, even in leading order. To assert that this suf-
fices is equivalent to supposing that 1/L acts as a distinct
linear scaling field which does not mix with other thermo-
dynamic fields such as t and h; while plausible, this,
again, is not entirely convincing at criticality even though
corrections due to surfaces can be separated clearly from
bulk contributions away from criticality 5 —7, 26—28

summary, a deeper analysis of finite-size scaling within a
renormalization-group context is needed to fully cement
our confidence in "finite-size hyperuniversality" and
might even lead to nontrivial modifications of the con-
clusion (1.2) in certain circumstances.

f,"(L)= UOL

for the singular part of the critical free energy, and

X,'"(L)/X,'(L)= U,L',

(3.8)

(3.9)

IV. CRITICAL-POINT CORRELATION RATIOS

If Ao(T, H;L) is the largest eigenvalue of a transfer ma-
trix which builds up an L '

&& oo cylinder from
L" 'Xa slices, the free-energy density is

etc. , should be universal. [Note, however, that m, L /g,
vanishes identically because symmetry cannot be broken
in a finite system so that Y'"(x,0):—0.] Quantities like

X,' /X, can be estimated straightforwardly from Monte
Carlo or transfer-matrix data.

Although the derivation just presented for (1.2) and
(3.5)—(3.9) may be appealing heuristically, it is certainly
open to challenge. Accordingly, we enlarge on a few fur-
ther aspects here. First, the basic finite-size ansatz (3.2)
remains applicable for general boundary conditions al-

though, naturally, the scaling functions must depend on
the boundary conditions ' and further scaled arguments
for surface fields, etc. may enter when more realistic sur-

face parameters are introduced. Various analytical
checks, particularly of surface properties, which vary as
1/L relative to bulk properties, confirm the validity of
(3.2) for free boundary conditions, for antiperiodic boun-

dary conditions, etc., imposed on planar Ising models,
ideal Bose fluids, etc.' ' However, for nonperiodic
boundary conditions the absence of less rapidly decaying
powers of L in (3.8) may be questioned. Indeed, powers
such as (ao/L), might well be anticipated, but if they do
occur, they should perhaps be regarded only as part of a
"nonsingular" finite-size background; thus the corre-
sponding terms might appear in (3.5)—(3.7) and (3.9)
merely as higher-order, nondivergent corrections. Howev-
er, analyticity in 1/I. can hardly be used as a criterion in
defining a finite-size background contribution for the free
energy!

Similar problems arise if one approaches the issue from
a renormalization-group standpoint. Although block-spin
and other renormalization groups may be defined for fin-
ite systems, the character to be attributed to behavior near
a bulk fixed point when L /ao is finite but large is not ob-

vious. More specifically, it is not clear, in general, if the
only additive contributions to the free energy in the renor-

f(T,H;L) =fo = —(1/aL ')lnAO(T, H;L) . (4.1)

Furthermore, if AJ with Ao&A1) Az& . . denotes the
subdominant eigenvalues of the transfer matrix, the longi

tudinal correlation length of the system is

g~~(t, h;L) =g, =a [In—(AO/A, )] (4.2)

It is then natural to postulate the finite-size scaling rela-
tion5, 6) 14

g~((ri L)C.(r)=&-'(~2I Ir
I

'L/g» (4.»
where K+-(io,x) is universal. This clearly represents a
generalization of (3.2), together with the hyperuniversality
relation (3.4). By repeating the steps which led previously
to (1.2), we obtain the analogous result, namely

g~~(t, h 'L) =LS(citL' ' C hL ') (4.4)

where Ci and Cz are the same metric factors as in (1.2).
Thus we see that the critical-point ratio L/g~~, should be
a universal number.

The universality of the ratio L/g~~, for systems with
periodic boundary conditions has already been noticed,
mainly on the basis of numerical data, for quite a large
class of two-dimensional models. ' ' However, it
has previously been regarded as something of a puzzle.
Our argument does not, of course, determine the value of
the ratio L/g~~, although this happens to equal err' in all

the spatially isotropic models studied so far. (However,
the generality of this particular result is not obvious,
even in two-dimensional systems. ) Our present considera-
tions (see also below) reveal the origin of this universality

property for d &d&. However, one should recall again
that the scaling functions, ' and thus the values of the
universal quantities including the Ui of Sec. III, will nor-
mally depend on the boundary conditions.

At criticality (T=T„H=0) infinitely many of the
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eigenvalues AJ(L) approach Ao(L) when L~co. The
corresponding effective correlation lengths

————N-even

g/(t, h;L) =a [1n(AO/Aj )] (4.5)

thus diverge at T, . (Normally both g~ and $2 are included
in this diverging set. ) Then the standard scaling hy-
pothesis, ' asserting that all diverging lengths become
proportional, implies that the ratios L/gj, approach fin-
ite constants when L~ oo. Indeed, Nightingale and Blote
have concluded that L/$2, asymptotically approaches a
uniuersal constant, in several models (see Ref. 26 for de-
tails). This behavior of $2 is related, in systems with a
magnetic symmetry (H - - H), t—o the fact that g2 de-
scribes the decay of energy-energy correlations (represent-
ed by four-point expectations with the points grouped in
two well-separated pairs). Consequently, $2 has a normal
bulk limit so that scaling relations of the type (4.3) can be
expected to apply.

An alternative route to the conclusions about the ratios
L/gi, can be formulated in terms of the "free-energy lev-
1»34,35

fJ(T,H;L) = —(1/aL ')lnAJ(T, H;L) . (4.6)

It is generally expected that fo and certain of the
higher levels fJ, including both f~ and f2, constitute
branches of one analytic function of H, at fixed T, or of
T, at fixed H. Thus it is natural to speculate that, at least
for the lowest few among the appropriate levels fj, it is
valid to generalize (1.2) and (3.1), to conclude

Q
! I

FIG. 1. Section of a honeycomb lattice of 1V' layers with
periodic boundary conditions which is built up by the transfer
matrix in the horizontal direction; a denotes the length of an
1.Xa slice added in one application of the transfer matrix.

fj f'„'=L YJ(C—, tL'i", C2hL i ), (4.7)

with universal scaling functions Yi(x,y). For those levels
for which this conjecture holds, we conclude, using (4.5)
and (4.6), that

L = 2%(3' a) . (4.9)

Thus if, as normally considered, the transfer matrix adds
on two rows at a time, one has

L /gq , —YJ (0,0)—Yo(0,.0), (4.8)
a/g~~

——ln(AO/A]) . (4.10)

so that again the limiting value of L /gj, is universal.
It is important to stress that in all our considerations

the linear dimension L is an actual geometrical length and
not measured just by, say, a number of lattice layers, etc.
This is important because anisotropy is a margina/ RG
field. Thus a simple distortion of spatial coordinates is
not a harmless operation. In this connection it is interest-
ing that most of the exact analysis for Ising models on a
triangular lattice and the corresponding numerical calcu-
lations for other models have been performed with the lat-
tice distorted from the standard threefold symmetry, the
sites being mapped rather onto a square lattice. In order
to employ our finite-size universality relations, one must
reexpress results so derived in terms of the length L of the
original, isotropic lattice.

A similar example arises in the calculation of L/g~~,
for the honeycomb-lattice Ising model, which we will
describe briefly. (Further details are given in Appendix
B.) Recall that for the standard square lattice one finds
L/g~~, ~—,'m. =my. Now Fig. 1 illustrates a honeycomb
lattice with an even number of layers, N, and periodic
boundary conditions; if a is the spacing between adjacent
columns along a row, the length is

in(AO/A&) =n./2W3X+0 (X ), (4.11)

so that L/g~~, —, 7r just as for the squ—are lattice. Evi-
dently, lattice-dependent geometrical factors cancel prop-
erly.

Finally we mention that in the case of a finite block or
cylinder with unequal dimensions of, say,
Li XLzX ' . XLd or L& XLzX XLd &X ~, the
scaling relation (1.2) generalizes naturally to

f"=I.p Y —(CitL OC hL2O'Li/Lp, L2/Lo, . . . ),
(4.12)

where Lo is a (diverging) scale length and the shape ratios
Ij:Lj /L 0 are supposed to approach bounded nonzero
constants' as Lo~op. Then the scaling functions should
a ain be universal and combinations such as Lolg~~, or
f,'Lo will be universal functions of the asymptotic shape
ratios lj.

The exact expressions for Ao and A& are known (see
Domb for references to the literature; the results of
Husimi and Syozi are particularly useful). A calculation
thence gives
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APPENDIX A

X„(t,h)=D, g'„"X+-(D,h
i
t

i
), (A2)

where X +—(y) is likewise found to be universal. Next we

appeal to the "locality" property ' of a standard "linear"
renormalization group, ' namely the simple multiplica-
tive renormalization of the order parameter, via

We outline briefly the derivation of (3.4). All the calcu-
lations here are with bulk quantities. We start with the
standard scaling form of the net correlation function,
namely,

6 (R;t,h) = (s -, s ) —(s ) (s )

=DER "X+(R/g—;D2h
i
t

i
), (Al)

where X—(x;y) is universal and D& and D2 are
nonuniversal metric factors. Note that no metric factor is

associated with the scaled argument R/g„. The reduced

susceptibility X follows by integrating on R which yields

to see that the scaling relation y =(2—g)v and hyperscal-
ing relation 2P=(d —2+g)v are implied, and then to ob-
tain the identifications

~1 Qlco i ~2 Q2D2~ Dl Q3~1~ 2
2

where Q ~, Q2, and Q3 are universal constants and

/=2(P+y)/(2P+y)=1+y/dv .

(A8)

The first member here represents the hyperuniversality re-
lations (2A) and (3.4).

APPENDIX B

Husimi and Syozi obtained expressions for the
transfer matrix eigenvalues for the honeycomb lattice
described in Fig. 1. The two leading eigenvalues are

Ao ——(2sinh2IC) exp(y&+y3+ . +yz &), (B1)

where yj y(nj /——X) with

y(x) =cosh '[cosh2K cosh'* —sin x

—cosx(sinh 2E sinh 2E*—sin x)' ] .

(B3)

A&
——(2sinh2IC) exp( —,

'
yo+yz+y&+ +yz 2+ —,

' yz),
(B2)

m„(t,h)=A)A2
i
t i~Wj~(A~h

i
t

i
)

with P=2 —a —5 and

(A6)

X„(t,h)=A, A', i
t

i

rR';(A, h
i
t

i
), (A7)

with y=25 —2+a, while 8'~ and 8'z are universal. If
the correlation length diverges as g =cot when
t~0+ (h =0) we may compare with (A2) and (A5), first,

This shows that the scaling form of the total correlation

function, l"(R;t,h}—= (s-s- ), is similar to (A1), so we
0 R

may write

r(R;t, h)=D, Z' ' vZ +(R-/g-„;D,-h
i
t

i

-'), (A4)

where Z —(x,y) is universal and hyperscaling is entailed:
see below. In the limit R —+no this reduces to

m'„(t, h)=D, g'„" "Z-+(D,h it i
},

where I is the magnetization density.
Now from the original thermodynamic scaling form

(1.1) we obtain

Here K" is defined by

(cosh2E —1)(cosh2IC' —1)= 1,

a/g~~, =y,'(0)~/4X+O(X-') .

Finally, (4.11) follows because y,'(0)=2/v 3.

(B7)

so that one has K*=K at the critical point and one then
obtains

y, (x)=cosh '[4—sin x —cosx(9 —sin2x)'~2] . (B5)

This function resembles sin —,'x on the interval (0,2m. ). We

next rewrite the definition (4.2) in the form

2' —2

a/g~~, ———,
' g ( —1)"y,(nk/N) .

Ic =0

The sum in (B6) can be evaluated asymptotically by a
straightforward extension of the technique described in
Ref. 13 for T & T, . For any function of the general form
of y, (x) which is analytic for x in (0,2n. ), is symmetric
about x =sr, and has bounded first three derivatives at
x =0, one finds
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