PHYSICAL REVIEW B

VOLUME 30, NUMBER 6

Acoustic-radiation stress in solids. I. Theory

John H. Cantrell, Jr.

Langley Research Center, Mail Stop 231, National Aeronautics and Space Administration, Hampton, Virginia 23665

(Received 14 February 1984; revised manuscript received 4 June 1984)

The Boussinesq radiation stress associated with an acoustic wave propagating in infinite and
semi-infinite lossless solids of arbitrary crystalline symmetry is examined with use of two indepen-
dent approaches. In both approaches the radiation stress is found to depend directly on an acoustic
nonlinearity parameter which characterizes a spatially extended acoustic-radiation-induced static
strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity in the
solid, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest
principle of adiabatic invariance to a self-constrained system represented by the nonlinear equations
of motion reveals that the radiation-induced static strain results from the time-averaged product of
the internal energy density and the displacement gradient. The time-averaged product is scaled by
the acoustic nonlinearity parameter and represents the first-order nonlinearity in the macroscopic
virial theorem for solids. The term representing the stress nonlinearity is shown to result from the
adiabatic variation in the natural velocity and produces a contribution to the total acoustic-radiation
stress which is opposite in sign to that of the radiation-induced static strain. Finally, the relation-
ship between the Boussinesq radiation stress and the Cauchy radiation stress is obtained in an exact
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three-dimensional form.

I. INTRODUCTION

Several recent investigations of nonlinear acoustic wave
propagation in solids have dealt with the existence of a
spatially extended static strain or “dc shift” associated
with the propagating wave. Thurston and Shapiro' were
the first to obtain a solution to the nonlinear acoustic
wave equation that predicted such a phenomenon.
Thompson and Tiersten? in a different approach to the
problem made a similar prediction; they suggested that
the static strain is related to the acoustic-radiation stress
but did not elaborate. In a further study Perrin® pointed
out an analogy to optical rectification and again em-
phasized the relationship to the radiation stress. Indirect
experimental evidence for the existence of the static strain
was reported by Carr and Slobodnik* for piezoelectric
quartz and zinc oxide, and by Cantrell and Winfree® for
single-crystal germanium. Yost and Cantrell® in the fol-
lowing paper report the first direct experimental confir-
mation of the static strain. The work is based on the
theory to be presented here.

Although Brillouin”8 in the 1920’s and 30’s published
an extensive theoretical study of acoustic-radiation stress
in isotropic solids, his results do not predict the static
strain. As we shall see, the failure of Brillouin’s theory
results from his neglect of the nonlinearity of the elastic
wave equation itself while considering only the nonlineari-
ty in the stress-diplacement gradient relationship. In the
present treatment we consider the general case of
acoustic-radiation stress associated with quasicompres-
sional and quasishear waves propagating in infinite and
semi-infinite lossless solids of arbitrary crystalline symme-
try. We first obtain the nonlinear equations of motion in
anisotropic solids in a decoupled form having a
parametrized natural velocity. A periodic particle-
velocity solution to the nonlinear wave equation in which
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sinusoidal boundary conditions are employed leads to a
reexamination of the relationship between the particle
velocity and the displacement gradient which is used in
determining the acoustic-radiation stress. The Boussinesq
radiation stress is then defined and found to depend
directly on an acoustic nonlinearity parameter which
characterizes the radiation-induced static strain, a stress-
generalized nonlinearity parameter which characterizes
the stress nonlinearity, and the energy density of the prop-
agating wave. Further aspects of the acoustic-radiation
stress are revealed by applying the Boltzmann-Ehrenfest
principle of adiabatic invariance to a self-constrained sys-
tem described by the nonlinear equations of motion. The
more general and powerful adiabatic principle, which is
independent of solutions to the wave equation, not only
confirms our previously derived results but allows us to
identify the acoustic-radiation-induced static strain with a
self-constrained variation in the time-averaged product of
the internal energy density and displacement gradient.
The time-averaged product is scaled by the acoustic non-
linearity parameter and represents the first-order non-
linearity in the virial theorem. Finally, the relationship
between the Boussinesq and the Cauchy radiation stress is
obtained in a closed three-dimensional form.

II. NONLINEAR EQUATIONS OF MOTION
IN ANISOTROPIC SOLIDS

We consider the propagation of an elastic wave in a
lossless semi-infinite solid of arbitrary crystalline symme-
try. The equations of motion in Lagrangian coordinates
are’ (we assume Einstein summation convention)

2 —
o> 4 _%y (1)

where @; are the Lagrangian (material) coordinates, #; are
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the components of the wave displacement vector, and o;
are components of the stress tensor. If the stress tensor is
defined in terms of Lagrangian strain derivatives of the
internal energy per unit mass U (ag,ny;,S), the stress ten-

sor is commonly called the first Piola-Kirchhoff tensor.

Formally, the first Piola-Kirchhoff tensor is defined by!°
U
G =Pl —— , 2)
ij Poik aﬁjk
where S is the entropy, p is the unperturbed mass density
of the solid, @;; are transformation coefficients defined by
oir;
A =8 +—— 3)
daa k
8y are Kronecker deltas, and 7;; are the Lagrangian
strains defined by

Tje=1(@;8n —8) - @)

Brillouin’ preferred to use the Boussinesq stress tensor
& j which is defined in terms of derivatives of the inter-
nal energy per unit mass with respect to the displacement
gradient 0i; /3@; =1;;. It is straightforward to show the
equivalence of the two stress tensors by writing

aU M U _ U  _
B ij=po_—=Po - =Pl =05, (O
oiry; owy; M O
where we have used Egs. (2)—(4). In the spirit of
Brillouin’s pioneering work, we shall refer to stresses in
the Lagrangian coordinate frame as Boussinesq stresses,
but shall retain the symbol 7;; to emphasize equivalence
to the first Piola-Kirchhoff tensor.
Huang'! expanded ;; in terms of the displacement gra-
dients as (assuming no initial stress)

p— e —_ 1 J
Gij = Aty + 5 Aijitmn B Tpn + (6)

where Ay and Ay, are the Huang (or propagation)
coefficients. The relationship between the Huang coeffi-
cients and the elastic coefficients referred to the Lagrang-
ian strain measure was found by Wallace® to be (no initial
stress)

Aya=Cyia ,
_ _ _ _ _ (7)
Ajjtimn = CjimnOik + CijniOxm + CjgniSim + Cijrimn -

The Cyjyy and Cijgym, are the second- and third-order elas-
tic coefficients of Brugger'? defined for adiabatic condi-
tions by appropriate Lagrangian strain derivatives of the
internal energy per unit mass

— U
Cijri=po | T——— ,
9707k S, =0
(8)
= U
Cijktmn =Po | 77— .
9780 mn |5, p=0

Substituting Eq. (6) into Eq. (1) and keeping terms to
third order in derivatives of #;, we obtain the nonlinear
wave equation
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A, L.
ijkl ijklmn aa_"
We may simplify Eq. (9) by introducing an orthogonal

transformation R defined by

a; =R,j(71 (10)

9)

which rotates the @; axis into a; such that a, is parallel
to the direction of wave propagation. Applying this
transformation to Eq. (9) we obtain

d%u, o’u, du,

—f _p ——
Po da,

a u’
r rt
atz p aa% P

— (11)
da?

where B,, and B, are known linear combinations of the
appropriate Huang coefficients.

Equation (11) may be simplified further by introducing
an orthogonal transformation S defined by

U; =S,~kPk (12)

such that the symmetric matrix of coefficients B,, is diag-
onalized. The transformation S reduces Eq. (11) to the
form (no sum on j)

P P v AP, 3%Py 1)
Poarr M 3a "™ da, aa?

In Eq. (13) and all following equations there is no sum
over repeated j indices. The j =1,2,3 are subscripts indi-
cating polarization direction, p; are the eigenvalues of the
B, matrix satisfying the similitude equation

1 =(8""pByS,; , (14)

and vy are linear combinations of third-order Huang
coefficients satisfying the equation

ij1=(S_l)jportSrkStl . (15)

The resonant terms of Eq. (13) corresponding to the
condition j =k =1 are several orders of magnitude larger
than the nonresonant terms.!* If we retain only the
resonant terms in Eq. (13), the nonlinear differential equa-
tion describing acoustic wave propagation of polarization
Jj in the direction N is written in the decoupled form

2 3%P; ., 3%P; . dP; 3°P;
o912 J aa% Jii da, aa%

(16)

III. PARTICLE-VELOCITY SOLUTION
TO WAVE EQUATION AND RELATION
TO DISPLACEMENT GRADIENT

It is convenient to write Eq. (16) in the form
9%P; oP; | 3°P;
or? da; | da %

=c3 , (17)

1-B

where we define the acoustic nonlinearity parameter for
solids B; by

ﬂj=_vjjj//'l‘j (18)

and the small amplitude wave velocity ¢ by
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The natural velocity W; of the nonlinear elastic or finite
amplitude wave is defined by

Co= (19)

ap, |72
J
VVj=Co I—Bja (20)
Fubini'* solved an equation similar to Eq. (17) by assum-

ing an initially sinusoidal disturbance

% 125 | sintan) 1)
ar | |0
at a;=0 and obtained the particle-velocity dP;/dt solu-
tion
oP; © 2J,(nQ) | OP;
J n Jj .
—= _— | t— , 22
p n§1 00 o 0smn(cu Kay) (22)

where o is the angular frequency k=w/cy, J, are the
Bessel functions of the first kind, and

ap;
ot

1

Q== £ Bja, . (23)

Equation (22) is valid for wave propagation distances less
than the discontinuity distance L; where

-1
aP

Lj=c(2, —'aT (24)

ij

0

For common solids the discontinuity distance for a 30-
MHz sound wave having a typical particle velocity of 2
cms~! is of the order 1 m. Since the dimensions of labo-
ratory samples are usually a few centimeters or less along
the wave propagation direction,  is small and we may
approximate Eq. (22) as

ap; apP; | |
= = 3 Osm(mt—xal)
1 9P; :
—Bjalsm2(wt—m1)+ cee L (25)
o o€

We note from Eq. (6) that the Boussinesq stress field
depends on the elastic wave motion through the displace-
ment gradients. Our solution to the wave equation is in
terms of the particle velocity. Anticipating that Eq. (6)
enters prominently in the defining equation for the
acoustic-radiation stress, we shall need then the relation-
ship between the displacement gradient and the particle
velocity.

For B;=0 the nonlinear wave equation (17) reduces to
the linear wave equation
d’P; 9°P; 3 3 3 3
J 2915
_ =L -2 | | 2 <2 |p,=0
a2 “%aa? ot “°%3a, ||ar T%a, |
(26)

and Egs. (22) and (25) reduce to the linear wave solution.
For such waves the relationship between the particle velo-
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city and the displacement gradient for propagation in the
positive coordinate direction is obtained from Eq. (26) to
be

dP; ap;

o - %%, @7

For nonzero B;, however, one cannot generally assume
that Eq. (27) holds. Following the approach of
Earnshaw'® in his studies of wave distortion, the most ex-
pedient relationship one may assume between the particle
velocity and the displacement gradient is of the form

ap; [ap

a 7 |3a, (28)

where f is some continuous differentiable function of
dP;/3a,. Differentiating Eq. (28) with respect to time we
obtain

o%P; 3%P;
=f'5=>
at2 dt da 1

where the prime denotes differentiation with respect to

(29)

dP;/da,. But differentiating Eq. (28) with respect to the
Lagrangian coordinate we obtain
2 2
0F _p28 (30)
d¢ da, da?
Substituting Eq. (30) into Eq. (29), we may write
aZP,
=( ')2 . (31)
a f aa 1
From Egs. (17) and (31) we identify (f’)* as
oP;
(f")=c§ [1—[3;——’ (32)
da 1

Taking the negative square root of Eq. (32) for waves
propagating in the positive coordinate direction and then
integrating with respect to 9P; /3da,, we find

372
26'0

—EITJ’

where the last term in Eq. (33) is the constant of integra-
tion evaluated for the condition that when no wave is
present both the particle velocity and the displacement
gradient are zero. Solving Eq. (33) for dP;/da; in terms
of dP;/dt by means of a power-series expansion, we ob-
tain
da, ¢y ot at

to second order. For Bj=0 Eq. (34) reduces to (27).
Equation (34) will be used directly in the determination of
the acoustic-radiation stress.

3P,

— j&—; (33)

(34)

IV. BOUSSINESQ RADIATION STRESS

The Boussinesq radiation stress at a given fixed point
a, along the wave propagation direction is the time-
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averaged Boussinesq stress (&;;) defined’ by

. . 1 '— ’ ’
(3y)= lim — fo G (35)
In order to use the solutions to the decoupled wave equa-
tions we must transform the stress-displacement-gradient
expression [Eq. (6)] into a form compatible with the
decoupled equations. . Performing the transformation R
on Eq. (6), we obtain

ou, ou, du,

r‘5;1—+7 Mt 3, da; (36)

Opg =Dpg
where D, and D,,, are known linear combinations of
appropriate Huang coefficients. Performing the transfor-
mation S on Eq. (36), we obtain

where
pE=(S"1)pDpySy; » (38)
v;_?:(s )vp Sy S” '

By using Eq. (37) in the defining Eq. (35), the Boussinesq
radiation stress may be written as
2

oP; oP;
— J\_lpugl |
(7o) =] <301> ZB})‘I( da,
where B}? are the stress-generalized nonlinearity parame-
ters of the solid defined by

W

W:—ﬁ. (40)
7]

The time-averaged values of the displacement gradient
and the square of the displacement gradient to first order
in the nonlinearity are easily obtained from Egs. (22) or
(25) and (34) as

, (39)

==L 1

() =5t |3 ), @
ap, I\ 1 [ap

< da, >_20(2) ar | “2)

It is important to point out that in his pioneering studies
of acoustic-radiation stress, Brillouin”® assumed that
(8P;/3a, ) is zero. Such an assumption is tantamount to
setting the acoustic nonlinearity parameter B; equal to
zero in Eq. (41). The acoustic nonlinearity parameters
have been measured directly from ultrasonic harmonic-
generation experiments for some solids;'® for others, they
have been calculated'” from published measurements of
the second- and third-order Brugger elastic coefficients.
Most solids of cubic symmetry have acoustic nonlinearity
parameters ranging in value from approxnmately 2 to 20;
hence, the value of (aP /9a;) [Eq. (41)] is comparable to
that of ((3P;/da;)*) [Eq (42)] and cannot be neglected.
The term (an /da,) is the acoustic-radiation-induced
strain of the solid and can be identified with the term ob-

tained by Thurston and Shapiro! in their displacement
amplitude solution to the nonlinear wave equation. The
term <(ap,./aa1)2 ) arises from the nonlinearity in the
stress—displacement-gradient relationship of Eq. (37) and
is the only term considered by Brillouin in his studies.

Substituting Eqgs. (41) and (42) into Eq. (39), we find
that the components of the Boussinesq radiation stress
tensor for acoustic waves of polarization j propagating in
any direction N of a solid of arbitrary crystalline symme-
try may be written in the transformed frame as

[ 1
(TW>=7(TBj“TB;q)<EO) , (43)
J

where (E;) is the time-averaged total-energy density of
the initial sinusoidal waveform [see Eq. (21)] given by

o

at

li"j

(44
2 co )

(Eo)=~

.
For a wave of polarization j the {7;;) component of the
radiation stress may be written as

(151)=(3Bj— 5B E¢)=—+B;{Eo) , 45)
where we have used the easily verified relations

#'=n;, vii=vy, B)'=8 (46)
in Eq. (43).

V. BOUSSINESQ RADIATION STRESS
AND THE PRINCIPLE OF ADIABATIC
INVARIANCE

Equations (43) and (45) which express the Boussinesq
radiation stress in terms of the nonlinearity parameters of
the solid and the energy density of the wave were obtained
by using the Fubini particle-velocity solution of the non-
linear acoustic wave equation (17) in the nonlinear
particle-velocity—displacement-gradient equation (34).
We show here that Eq. (45) can be obtained directly from
the Boltzmann-Enrenfest principle of adiabatic invariance
without having to solve the nonlinear wave equation at
all.

The  Boltzmann-Ehrenfest  adiabatic  principle
states®!%1% that if the constraints of a periodic system are
allowed to vary sufficiently slowly, then the product of
the period T and the mean (time-averaged) kinetic-energy
density (K) of the system is a constant or adiabatic in-
variant of the motion,

T{K)=const . (47)

Taking the logarithmic variational derivative of Eq. (47),
we obtain

8T
S(K)=—(K)—. 48)

The internal energy density ® of the system may be ex-
pressed as a power series in the displacement gradient as!!
(assuming no initial stress)
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@ =poU=poUs+ 3 Ayjua Ty ils

+ 57 A Ty T+ “9)
where Uy is the initial internal energy per unit mass, py is
the initial mass density, and the coefficients of the dis-
placement gradients are the Huang coefficients. In the
transformed coordinate frame defined by the transforma-
tions R [Eq. (10)] and S [Eq. (12)] the internal energy
density may be written to third order as

2 3

oP; 1 oP;
=1, |—L —y... | —L
o= 2k aal + 3! Vit aal
s , (50)
1, |9 9B
=2k aal - 3! leu," aal ’

where we have used Eq. (18). The constant initial internal
energy density and the nonresonant terms have been
dropped in the transformation since they do not affect the
final results to the approximation assumed.

The relationship between the mean kinetic-energy den-
sity and the mean internal energy density can be obtained
from the virial theorem?

1 3P ap;
<K>“2<a(apj/aa,) 34, > 1
From Egq. (50) we write
a0 3 [ap | " ap; |’
3(dP;/da;) da; ' |da; | ~ 2P | Ba,
=2® LB(D ﬂ
- e aal
+O0(BHdP; /3a,)Y) , (52)

where the last equality results from solving Eq. (50) for
,uj(an/8a1)2 and iteratively substituting into Eq. (52).
Substituting Eq. (52) into Eq. (51), we find that to first or-
der in the nonlinearity

<K>=<<1>>—%B,~<<I>ai>. (53)
da 1

The work performed by a variation in the constraints of
a system produces a change in the time-averaged total-
energy density of the system. For a nonlinear acoustic
wave propagating in a solid we consider that the con-
straint is self-imposed by the displacement gradient itself.
Hence, the work is appropriately represented as the prod-
uct of the time-averaged stress (7;;) times the variation
in the conjugate constraint parameter (3P;/0a)

aP,

E (54)

8(E)=(r;)5

The time-averaged total-energy density of the system can
be obtained from Eq. (53) as

<E>=<K>+<¢>=2<K>+%Bj(¢§§f). (55)

Substituting Eqgs. (54) and (55) into Eq. (48), we obtain

apP; 6T
: — ‘—_-L j —J- —1———-
(1;1) (E) 631<d)aa1> T 8(3P;/3a,)

5P 8P, /0a,) 0

For a wave of polarization j the fractional variation in
the period T‘IST/S(an /9da;) may be obtained from the
natural velocity W); defined by Eq. (20). For a given
length of solid I, the system period T is proportional to
the length /; and we may write

Txly/W;. (57)
Thus, from Egs. (20) and (57)
—1 8T —_w-! SW;
1 an -

The last term in Eq. (56) may be evaluated to first order

in the nonlinearity by writing

8(®(dP;/3a,))
8(0P; /da;)

(@) 4 {5522 aP’)

a(aP_,/aal) aal

=3(E), (59)

where the last equality follows from Egs. (51) and (55).
Substituting Egs. (58) and (59) into Eq. (56), we find to
first order in the nonlinearity

(1) =($Bj—5B){E)=—1B;{E) . (60)

Equation (60) is identical in form to Eq. (45). There is,
however, a subtle difference. The time-averaged energy
density (E ) in Eq. (60) is the conserved time-averaged en-
ergy density of an isolated wave propagating through an
infinite solid without regard to energy sources, waveform
distortion, or resulting harmonic generation. The time-
averaged energy density (E,) in Eq. (45) is that obtained
from a driving sinusoidal source at the origin of a semi-
infinite solid. The driving term defines the initial shape
of the propagating nonlinear wave. If we assume that the
total-energy density possessed by the isolated wave is that
obtained from a similar driving source in a given amount
of time, then (E)=({E,) and Egs. (45) and (60) become
identical.

Finally, it should be mentioned that Brillouin!® also ap-
plied the Boltzmann-Ehrenfest adiabatic principle to the
radiation-stress problem. His approach, however, did not
consider the nonlinearity in the time-averaged total-energy
density of the propagating wave as obtained in Eq. (55).
Consequently, the term corresponding to that of Eq. (59),
which enters Eq. (60) as the component 4 3;{E ), did not
appear in his results. From Egs. (41) and (43) we see that
the contribution of this term to the total Boussinesq radia-
tion stress is that resulting from the time-averaged dis-
placement gradient or the acoustic-radiation-induced stat-
ic strain in the solid.
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VI. RELATIONSHIP BETWEEN BOUSSINESQ
AND CAUCHY RADIATION STRESSES

The derivations of the acoustic radiation to this point
have been in the Lagrangian (material) frame of reference.
Both the Boussinesq stress and Boussinesq radiation stress
are referred to the Lagrangian frame. It is of interest to
obtain the acoustic-radiation stress referred to the Euleri-
an (spatial) frame of reference and to find the relationship
between the two formulations. The stress referred to the
Eulerian frame is called the Cauchy stress.

The equations of motion in the Eulerian frame of refer-
ence are” 1

doi _ 8Ty (61)
P ar ~ ox;

where T); are the components of the symmetric Cauchy
stress, x; are the Eulerian coordinates, p is the mass densi-
ty of the solid in the deformed state, and v; are the com-
ponents of the Eulerian particle velocity. The time
derivative in Eq. (61) is the material derivative in the Eu-
lerian frame and may be written in convective form as

dv, av, I;

PR TR (62)

With the use of Eq. (62), the conservation of mass density
in the form

—a_g_ _ a(PU])
3t —ax,. (63)
and the relation
d(pv;) ov; 3p
ar P TV 64)
we may write Eq. (61) in the form
a(pui) _ a( le —PU,'U]') ) (65)
at axj

The term d(pv;)/0t in Eq. (65) is the local time variation
in the momentum density pv; of the oscillating mass of
the solid. Time averaging d(pv;) /9t according to Eq. (35)
gives the value zero. This implies, as one would expect,
that there is no net transport of mass across a fixed sur-
face embedded in the solid after the steady state is estab-
lished. Tj; are the elastic stresses in the Eulerian frame
(Cauchy stress) and pv;v; are components of the momen-
tum flux across the fixed surface. The momentum flux
represents the net transport of acoustic momentum and
does not time average to zero.

Equation (65) is to be compared to the Lagrangian
equations of motion [Eq. (1)] written in the form

at aaj

The left-hand side of Eq. (66) represents the time varia-
tion in momentum density across a fixed surface in the

(66)
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solid referred to the Lagrangian frame. As with its Eu-
lerian counterpart it time averages to zero by Eq. (35).
Note, however, that a momentum flux term does not ap-
pear explicitly in Eq. (66) since the material derivative
(time derivative following a particle) in the Lagrangian
frame does not depend on spatial variations (convection)
in the velocity field. One may still define a momentum
flux in the Lagrangian frame but it does not enter the
equations of motion in that frame.

We consider a fixed closed surface S bounding a
volume V in the Eulerian frame and a fixed closed surface
S° bounding a volume V?° in the Lagrangian frame. The
ith component of the time rate of change of momentum
through S in the Eulerian frame is

3 (T —pvv;)
a7 J v ev0dv= f TdV
= @, (Ti—pvw)ds; , (67)

where we have used Green’s theorem in Eq. (67). Like-
wise, the ith component of the time rate of change of
momentum through S in the Lagrangian frame is

at f (poU,)dVO fVO

Since Eqgs. (67) and (68) both time average to zero, we may
write

P, ¢

We consider the case in which the fixed surfaces in the
two frames are coincident and deformationally equivalent
(i.e., evaluated at the same coordinate values). The rela-
tlonshlp between the Cauchy radiation stress (T ) and
the Boussinesq radiation stress (&;;) is then seen from
Eq. (69) to be

(T],)—<pv,v])=<5'u> . (70)

The term {pv;v;) is the time-averaged acoustic momen-
tum flux through the surface referred to the Eulerian
frame. Equation (70) was originally obtained by Bril-
louin’ by expanding the Eulerian quantities in a truncated
power series of Lagrangian quantities and time averaging
the results. Brillouin’s derivation is thus an approxima-
tion, but Eq. (70) is not since it follows directly from the
exact equation (69).

The (1,1) component of the acoustic-radiation stress is
easily obtained from Eq. (70) as

(T)—(E)=(51), (71)

where we write (E )= (pv}). Equation (71) has been ob-
tained by a number of authors®?? using a variation of
Brillouin’s procedure but recently it has been derived
without approximation by Chu and Apfel?® using an ap-
proach based on Leibnitz’s rule.

aO',k

dV° $,oudSt.  (68)

Tji—puw;dS;= §, (Fu sy . (69)
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VII. CONCLUSIONS

We have theoretically examined the acoustic-radiation
stress in infinite and semi-infinite solids of arbitrary crys-
talline symmetry using two independent approaches and
have obtained identical results. The first approach is
based on a particle-velocity solution to the nonlinear
acoustic wave equation which, after transforming to a
displacement-gradient solution, is used directly in the
nonlinear stress—displacement-gradient equation. We
identify two contributions to the Boussinesq radiation
stress. One component results from the nonlinearity in
the stress—displacement-gradient equation and is the only
term treated by Brillouin’ in his pioneering studies of
acoustic-radiation stress in solids. This component occurs
even with a sinusoidally oscillating displacement gradient.
The second component results from the nonlinearity in
the wave equation itself and gives rise to an acoustic-
radiation-induced static strain. It occurs even under the
assumption of a sinusoidally oscillating particle velocity
since, through the nonlinear wave equation, the displace-
ment gradient does not time average to zero. The predic-
tion of the experimentally verified*°® radiation-induced
static strain is a significant triumph of the present theory.
The magnitude of the predicted static strain is in agree-
ment with the magnitude of the static displacement term
found by Thurston and Shapiro' in their method-of-
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characteristics solution to the nonlinear wave equation.

The second approach is based on an application of the
Boltzmann-Ehrenfest principle of adiabatic invariance to
a self-constrained system represented by the nonlinear
wave equation. We again obtain two components to the
Boussinesq radiation stress. A comparison of the com-
ponent terms in Eqgs. (43) and (60) reveals that the
radiation-induced static strain results from the variation
in the time-averaged product of the internal energy densi-
ty and the displacement gradient. The time-averaged
product, which is scaled by the nonlinearity parameter 3;,
represents the first-order nonlinearity in the Kinetic-
energy—potential-energy relationship [Eq. (53)] obtained
directly from the macroscopic virial theorem for solids
[Eq. (51)]. Indeed, if B;=0 the mean kinetic-energy den-
sity would equal the mean potential- (internal) energy den-
sity as would be expected for a linear oscillating system.
The term representing the stress nonlinearity in Eq. (60)
results from the adiabatic variation in the natural velocity
and the contribution of this term to the total radiation
stress is opposite in sign to that giving rise to the
radiation-induced static strain.

Finally, the relationship between the Boussinesq and
Cauchy radiation stresses has been obtained in an exact
closed three-dimensional form. The results are in agree-
ment with the expression obtained by Brillouin, who used
an approximation based on a power-series expansion of
Eulerian quantities in terms of Lagrangian ones.

IR. N. Thurston and M. J. Shapiro, J. Acoust. Soc. Am. 41,
1112 (1967).

2R. B. Thompson and H. F. Tiersten, J. Acoust. Soc. Am. 62, 33
(1977).

3B. Perrin, J. Phys. (Paris) Collog. 41, C8-216 (1979).

4P. H. Carr and A. J. Slobodnik, Jr., J. Appl. Phys. 38, 5153
(1967).

5]. H. Cantrell, Jr. and W. P. Winfree, Appl. Phys. Lett. 37, 785
(1980).

6W. T. Yost and J. H. Cantrell, Jr., following paper [Phys. Rev.
B 30, 3221 (1984)].

7L. Brillouin, Ann. Phys. (Paris) 4, 528 (1925); J. Phys. Radium
6, 337 (1925); Rev. Acoust. 5, 99 (1936).

8L. Brillouin, Tensors in Mechanics and Elasticity (Academic,
New York, 1964) (English translation of Les Tenseurs en
Meéchanique et Elasticité).

9D. C. Wallace, Phys. Rev. 162, 776 (1967).

I0R. N. Thurston, in Physical Acoustics, edited by Warren P.

Mason (Academic, New York, 1964), Vol. 1, pp. 2—109.

11K, Huang, Proc. R. Soc. London, Ser. A 203, 178 (1950).

12K . Brugger, Phys. Rev. 133, A1611 (1964).

13A. C. Holt and J. Ford, J. Appl. Phys. 38, 42 (1967).

14E. Fubini Ghiron, Alta Freq. 4, 530 (1935).

155, Earnshaw, Philos. Trans. R. Soc. London 150, 133 (1860).

16See references cited in W. T. Yost, J. H. Cantrell, Jr., and M.
A. Breazeale, J. Appl. Phys. 52, 126 (1981).

173, H. Cantrell, Jr., J. Acoust. Soc. Am. Suppl. 70, 589 (1981).

181, Boltzmann, Vorlesungen iiber die Prinzipe des Mechanik
(Barth, Leipzip, 1897).

19P, Ehrenfest, Philos. Mag. 33, 500 (1917).

20H. Goldstein, Classical Mechanics (Addison-Wesley, Cam-
bridge, Massachusetts, 1950).

21F. E. Borgnis, Rev. Mod. Phys. 25, 653 (1953).

223, A. Rooney and W. L. Nyborg, Am. J. Phys. 40, 1825 (1972).

23B.-T. Chu and R. E. Apfel, J. Acoust. Soc. Am. 72, 1673
(1982).



