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Effect of electronic relaxation on covalent adsorption reaction rates
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We present a theory of the effects of intra- and extra-adsorbate electronic response on the dynam-
ics of unimolecular covalent chemisorption on solid surfaces. Oux point of departure is the descrip-
tion of the rate processes in terms of diabatic transitions developed by Gadzuk and Metiu and ap-
plied to the problem of ionic chemisorption. In this case, the diabatic transitions axe characterized
by the transient ionization of reactants and a consecutive dynamic response of the substrate electron-
ic degrees of freedom to the perturbation brought about by the ionization of the adsorbate. In co-
valent chemisorption, however, the adsorbate-induced resonances may form at the Fermi level, leav-
ing the products neutral, so that only spatial rearrangement of the charge around the adsorbate is
permitted in a diabatic transition. This situation requires a supplementary treatment since in such a
case the electronic relaxation will proceed through two distinct channels, viz. , one involving the sub-
strate conduction-band states and the other involving localized adsorbate-induced resonance states.
In this papex' we investigate the consequences of the interplay between these two types of relaxation
processes on the reaction rates pertinent to covalent chemisorption. We find that it gives rise to
qualitatively new features in the diabatic transition probability, which differ radically from the x-
ray-edge —type effects encountered in ionic chemisorption. The estimate of the effectiveness of the
irreversible coupling of the nuclear motion of the incident beam of particles to this relaxation mech-
anism shows that the inelastic energy transfer through the two channels involved may be of the or-
der of thermal energies for a typical covalent adsorption system.

I. INTRQDUCTION

Quantal studies of rate processes in unimolecular ad-
sorption on metal surfaces usually involve two distinct
types of energy-transfer mechanisms: (i) inelastic excita-
tions of phonons, and (ii) substrate electron-hole (e-h)
pairs. The effect of phonons on atom-surface collisions, '

desorption, vibrational line shapes of adsorbed mole-
cules, and surface reactions has been discussed exten-
sively by several authors. Despite the fact that the role of
e-h pa~rs as a d~ssIpatxve mechamsm sn tIme-dependent
particle llltelactlotls with surfaces was pointed out Illore
than a decade ago and used in explanations of adsorbate
spectral properties, ' comparatively little attention has
been paid to this channel of energy transfer in surface col-
lisions. ' However, in chemical reactions which involve
a nonadiabatic change of the electronic configuration of
both the adsorbate and the substrate, including a possible
charge transfer, the effect of the electronic relaxation in
ihe two subsystems cannot be neglected.

Gadzuk and Metiu developed a theory of rate process-
es at surfaces in which a close analogy was made between
thc inelastic processes in unixnolccular adsorption and thc
so called x ray edge effects-cha-racteristic of the adsorption
spectra of core levels in solids" ' and adsorbates. ' The
basic premises of this theory are the following: Interac-
tions of atoms (molecules) moving with thermal energies
in the vicinity of a metal surface may be described in
terms of nonadiabatic (or diabatic) energy curves describ-
ing the potential acting between the surface and the atom
in the initial, reactant state and in the final, product

state. ' ' The chemical rearrangement of the atom and
substrate valence orbitals in a collision of the atom with
the surface proceeds in a nonadiabatic fashion even within
the Born-Oppenheimer approximation (BOA). This rear-
rangement of the electronic structure of the system occurs
at a characteristic distance R, ai which the two diabatic
curves intersect. The change of the electronic structure of
the adatom from a reactant to the product state may re-
sult in the ionization of the latter, whose effective charge
appears as a sudden localized perturbation on the elec-
trons in the metal surface. At this point a close analogy
with the x-ray-edge effect becomes possible. It was
known from the earlier works of Mahan, ' Anderson, "
Nozieres and co-workers, ' and Muller-Hartman, Ramak-
rishnan, and Toulouse that a localized time-dependent
perturbation could induce excitation of a large number of
e-h pairs in a Fermi sea at a very low energy expense,
leading to an infrared divergence in the absorption spec-
trum of the system. Simple analysis showed that the
probability of such a singular many-body relaxation pro-
cess may be large under usual circumstances. ' The next
step was to calculate these inelastic absorption spectra
from the parameters characterizing the adsorption events
and to correlate them with the kinetic-energy losses of the
adsorbing particles. Using the surface-response formal-
ism of Gumhalter and Newns, Gadzuk and Metiu were
able to show that, provided a sufficient amount of the
particle initial kinetic energy was transferred to the sub-
strate e-h excitations, the particle would remain trapped
in the potential well of the px'oduct state and, hence, at-
tached to the surface.
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The above description rests on the assumption of a
transition of the adatom (molecule) electronic structure

from a homopolar to an ionic state at the distance R,
from the surface. The probability of this transition is

determined by the chemistry of the problem and should be

calculated along lines similar to the ones followed in the
problems of predissociation' ' and nonradiative transi-

tions in diatomic molecules' ' bound by an ionic bond.

Typical simple examples are molecules of alkali halides

for which the change from hornopolar to ionic character
is very sudden and occurs at relatively large nuclear
separations, usually of the order of 10 A. 20

The theory of Gadzuk and Metiu should be applicable
to the case of ionic chemisorption for which, in the vicini-

ty of the crossing of the diabatic curves, the product-state
atomic orbitals develop into resonances located primarily
above or below the Fermi level of the substrate. Only in
this case will the charge transfer from one electronic sub-

system to the other give rise to the occurrence of the ionic
potential causing the inelastic excitation of the e-h pairs
and the subsequent adatom kinetic-energy dissipation
through this channel. This process may, in simple terms,
be visualized as a response of a set of harmonic oscillators
to the perturbation brought about by the diabatic ioniza-
tion of the adsorbing atom. Now, the question arises
whether in homopolar or covalent chemisorption, i.e., in

the case where at the crossing point R=R, the two elec-
tronic subsystems-undergo only a sudden charge rear-
rangement rather than ionization, is the same concept of
relaxation and energy transfer through the Fermi-sea fluc-
tuations applicable. In other words, we are interested in
whether the e-h excitations may also represent an efficient
inelastic mechanism required for dissipation of the ad-
atom kinetic energy in atom-surface collisions character-
ized by predissociation behavior originating from covalent
bonding.

The purpose of the present paper is to supplement the
earlier studies of the mechanism of the electronic relaxa-
tion by extending it to the case which may occur in the
rate processes pertinent to covalent-bond formation in the
product states. The systems on which we focus our atten-
tion are those in which (i) the adsorbate valence reso-

nances, which at R=R, form out of the discrete atomic
orbitals, are located around the Fermi level of the sub-

strate, and (ii) the electronic occupation of these reso-
nances does not vary appreciably as the adsorbate moves

from the intersection R, of the diabatic curves into the fi-
nal relaxed state. This is a situation opposite to the one
studied in Ref. 9. Speaking again in simple terms, this

may be visualized as a response of two sets of coupled os-
cillators, one representing the substrate and the other the
adsorbate, to a sudden displacement from their equilibri-
um position caused by bonding. We shall show below
that mutually coupled electronic relaxation processes in
the substrate and within the adsorbate resonance, which
are induced by diabatic crossing, may also open an inelas-
tic channel for energy transfer in the atom-surface col-
lisions. However, due to the enhanced phase space for re-

laxation, its dynamic features will differ strongly from the
ones encountered in ionic chemisorption. Ultimately, they

will lead to fundamentally different properties of the in-
elastic spectrum, such as the appearance of the no-loss
line, the dependence of the transition rates on the adatom
resonance density of states, etc., all of which were not
present in the complementary problem of ionic chem-
isorption.

In Sec. II we present the model for description of the
rate of transition of the system from the initial state in
which the atom (molecule) is moving towards the surface,
into a final state in which it is bound to the surface by a
covalent bond. The Born-Oppenheimer, Franck-Condon,
and weak-overlap approximations are used to simplify the
expressions for the transition rate and bring it to the form
amenable to a time-dependent treatment. In Sec. III we
defin the time correlation function corresponding to the
transition rate and introduce the electronic charge-density
fluctuations pertaining to the system characterized by a
covalent bond between the adatom and the metal in the fi-
nal, product state. The time-dependent treatment of the
coupled charge-density fluctuations leads then to an ex-

pression for the transition rate in terms of the convolution
of the adatom and the substrate electronic density-density
correlation functions. The resulting loss spectrum is
shown to exhibit properties which differ from those found

by Gadzuk and Metiu9 for ionic chemisorption. The
physical mechanism underlying these differences is dis-
cussed and explained in terms of time-dependent perturba-
tions acting on the Fermi sea of the composite system.
We apply the results of our study to estimate the average
energy loss likely to occur in covalent chemisorption. For
a reasonable choice of quantities describing the adsorption
event we show that the average energy loss due to elec-
tronic excitation, when compared with the initial kinetic
energy of a thermalized particle, may represent an effi-
cient inelastic scattering mechanism. Moreover, its mag-
nitude turns out to be of the same order as the one charac-
teristic of ionic chemisorption for the same parameters
typifying the substrate free-electron properties.

II. DIABATIC TRANSITIONS
AND REACTION RATES

A. Diabatic states in atom-surface reactions

A description of the interactions of atoms and mole-
cules with solid surfaces usually starts with a definition of
a Hamiltonian H of the system which is comprised of nu-
clear and electronic kinetic energies, the electronic interac-
tions with nuclei and among themselves, and the interac-
tion among the nuclei. The conventional division of the
Hamiltonian is made into the terms corresponding to the
nuclear kinetic energy and the remainder which collects
all the other interactions,

H =T+H, ) .

Here T is the kinetic-energy operator of all the nuclei.
Since in the following we are going to deal only with the
electronic excitations and their effect on the transition
rates, we shall henceforth neglect the nuclear motion of
the ions in the metal. This reduces T to the kinetic-
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energy operator of the incoming atom (molecule). Intro-
ducing the electronic density operator p(r ) we may write
H,i, in the case of a single atom interacting with the sur-
face, as

Hkjll+ 1 d3, d3 JPP(r ')P(r ")
~t ~IIr —r

V; and Vf denote the potentials on the adatom nucleus in
the respective states. A qualitative behavior of V;(R) and

Vf (R) is shown in Fig. l.
For later convenience we may define, with the help of

the final-state electronic functions
I f), the orthogonal

projection operators

Z p(r') 3, Zi(r')
d r — dl'

Ir' —R lr' —R, l and

Q=g lf&&f If
(4a)

+g (2)
I
R —R, I

where R~ and RJ denote the radius vectors of the nuclei
of the incoming atom and the jth metal ion, respectively,
and the Z's are the corresponding nuclear charges.

The eigenfunctions of the Hamiltonian (1) may be cal-
culated by making use of the several approximations
among which the BOA is the most common. The appli-
cation of the BOA, in which the effect of the nuclear
motion on the highly mobile electrons is neglected, may
lead to the definition of the adiabatic states which are the
eigenstates of H, i. The adiabatic potential curves are the
corresponding eigenvalues of H, i calculated for each
atom-surface separation R. This approach to atom-
surface reactions, in which the deviations from the BOA
give rise to reaction rates, has been pursued by Brivio and
Grimley.

However, as pointed out by O' Malley, ' the experimen-
tal evidence shows that the dynamics of the reacting sys-
tems does not proceed smoothly along the adiabatic
curves, but rather nonadiabatically along the sets of dia-
batic states which describe the essential properties of the
reactants and products separately. The reaction process
may be viewed as a transition from the diabatic (electron-
ic) state of the reactants to that of the products. In a sim-
ple case of a diatomic molecule, the essential features
characterizing such a diabatic transition were calculated
by Landau' and Zener' more than half a century ago.

In the present treatment we shall follow the formula-
tion of diabatic transitions in atom-surface reactions given
by Metiu and Gadzuk' (MG), which we will recall brief-
ly. We assume that two subspaces of electronic wave
functions of the system exist, the states of reactants and
the states of products. The former set does not allow
bonding of the atom to the metal, whereas the latter con-
sists of the states in which a chemical bond is formed be-
tween the adatom and the substrate. These states depend
on the atom-nucleus —surface separation and are not the
eigenfunctions of the H, i but rather of its projections onto
the subspace of initial (reactant) and final (product) states.
To fix the notation we shall denote these wave functions
by P;(r,R) and Pf(r, R), respectively. Hence, '

H', i/;( r, R) = V;(R)P;( r, R), (3a)

P=1—
in the subspace of the product (final) states. As pointed
out by O' Malley, ' in some specific situations, which we
are also going to consider below (Sec. II D), the states

I f )
may be assumed to be resonances of finite width. With
these definitions the full final-state Hamiltonian and the
full final-state wave function satisfy

QHQ@g( r, R) =E@g(r, R), QC&g ——4g
where H is the total Hamiltonian (1). Introducing the
quantum numbers a and P for motion of the atoms nu-

cleus in the potentials V~(R) and Vf(R), respectively, we
may write, within the BOA, for the initial- and final-state
wave functions of the atom,

@;=Ifai)) Ii),
~'p, f=

I l»f » I f &

(6a)

H'(R)
I I

& i » = l T+ v (R) l I l~ i &&
=E

I l~ i &&

Hf(R)
I IP,f» = I:T+ Vf (R)]

I IP,f» =Epfl IP,f»,
where

(7a)

(7b)

('7c)

is the initial- ( i) and final- (f) state potential acting on the
atom nuclear motion.

Vg(R)

Ch
LI
tI
0

I
O
O.

V.(R)

Ro Rc
I

Molecule-surface Distance R

where the double (single) angular brackets are used for the
nuclear (electronic) wave functions. Hence, the adatom
nuclear motion in the initial and final states is governed,
within the BOA, by the Schrodinger equations

Hfipf(r, R) = Vf(R)pf(r, R), (3b)

where H',
~ and H, ~

denote the projection of H, ~
onto the

subspaces of reactant and product states, respectively, and

FIG. 1. Schematic diagram of the diabatic potential-energy
curves as function of the distance normal to the surface. V; and

Vf denote the initial and final potentials of (7a) and (7b), respec-
tively. E; is the incident energy of the adsorbate.
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B. Reaction probability

In studying the rate processes at surfaces, one is in-
terested in the reaction probability, i.e., the probability
that an atom, after having collided with the surface
remains in a product state bound to the surface. This re-
quires that part of the atom initial kinetic energy be
transferred to the internal degrees of freedom characteris-
tic of the system in the product state. In the present case,
these will be the low-energy electronic density fluctua-
tions, whose excitation follows the nonadiabatic transition
of the system from the reactant to the product diabatic
curve. We assume that the initial state of the system is
characterized by the nonbonding ground-state electronic
configuration of both the atom and the metal and the nu-
clear kinetic energy E~;, of the order of thermal energies

satisfying E~;)lim V;(R) for R~ao. The final state of
the system consists of a product electronic configuration,
in the subspace spanned by Q, and nuclear motion
described by a quantum number P and the energy

Ep f, which proceeds along the potential-energy curve

Vf(R). The transition probability amplitude for such an
initial-state —final-state transition is given by

r

Tai pf f d & Qpf "(R) f d'» Pf(r, R)H, i(r, R)

XP;(r,R) i';(R)

where p;(r, R)=(r ~i &, pf(r, R)=(r
~ f&, p, (R)

=((R~ )ai &&; and 1tpf(R)=((R~ ~pf && satisfies the scatter-
ing equation typical of predissociation types of collisions,

IEpf T ——[Vf (R)+Ff(R ) ] I ppf+ '(R) =0,

with a complex level shift

Ff(R)= f d»pf(r, R)QHP(PE PHP—) 'PHQpf(r, R) .

For details and interpretation of these terms, see the dis-
cussion in Ref. 10, Secs. III B and III C. The wave func-
tions in (8) are subject to the BOA through (7) and (9).

The probability per unit time that the incoming atom
ends up in any final product state is

where e; and ef are the energies of the electronic system
in the initial and final state, respectively. The expression
(ll) can be brought to the standard form of the time
correlation function by making use of the integral repre-
sentation of the 5 function. Taking into account the defi-
nition of Q, we obtain

f dt (i
~
((~ i[~Hi(R) ~~P,f&& ~f&

i5 Pf

(12)

The BOA enables us to commute T+ Vf(R) with H, i(R) and hence

(13)

The explicit double appearance of the projector Q in (13)
has been introduced for later convenience. However, in

spite of the use of the BOA, expression (13) is still very
complicated and calls for the introduction of further sim-

plifying approximations.

I

by their values for R=R, . ' This gives, for the scattering
amplitude into each channel (P,f),

T«pf=((P, f~~a, i&& f d»gf(r, R, )

&(H,)(r,R, )gi(r, R, ), (14a)
C. Franck-Condon approximation

In atom-surface collisions where the energy of the in-

coming atom E~; is lower than the energy of the crossing
point of the two diabatic curves, the reaction probability
will be rather small, because of the small overlap between
the initial and final nuclear state wave functions. The
overlap will increase substantially when the energy is
above the crossing point, but not exceeding it too much.
For very large E; the corresponding nuclear wave func-
tion will oscillate very rapidly, making the overlap small
again. In the interval of energies for which the overlap is

appreciable, the nuclear coordinate will be close to R„
and we may approximate all the matrix elements in (13)

Vf;(R, ) = (f ~
H,i(R, )

~

i &

= f d»gf(r, R, )H,i(r, R, )P;(r,R, ) . (14b)

where the term «P,f ~
~a, i && in front of the integral over

the electronic coordinates is the Franck-Condon factor be-
tween the initial and final nuclear states. The expression
(14) contains the essence of the Franck-Condon approxi-
mation (FCA). Now, it is seen from (14a) that the driving
force for the quantum transition of the adatom nuclear
motion from the initial to the final diabatic state in Eqs.
(7a) and (7b) is provided by the matrix element
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D. Vfeak-overlap approximation

The Born-Oppenheimer and Franck-Condon approxi-
mations used in the derivation of (14) are both reasonably
good and are quite common in the studies of molecules
and solids. Their use should not introduce any drastic
differences between the conclusions about the dynamics of
chemical reactions derived either from (8) or (14). To
make further progress we introduce the weak-overlap ap-
proximation (WOA) in which one assumes that, in the
treatment of dynamics of the system in each diabatic
state, the electronic wave functions may be represented, to
a good approximation, by a product of metal and atomic
wave functions. Although this is an obvious choice to
represent the reactant wave functions, it may be less justi-
fied in the case of products. However, this approximation
is extensively used in the studies of chemical-reaction
rates and we shall also employ it here in the representa-
tion of the product states. This allows the basic features
of the transition rates to be calculated. Next, we shall as-
sume that the low-energy electronic density excitations in
the system do not affect the existence of the chemical
bond in the product state very much. In other words, we
assume that the fluctuations of the electronic charge den-
sity are characterized by intraband transitions within the
metal and transitions within the adsorbate-induced local-
ized resonances where they can take place once the final
chemical structure has been established, i.e., after the pas-
sage from one diabatic curve to the other. The electronic
states may then be written as

p(r) =p~(r)+p (r), (16a)

where the subscripts M and m denote the metal and ad-
atom electronic densities, respectively, and expand each of
them as

p,M(r ) =p, M(r )+5p,M( r ) (16b)

where 5p measures the fluctuations of the electronic den-
sity around the equilibrium distribution p . Then we sub-
stitute (16) into (2) and find that the Hamiltonian of the
system can be represented as a sum of unperturbed metal
and adatom terms HM and H, respectively, the terms
consisting of the products of p 's, and terms describing
the fluctuations of the charge density in the system,

~=~~+~~+~t ad+~.el

where

(17a)

p ZmZjH bond —g
IR —R, I

Z PM(r ')
d 7'

I
R —r'I

and

, „PM(r ')p (r ")
+I ~ll

ZJP~(r ")7"
J IRJ —r"

I

Assumption (15) has implications for both the form of
the interaction Hamiltonian (2) and the energy spectrum
of the initial and final states. In accordance with the
WOA, we first introduce the notation

Ii)= Ii,OM) Ii o ),
If&= lf &M& If ~

(15a)

(15b)

Hrel arel +arel '

Here,

(17b)

where i and f on the right-hand side (rhs) of both (15a)
and (15b) denote a particular chemical configuration. The
quantum numbers O~, AM, and O, A, denote the elec-
tronic ground state and low excitation modes within the
metal (M) and adatom (m) electronic configurations,
respectively. (Without introducing any confusion we
shall, in the following, omit the subscripts M and m. )

The metal initial ground state
I
i,0) is represented by its

unperturbed Fermi-sea continuum, and the atom by its
ground-state atomic configuration consisting of the
discrete valence orbital states. On the other hand, in the
final state, due to the occurrence of a chemical bond be-
tween the metal and the adsorbate, the valence orbitals of
the atom will broaden into resonances. In the case of
covalent-bond formation, these may be only partly occu-
pied. The finite width of a resonance may allow for the
intraorbital electronic relaxations "in addition to those
taking place in the metal states around the Fermi level. '

At this point, our approach goes beyond that of Cxadzuk
and Metiu, who take into account only the relaxation
within the metal states. For this reason their model is
suited for predominantly ionic chemisorption, in which
the adsorbate intraorbital relaxation is absent either due to
the complete occupation of the adsorbate-induced reso-
nances (limit of anionic chemisorption), or almost com-
plete absence of the electronic charge within the reso-
nances (limit of cationic chemisorption).

, „p (r")SPM(r'), , Z 5PM(r')

, „p~(r ') p (r ")
+ dr' dr" ~t ~II

ZJ5p (r ")
7'

J IR, —r"
I

(17c)

and

(17d)
, „5PM(r ')5p (r ")

~l ~tl

The static term Hb, „d is responsible for the existence of
the chemical (covalent) bond in the product state. Now,
due to the assumed overall charge neutrality in the sys-
tem, the two terms appearing in the large parentheses on
the rhs of (17c) may be neglected both in the reactant and
product states. This, however, would not be the case in
ionic chemisorption (cf. Ref. 9). The term H,',&

on the rhs
of (17d) describes the relaxation in the system in terms of
charge-density fluctuations characteristic of the electronic
subsystems, which are coupled by the Coulomb interac-
tion. In the initial state, this term gives rise to the elastic
van der &aals attraction between the atom and the met-



3l84 B. GUMHALTER AND S. G. DAVISON 30

al and its dissipative part can be neglected because of the
large energy required to excite real electronic transitions
in the atom. On the other hand, broadening of the ad-
atom valence orbitals into resonances in the product state
opens a channel for the excitation of localized low en-ergy

electronic fluctuations which are coupled to those in the
metal, and this term becomes effective in providing a loss
mechanism for the inelastic atom-surface reactions. This
happens in spite of the assumed overall charge neutrality
characterizing the covalent-bond formation (see Sec.
III B).

The action of H', i and Hfi onto the subspaces of initial
and final states is now given within the BOA, FCA, and
WOA by

H', i ~i, O& ~i,o&=[V(R, )+e, +e, ) [i,0& ~i,o&,

(18a)

Hci If &&
I f ~& = [Vf(R, )+e~+ei, ] I f & & If ~&

(18b)

where the excitation energies of the charge-density fluc-
tuations in the metal and atom have been denoted by e~
(e, ) and ei„(e, ) in the excited (ground) state, respectively.

Irrespective of the number of electronic modes excited
in the diabatic transition, the transition probability (11)
may now be written, with the help of (14), (15), and (18) as

(19)

III. CALCULATION OF INELASTIC
TRANSITION RATES

A. Correlation function

In the preceding section we brought the expression for
the reaction rate I' to the form in which the electronic and
nuclear dynamics in diabatic transitions are essentially
separated. This was possible by making use of a series of
approximations described in Secs. IIA, IIC, and IID.
The problem reduces then to the calculation of the
Franck-Condon factor and the time correlation function

R(t)=(i ~H, i(R, )Qfe " ' QfH, i(R, ) ~i & . (20)

R(t) describes the relaxation of the electronic system

where we have neglected the effect of the term H«i given

by (17d) on the initial state
~

i & because, due to the

discrete energy spectrum in an isolated atom, the charge-

density fluctuations can give rise only to interband transi-

tions of energy exceeding the thermal kinetic energies by

several orders of magnitude. Hence, within the approxi-
mations listed above, the reaction probability assumes a
form in which it is given by a product of the Franck-
Condon factor characterizing the nuclear diabatic transi-

tion and a Fourier transform of a time correlation func-

tion which describes the nonadiabatic excitation of the

electronic charge-density fluctuations in the product
states. These fluctuations give rise to the overall dissipa-

tive character of the diabatic transition and hence to the

inelasticity of the collision event (reaction).
The expression (19), although formally equivalent to the

one given by MG [Eq. (4.11) of Ref. 10], bears a new

feature —the allowance for an interplay between the elec-

tronic relaxation processes within the metal and the adsor-

bate. Since this interplay enhances the phase space for re-

laxation processes, it will also strongly affect the form of
the correlation function and the corresponding loss spec-

trum. In turn, this will have far-reaching consequences

for the transition rates and the overall reaction dynamics

in covalent chemisorption with respect to the ionic one.

I

when the entire system makes a diabatic transition at the
crossing point R=R, from the initial, nonbonding state
into a final state characterized by the formation of a
chemical bond between the adsorbate and the metal.
Within the BOA, the transition is induced by the action of
H, ~

on the initial diabatic state, since neither the initial
nor the final diabatic states are the eigenstates of H,~.

After the transition, the dynamics of electrons is governed
by Hfi and the electronic final state may be any excited
state of Hf~ satisfying the energy conservation expressed
through the 5 function on the rhs of (11). The dynamics
of the electronic relaxation will be determined by H,'~
given by (17d). The latter says that the Coulomb interac-
tion between the electrons in the atom and the metal will
give rise to charge-density fluctuations within each sub-
system. The electronic states involved in this process are
those in the metal conduction band around the Fermi en-

ergy Ez and in the adsorbate valence resonance, provided
the latter is located close to EF. Customarily, in chem-
isorption studies, such a relaxation within the adatom is
termed as intraorbital, and that within the substrate band
states as extraorbital or extra-atomic. The essential prere-
quisite for intraorbital relaxation is the existence of a
non-negligible density of states of the adsorbate-induced
valence resonance at EF, as usually is the case in homopo-
lar or covalent chemisorption.

The concepts of intra- and extra-adsorbate relaxation
were first used in connection with the interpretation of the
core spectral shapes of adsorbed atoms and molecules. '

In the core spectral problem the event which triggers the
relaxation is the sudden appearance of the core hole creat-
ed in photoemission. In the present problem this role is
taken up by the diabatic transition of the system from the
initial into the final state [i.e., by the action of the H, i on

~

i & in (20)] and the consequential change in the electronic
interactions from H,'~ to H, ~ to which the electrons have
to adjust themselves. This readjustment is nonadiabatic
and may lead to dissipative processes which in turn give
rise to inelastic collision and finite reaction rates.

B. Relaxation spectrum
The basic relaxation process emerging from H', i [Eq.

(17d)] and involving coupled excitation of e-h pairs
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(21)

I/

r~&

V

FIG. 2. Basic e-h excitation process in the product state gen-
erated by H;,~ [Eq. (17d)]. The double wiggly and dashed lines
denote the propagation of the charge-density fluctuations
described by the spatial Fourier transforms of JM and p
respectively [cf. (23) and (24)]. Crossed circles represent vertices
pertaining to the Coulomb interaction between the electronic
charge-density fluctuations in the atom and the metal.

within the substrate conduction band and the adatom res-
onance is sketched diagrammatically in Fig. 2. The
Coulomb interaction may excite low-energy, charge-
density fluctuations within each electronic subsystem,
once the diabatic transition has taken place. This means
that, in the time representation, the vertices in Fig. 2 are
restricted to the same time interval during which Hf& is ef-
fective. ' ' As will be shown below, the basic dissipative
interaction generated by (17d) and shown in Fig. 2 is in-
versely proportional to the fourth power of adatom-
surface separation. Therefore, it suffices to treat only this
leading term in the relaxation processes following the dia-
batic transition. Let us denote the propagator of the exci-
tations sketched in Fig. 2 by D (co). Then

describes the density of excitations taking place in the re-
laxation event, and co is the energy such a density-
fluctuation mode can absorb from the kinetic energy of
the adatom. Since the motion of the adatom nucleus is
semiclassical (at least within the BOA and FCA), it
behaves as a localized perturbation which can either excite
or absorb substrate electronic density fluctuations of arbi-

trary momentum Q parallel to the surface.
To calculate S(co), we shall employ linear-response

theory. Since we are dealing with low-energy excitations
we shall also approximate the atomic and substrate
density-density response functions by their linear counter-
parts. To fix the geometry of the problem, we assume
that the intersection of the diabatic curves at which the
Franck-Condon transition takes place is located at the
point R, =(P„Z,) outside the surface, where Z is the
coordinate perpendicular to the surface, and that the elec-
tronic coordinates r are measured either from the adatom
center as regards the atomic charge density (r ), or from
the coordinate origin at the surface as regards the metal
electrons (rM). Thus, the distance between two electrons,
one within the adatom and one within the metal, is given

by d = ~R, +r —rM ~. Using this notation and defin-
ing the electronic linear-response functions of the metal
and the adatom in the coordinate space by XM ( r ~, r M, co)
and X~(r~, r ~,co), respectively, and making use of the
two-dimensional Fourier transform of 1/d, we can
write,

2&e 2me I( Q —Q ') —Q+g')z,

u ~ ~pQ ~tuV 3 3 I 'q rM tq ~ rMXi d rM d rMe XM(rM, r M, co —v)e2'
~ ~ p)jC

X f d r~ f d r e'&~'™X~(r~,r ~,v)e
(22)

where q =(Q, iQ). Exploiting the assumed translational
invariance of the surface, we obtain

f
~ M ~ ~

3
—s q-rM tq rMd rM d rMe XM(r~, r M, co —v)e

R (co —v)5 -, , (23}
2me'

where R (co) is the surface-response function whose
Q

properties were calculated earlier. ' ' The calculation of
the second integral proceeds by noticing that only small Q
values will contribute significantly to the sum in (22), due
to the presence of the quickly converging term
exp[ —(Q+Q')Z, ]. This enables us to expand the ex-
ponentials and obtain

~ —+4 —+p

f d r f d r~e
' ' X~(r, r', v)e

I

= Q [aJ (v)+a//(v)], (24)

where we have introduced the adatom polarizations nq
and a~~, perpendicular and parallel to the surface, respec-
tively. Assuming that

ag(v)+a~~(v) =a (v)(1+@),
where @=a~~(v)/at(v) =const, we obtain

S(ro) = —Im e g 2n.Qe

Q

dV
Q I cpm v R co —v—~ 2m

(26)

As expected, (26) states that S(co) is proportional to the
imaginary part of the convolution of the response func-
tions characterizing each electronic subsystem.
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To evaluate the sum and the integral in (26) we shall

adopt the model expressions for the response func-
tions a (v) and R (v), as calculated in Refs. 6 and 7(a).

Q
Their form can be evaluated via Kramers-Kronig rela-

tions once their respective spectral densities

(A/2mv)S (v)= —Ima (v)/m and S~"(v)
= —ImR (v)/m are known. Thus, we have

Q
3

S (v) =vp' (0)+, I 2p
"

(0)p (0)

enhances the phase space of relaxation through low-
energy e-h pairs. This effect is reminiscent of the effect
of recoil in the studies of interactions of mobile particles
with low-energy excitations in a Fermi gas. ' ' The
softness of the spectrum (29) will have strong physical im-
plications on the correlation function (20) and thereby on
the transition rates (19) as well.

C. Calculation of the loss spectrum

and

—[p' (0)] I+O(v )

2 v

3' COp

2

+O(v ),

Se pg( )
2vQ

1
TF 1Zk

m W3 coqkTF Q 2

(27a)

(27b)

Knowledge of the relaxation spectrum (29) enables us to
calculate the temporal properties of the correlation func-
tion (20). Upon observing that the evolution of the elec-
tronic system, after the diabatic transition, is governed
strictly by H~~, we may reduce the problem to the applica-
tion of the famous method of Nozieres and de Domin-
icis' outlined in their study of x-ray-emission and -ab-

sorption edges in metals. Applying this method to the
present case, we obtain

and

S (v) =vp
' (0)e (28a)

S':"(v)= ——ImR- (v)
Q ~ Q

where v is the excitation energy of an e-h pair and p (0),
cop kTF and UF denote the adsorbate-resonance-level den-

sity of states at EF, substrate plasmon frequency,
Thomas-Fermi wave vector, and Fermi velocity, respec-
tively. Next, we will simplify these expressions by intro-
ducing an exponential cutoff instead of a power series in
v. The cutoff must be determined from the requirement

that the maxima of (27) be invariant to the functional

form of a cutoff. In this way, we obtain the Ansa'tze

, & —e ' '—ice't
Xexp — m S co (30)

where

V'f ——(t ~H,1(R, )
~
f) (31)

(32a)

and

is the perturbation matrix element responsible for the dia-
batic transition. The Fourier transform of (30) gives the
loss spectrum appearing in the expression (19) for the
transition rate P; py. Introducing the abbreviations

A'( I+p)e p (E~) ln(2kT„Z, /1. 65)a=
2m' 3 vr~kTF (2Z, )

2vQ
1rv 3 co&kTF

2kTF 1 —v/QuF

Q 2

1 Zc
b =— +p~(EF)

2 UF
(32b)

(28b)

Substituting these expressions into (26), carrying out the
frequency integration, and recalling that

Q

where L is the unit area of the surface, we obtain, after a
tedious calculation,

which help us to simplify the notation in (29), we may
perform the time integral in (19). The details of this cal-
culation are given in the Appendix. Eventually, we find
that the transition rate may be cast in the form

I'; tt/(co)= i ((P,feria, t)) i i
V,i(R, )

i
e

T

oo (& )n —1

X 5(co)+ae "g e(~),
, n!(n —1)!

A'(I+@)e p (0) In(2krFZ, /1. 65)
S(o1)=

2m W3 ~co~kTF (2Z, )
where

(33a)

Xco exp2 Zc
+p (0) /2

U
(29) (33b)

is the energy dissipated to the e-h pairs in the inelastic di-
abatic transition. A plot ofIt is seen that the excitation spectrum (28) is softer (-co )

than any of the constituents of the convolution (26), i.e.,
S (co) and S' (co), which are linear in co for co~0. This

Q
is so because the existence of two types of the excitation
modes (within the adatom resonance and the metal)

&(~)=&(co)/[(2m/A')
) ((Pf ~

~a, i)) [
'

~
V/(R, )

~ ]

as function of co for a reasonable choice of parameters a
and b (cf. Sec. IV) is shown in Fig. 3. Since a measures
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FIG. 3. Energy-1oss spectrum I'(co) entering the expression
for the transition rate (33a), for a =0.62)&10 eV ' and
b=0.73 eV ' (cf. Sec. IV). 5-function no-1oss peak is denoted
by the arrow at the origin. Weight of the no-loss peak =0.99,
mean-energy transfer co& ——12 meV.

the coupling between the charge-density fluctuations in
the two subsystems, the value of (33a) for a ~0 describes
the pure "predissociation" behavior of atom-surface col-
lisions, viz. ,

Pm pf(~}=(2~~&}
I &&0 f I l~ i && I

'
I
Vy(R. )

I
'@~)

(34)

This expression is analogous to the one obtained by Lan-
dau' and Zener' in their studies of energy-level crossing
and predissociation in diatomic molecules. This leads us
to identify the remainder of the expression (33a) with the
loss spectrum P(co) which determines the inelasticity of
the transition rate. The exponential factor in front of the
opening large parenthesis in (33a) gives the intensity of
the elastic line (i.e., of the 5 function) and plays the role of
an electronic Debye-&aller factor, which weighs the
overall elastic scattering probability into the channel
(I3,f}.

D. Perturbation matrix element

The calculation of the perturbation matrix element

Vy(R, ) in (33a) is very difficult, since it requires
knowledge of the electronic wave functions of the reactant
and product states. Similar types of matrix elements ap-
pear commonly in quantum chemistry in the studies of
molecular spectra. However, since the diabatic electron-
ic wave functions corresponding to various adsorption
problems are presently unknown, we may try to estimate
the magnitude of V~ by using some simplifying assump-
tions and by resorting to some intuitively valid approxi-
mations.

Let us assume that the adatom-substrate bond formed
in the diabatic transition is localized mainly between the
adatom and the nearest surface atom in the metal. In this
"surface-molecule" approximation, we expect that the
bond would be very close to the one formed in a corre-
sponding diatomic molecule if such may exist. First-
principles calculations for diatomics and chemisorption

on surfaces indeed confirm this assumption for the
ground-state electronic configurations and at equilibrium
distances. Assuming the problem is similar to the one en-
countered in the studies of diatomics, we may then resort
to the types of approximations used there in order to esti-
mate the magnitude of Vy.

In the predissociation studies of alkali halides, in which
the initial electronic configuration is characterized by a
homopolar state and the final one is characterized by al-
most complete ionization of the constituents, V~ was es-
timated as

Vg"(R)= f m(ri)x(r2)H, i(R)x(ri)x(r2)d rid r2

S „(R)
cR

(35)

where m(ri) and x(r2) denote the initial states of the
electron 1 in the outer s orbital on an alkali nucleus and
the electron 2 in the outer po. orbital in a halogen, respec-
tively, and S~„(R} is the overlap between the two orbitals.
The value of the constant c used in calculations varied be-
tween 2 and 8.

The same procedure could not be used to estimate V~
in the case of covalent-bond formation, because the final
electronic states are not localized within the single ion,
but rather shared between the two atoms. Hence, in the
present situation, the molecular-orbital approach lends it-
self as a method suitable for giving a qualitative estimate
of the behavior of V~(R). We may write the wave func-
tion of an electron participating in the final-state covalent
bond as an appropriate linear combination of the atomic
orbitals

~

m'& and
~

x'& of the constituent atoms,

PI(r)= —g 3~m~ (r)+ g C„x„(r), (36)m m
I

p;y(R) =
2
B[S~„(R)],

@RE
(38)

where B denotes the appropriate bilinear function of vari-
ous overlaps S „(R) emerging from the expansion (36).
Thus, for instance, in the simple case of a single atomic
orbital per atom and with A =5, C„=+& (sym-
metric molecule}, one would obtain

B(S „) 1+2S „+S„
X 2(1+S „)

for the ground (+ ) and the first excited state ( —) of the
surface molecule, respectively. The value of V~(R) at
R=R, would then represent the order of magnitude esti-
mate of the diabatic transition potential matrix element
appearing in the expression for the reaction rate (33a).

where X, A, and C ~ are the normalization constant and
the appropriate coefficients, respectively. Neglecting spin,
we obtain

Vip(R) = f m ( r ))x ( r2)H, )(R)gg( r i)Py( rz)d r id ri . (37)

Now we may employ the arguments of Ref. 20 which led
to the expression (35), to further approximate (37) to the
form
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E. Franck-Condon nuclear overlap integral
=2MPE(co),

dc'
(43)

A, =2 V~' (ZE )Z;„/iiiQO, (40)

where Z;„and fiQO are the zero-point amplitude of the.
oscillator X„and its quantum of energy, respectively, by
making use of the integral representation of the Airy
functions. Thus, one obtains '

X(Z)=(a /V')'i [1—(1/3A, )d /dxE]5(x xE), —(41)

where x =aZ and a=Z „. Such an X(E) is normalized

to the 5 function of energy. This leads to the following

expression for the overlap:

S~——[V'(ZE)] ' X,(ZE),

where

(42}

X„(Z)=X,(Z) — X,"'(Z),
3A,

X„ is considered known. The dimension of Sz is deter-
mined by the normalization of X(E) and X,.

Expression (42) is the desired order-of-magnitude esti-

mate of the nuclear overlap and shows that one of the
maxima (minima) of X„must coincide with the maximum

of 7 at the turning point in order to produce a non-

negligible overlap and, consequently, the nonvanishing

probability amplitude for the Franck-Condon transition.
The differential cross section or the probability of the

reaction is obtained by dividing the transition rate P(co)
by the perpendicular-to-the-surface component of the
current Jz(E) of the reactant. ' As Jz depends on the
normalization of X(E), which, in the present case, is nor-
malized to the 5 function of energy, we obtain
Jz(E) =(2M) ' and

The basic quantum-mechanical features of the nuclear
transition from one to the other diabatic curve are con-
tained in the Franck-Condon overlap integral introduced
in Sec. II C. Its calculation may be reduced to the evalua-
tion of the nuclear overlap

S~ ——I dZ X„(Z)X(Z), (39)

where X, is the wave function of a vibrational nuclear
state, in the potential Vf(R), generally of a finite lifetime
due to predissociation, and X is a continuum wave func-
tion. An integral of the form (39), for the collision of the
second kind [E & Vf(co) & V;(ao)], was calculated by
Landau' under the assumption that the classical turning
points were far outside the region of curve crossing. Ap-
plication of the WKB method then yielded the famous
Landau-Zener formula.

In the present case, in which Vf(oo) &E & V;(0o), the
turning point of the continuum wave function X(Z) is
likely to appear near the curve-crossing point, a situation
studied by O' Malley. ' In the vicinity of the turning point
ZE, 7 will be well represented by an Airy function with a
sharp maximum at ZE provided the slope V' of V~(ZE) is
considerably different from zero. Assuming this, one can
obtain an expansion of X(Z) in inverse powers of a large
quantity,

where E is the initial kinetic energy of the reactant.

IV. DISCUSSION

co,(a,b) =a/b' . (44}

This quantity should now be compared with the average
thermal energies of nuclear motion of reactants prior to a
diabatic transition and with the separation between two
vibronic levels of the final-state potential Vf(Z). To ob-

tain an estimate of coi for a realistic system, we may con-
sider a copper substrate because its conduction-band den-

sity of states at the Fermi level is free-electron-like. In
this case, the low-energy electronic response of the surface
should be adequately represented by the surface-response
function R- (v), whose spectrum S':"(v) (Refs. 6 and 32)

Q Q
is given by (28b). Next, we shall assume that, at the dia-
batic curve crossing Z„ the adsorbate induced density of
states p~(E} is approximately given by a Lorentzian
whose full width at half-height is 2b, =0.5 eV, which is a
smaller value than at the equilibrium distance Zo (cf. Fig.
3 in Ref. 30). With free-electron parameters kTF
=0.3aE ' and UE

——2.95X 10' aE s ' (aE denotes Bohr
radius) for copper known, we may obtain a and b as
functions of Z, . Knowledge of Z, is of crucial impor-
tance because a ~Z, . In general, it may be expected
that, for covalent bonding, the intermolecular distances at
diabatic curve crossings would be considerably smaller

The basic result of this work is contained in expression
(33a), which gives the probability P; @ that an atom
(molecule) will make a diabatic transition from the initial
state characterized by the quantum numbers a and i,
denoting the nuclear motion and the electronic configura-
tion, respectively, into the product state characterized by a
covalent-bond formation and the corresponding quantum
numbers P and f (cf. Sec. II A). The transition may be ei-
ther elastic or inelastic. In the former case the system will

exhibit a predissociation behavior in the product state and
the probability of such an event is weighted by an elec-
tronic Debye-Wailer factor exp( —a/b), which multiplies
the no-loss line in (33a). In the case of inelastic transi-
tions, a portion of the atomic nuclear kinetic energy co is
dissipated to the electronic degrees of freedom whose exci-
tation spectrum is described by the second term in large
parentheses on the rhs of (33a). The quantitative features
of this loss spectrum are determined by the various pa-
rameters of the system contained in the constants a and b

giv~~ by (32). In particular, if the resonance density of
states p (EF ) at the Fermi level were zero, there would be
no relaxation within the system [because of our neglect of
the terms in large parentheses in (17c) which appear in the
case of ionic bonding], and one would observe only the
elastic transitions.

A quantity which measures the efficiency of dissipation
of the atomic nuclear kinetic energy in the adiabatic tran-
sition described is the average energy loss or the first mo-

nient co& of the loss spectrum in (33a). A straightforward
calculation gives
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than in the case of ionic bonds, where the "harpooning
mechanism" is known to be effective. Thus, for in-
stance, the switch of the covalent bond in
H+ H2~Hz+H reaction is known to occur at a dis-
tance smaller than 4a~. If we take this value as
representative of covalent bonding, we obtain lower bound
estimates a =0.62 &( 10 eV ' and b =0.73 eV
Hence,

co&(Z, =4a~) =12 meV, (45)

which would be quite a substantial energy loss for a
thermalized particle. At Z, =3a~ the value of co~ rises to
26 meV and at Z, =5az it drops to 2 meV, assuming the
same h. On the other hand, the first moment of the loss
spectrum discussed by GM, and pertinent to ionic
chemisorption, can be estimated to be co~

——70 meV for
Z, =4az and the same free-electron parameters of the
substrate (also see below). Of course, one could anticipate
even larger energy losses in the case where the charge-
density fluctuations in the substrate valence bands, located
at the Fermi level, would also participate in the relaxation
processes. Such a situation may be expected for a majori-
ty of transition-metal substrates.

We may now make a comparison with the results of
Gadzuk and Metiu, who studied ionic chemisorption re-
action rates. Since their treatment and this one consider
two different relaxation terms in the electronic part of the
Hamiltonian [cf. discussion following (17)], it is clear that
the two theories supplement each other in covering the
possible electronic relaxation processes induced by diabat-
ic transitions. However, due to the different types of
chemical bonds formed in the product states, the resulting
loss spectra exhibit very different behavior. The charge
transfer in the ionic bond formation gives rise to a loss
spectrum whose weight is concentrated around the thresh-
old, where, in fact it exhibits an infrared singularigt, and a
zero-weight no-loss line. [The first moment co& of this
spectrum is proportional to Z, (Ref. 6); however, the
slower falloff of coP with distance may, to some extent,
be compensated for by larger Z„which is characteristic
of the homopolar-ionic diabatic crossing ' .] These
features originate from the sudden ionization of the ad-
atom in the diabatic transition and a single-channel relax-
ation through substrate conduction electrons only. On the
other hand, in the case of covalent bonding studied in the
present paper, an additional channel of relaxation via the
adatom valence resonance excitations becomes effective
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APPENDIX

We wish to evaluate the integral

1 00

P(co)= ——Im dt e'"'e '"B(t),
00

(Al)

where C(t) is given by the exponent appearing in (30),

C(t) = —J dco' S(co'), (A2)

and S (co') is given by (29),

A (co') =aco' e (A3)

where a and b have been defined by Eq. (32). Substituting
(A3) into (A2) and evaluating the integrals, we obtain

—1

C(t) =i t — — 1 — 1+—
b b

(A4)

The first term on the rhs of (A4) may be associated with
exp(icot) in (Al), as it only shifts the threshold energy
Thus, we are left with the integral of the form

after the diabatic transition, and this leads to the enhance-
ment of the phase space for relaxation. This enhancement
of the phase space quenches the Anderson orthogonality
(i.e., the infrared singularity) and, in a sense, takes over
the role which would be played by recoil in the x-ray-edge
problem ' and surface scattering. For this reason, the
spectrum (33a}, characteristic of the covalent product
state, exhibits the elastic or the no-loss line weighted by an
electronic Debye-Wailer factor exp( —a lb ). The loss
spectrum has a shape of a sideband (cf. Fig. 3), in contrast
to the singular threshold behavior found in the case of an
ionic product state. These differences can also be thought
of as being due to the different charge redistribution in
the nonadiabatic screening processes pertinent to a nona-
diabatic formation of ionic and covalent chemisorption
bonds.

1 00

P(co) = ——Im dt e'"'exp ~— ib
t —ib

1 00

e (a ~b) gt e'~'exp2' 00

ib
t —ib

Expanding the second exponential in the integrand of (A5), we find that the resulting series can be integrated term by
term by using tabulated integrals. Hence,

p(~) =e ~'~» g(co)+a e ""g B(co) ~

(aco)"

, n!( n 1)(
(A6}

which is the desired spectrum normalized to unity.
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