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Exact exchange and correlation corrections for large wave vectors
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We extend Niklasson's method in order to study the spin response of an electron liquid in a weak

sinusoidal magnetic field. The many-body correction G ( q, co) caused by exchange and correlation
is introduced to describe the correct wave-vector- and frequency-dependent spin susceptibility. The
exact behavior of G (q, co) in the large-q limit is related to the pair distribution function g(r) at
r =0. 6 {q, co)~[4g{0)—l]/3, as q ~ oo. At metallic densities this value is negative, opposite in

sign to the limit at small wave vector. Thus the spin susceptibility for large wave vectors is

suppressed, rather than enhanced, by many-body effects.

I. INTRODUCTION

( ) 1
u(q)II (q, co)

1+6+(q,co)u(q)II (q, co)

and spin susceptibility

piiII (q, co)
X(q, co)=-

1+G (q, co)u(q)II (q, co)

where (uq)= m4.e /q and pii is the Bohr magneton.

II (q, co) is the Lindhard response function for the free-

electron gas,

n- —n-
Ilp( )

1 y k —q/2, a k+ q/2, n
(3)

with free-electron energy ok=iri k /2m and n- being
k, o

the occupation number for electrons with momentum A'k

and spin a. v is the total volume of the system.
Equations (1) and (2) are considered as definitions of

the wave-vector- and frequency-dependent many-body
corrections 6+(q, co) and 6 (q, co); they are introduced
to incorporate the many-body effects. The objective is to
find the functions G+(q, co) and 6 (q, co) so that e(q, co)

and X(q, co) are exact.
It is a custom to divide many-body effects into ex-

change and correlation. The Hartree-Fock (HF) approxi-
mation takes care of exchange, while dynamical effects of
the Coulomb repulsion not included in the HF approxi-
mation are defined as correlation. We introduce G„(q,co)

for the exchange correction, and 6~(q, co) and 6,'(q, co)

for correlation corrections associated with parallel spins
and antiparallel spins, respectively. The many-body
corrections, 6+(q, co) and 6 (q, co), are then given by'

G+ ( q, co)=6„(q, co)+ G~( q, co) +6,'( q, co) (4)

One of the goals of many-body physics is to obtain the
correct wave-vector- and frequency-dependent dielectric
function

6 (q, co) =6„(q,co)+6~(q, co) —G,'(q, co) .

From the above expressions we see that G+ ( q, co) is de-

fined as the sum of parallel-spin and antiparallel-spin ef-

fects, whereas G (q, co) is the difference of parallel-spin
and antiparallel-spin effects. This is understandable.
Density response depends on spin-symmetric properties,
whereas spin response depends on spin-antisymmetric
properties.

The struggle to find 6+(q, co) and G (q, co) has lasted
more than a quarter of a century, ever since the pioneer-

ing work of Hubbard. Further progress was due to Toigo
and Woodruff, Singwi and co-workers, ' and countless
others. However, except for their quadratic dependence
on q in the limit of small wave vectors, the precise expres-
sions for 6+(q, co) and 6 (q, co) remain unknown.
Knowledge of their exact behavior for large wave vectors
is also important. Niklasson used the equation-of-motion
method to study the density response of the uniform elec-

tron liquid and found an exact condition on 6+ ( q, co),

lim 6+(q,co)= —', [I—g(0)],
q~ oc

where g(0) is the pair distribution function g(r) at r=0.
To our knowledge, the analogous relation for G (q, co)

does not appear in the literature. It is the object of this

paper to find this complementary result.

II. EXCHANGE CORRECTION

Parallel to Niklasson, we apply weak sinusoidal mag-
netic fields to a system of X electrons with a uniform pos-
itive background. The Hamiltonian of the system consists
of two parts: Hz for the unperturbed system is

Ho —g eka a
k, o k, a

k, cr

+2 g u(q) g g at„at
k',

+a~, ,a~
k ' —q /2, o' k + q /2, cr

'

and
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where a and a - are creation and annihilation opera-
k, o k, cr

tors for an electron with momentum Iiik and spin o. The
interaction Hamiltonian HI has the form

to describe the density of the perturbed system. The in-
duced density of electrons hn ( q, t) is then given by

b, n (q, t)=gbf'" (q, t),
k

with bf'" (q, t) being the perturbed part caused by the
k, o

external field

k, cr

where B(q, t) is the spatial Fourier transform of the mag-
netic field. The signum function is defined by

+1 if spin up
sgn(cr) = ~ —1 if spin down .

We introduce the Wigner distribution function

f'-„"(q, t)=(a+ (t)a (t)}
k —q /2, cr

hf'" (q, t)=f'" (q, t) —5 n (12)

[a-+„,(t)a„,(t), Ho+H, (t)] .

Keeping only terms linear in the external field we obtain

Evaluation of hf'" (q, t) proceeds by considering thek, o.

equation of motion, obtained from the commutator

k —q /2, cr

+—(n- n-— ) {p BII(q, t)sgn(o)+v(q)[«, (q, t)+«, (q, t)) I
k —q /2, cr k+ q /2, cr

+—g v(q') g [~f'-", -, , (q —q', q';t)
+

q k ', (y'

The expression
(14)

the perturbed Part of the two-particle distribution function in the presence of the external potential, while the equilibri-
llII1 Part f (q) is

ko-, k ', g'

n; k '&' ' k —q/2, cr k '+ q/2, a' k ' —q/2, ~' k+ q/2, & '

The Fourier transform of Eq. (14}with respect to t can be reduced to

+—(
1

+—g [v(k —q/2 —q') —v(k+q/2 —q')]n Qf (q ~)
J

q

n
k - ){paB(q ~)sgn(a')+v(q)[«, (q,~)+An, (q, co)]j

We note that Eq. (14) is exact in the linear-response regime. Unfortunately, it is only a symbolic equation unless one
knows the behavior of bf' ' (q, q ';t). The precise evaluation of Eq. (15} is even more hopeless. We are forced toko; k 'g'

make an approx1mation The simplest one is the HF approx1mation. neglect correlation i e t~o particle expectations
are decoupled as multiplications of one-particle expectations. Thus .

t

(18)
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g u(k —k')n
k'

The fourth term then introduces a nonlocal exchange potential, i.e., the potential depends on the momentum of the elec-

tron,

where we have made a trivial change of the summation variable so that the third term of the right-hand side has the
form of an exchange energy, which leads to the well-known HF dispersion relation

AkF„=e-„+E„(k)= (19)

V„(q,co;k)= —g u(q')hf'„", {q,co) .
q

What an electron with momentum Ak and spin 0. experiences is

(20)

U,ff(q, co;k) =p&B(q, co)sgn(o. )+u(q)[An, (q, co)+b,n, (q, co)]+ V„(q,co;k) .

With this expression Eq. (18) can be rewritten as an integral equation for Af '-" ( q, co),
k, cr

n- —n
~f(1) ( )

1 k —q/2, cr k+q/2, cr Ucr
elf q~coi ~

k+ q/2 k —q/2

(21)

(22)

The density response of electrons b, n ( q, co) is then given by the solution of the above integral equation through Eq. (11).
Solving for the spin susceptibility, and noting that 6, =6, =0 in the HF approximation, we obtain the following ex-

pression for the exchange correction 6„(q, co):

6„(q,co)=[u(q)II (qco),An (qco),] ' —g ' ' g u(q ')hf'-", (q, co)

k+ q/2 k —q/2 q
'

E„(k—q/2) —E„(k+q/2)
v ~ Pleo —(s~ E~~ ~ )

(23)

The first explicit calculation of 6„(q, co) within the time-dependent HF approximation was made by Devreese, Brosens,

and Lemmens.

III. CORRELATION CORRECTIONS

The full expression for G (q, co) should be obtained from the original formula in Eq. (14) and the definition of the

spin susceptiblity in Eq. (2). We first derive the magnetic moment of the system induced by the magnetic field:

M( q, co)=ps[An, (q, co) —bn, (q, co)] .

Using Eq. (14), we get after some transformations

M(q, co)= II (q, co)psB(q, co)—+m(q, co),

with m (q, co) standing for the many-body corrections
T

m(q, co)= — g u{q') gpg 1

irico —(R /m)(k+ q '/2) q

(24)

(25)

fico —(iii /m)(k —q '/2). q

According to the definition of the spin susceptibility and Eq. (2),

psII (q, co)

M(q, ~)/B(q, co)

Alternatively,

sgn(cr)&f'-" -, , (q —q', q', co) . (26)

(27)

6 ( co)= —[u( )II ( )]
II (q, co)p—sB(q,co)+m (q, co)

The decoupling scheme for bf' ' -, , (q, q ';co) in Eq. (17) shows that the HF approximation does not take care of
correlation effects. We should carry the exact formalism one step further and study the equation of motion for
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bf' ', , ( q, q ', co) in the presence of the external field.
kcr; k 'o'

Following Niklasson, we obtain

2 2

fico k—.q — k '.
q

' 5f( ' (q, q ';co)
m nz k cr; k 'cr'

[f-„(,) k, , ( —q ') f'-„'— , -, , ( —q ')]sgn(cr))(ci)B ( q+ q ', co)

+F, , (q, q ';co)+F, ,(q, q ',co)+F, , (q ', q;co) .
t

(29)

The first two terms on the right-hand side are just the
Hartree terms; they describe how one electron interacts
with an external magnetic field in the presence of another
electron. The equilibrium parts of the two-particle corre-
lation functions f' ' -, , ( q) are related to the pair distri-

ko", k 'g'

bution functions g (r) by

(~/2)2 ka; k 'cr'g e'q' g g f'-' (q)=2g (r) —1,
q k k '

g«(r) being the probability that one spin-cr' electron is
at r if the spin-o. electron is at r=O.

The other terms are the same as those of Niklasson.
The term F' ' -, ,(q, q';co) arises from the mutual in-

ka;k 'o'

teraction between the two electrons. As for the termsF, ,(q, q ';co) and F, , (q ', q;co) in Eq. (29), the
t

many-body aspects of the interaction are displayed by
considering that one particle interacts with all the sur-
rounding particles in the presence of the other particle.
Obviously they should contain the perturbed parts of the

I

three-particle distribution functions. In the limit of large

q or co, these last three terms are of higher order in com-
parison with the Hartree terms. They are irrelevant to our
final problem. Interested readers are referred to the origi-
nal paper.

IV. LIMIT OF LARGE q OR co

As discussed in Sec. III, the equation of motion for
two-particle distribution functions involves the three-
particle distribution functions. This endless chain can be
terminated only in the limit of large wave vector or fre-
quency. At these limits the electrons behave like free par-
ticles. Terms that arise from the interaction of electrons
with the external field dominate over those containing the
Coulomb interaction between the electrons. Consequently
we can neglect the last three terms in Eq. (29).

Inserting the large-q or -co version of Eq. (29) into Eq.
(26) and keeping the leading contributions, we obtain a
simple but exact expression for m (q, co) at large q or co.
After tedious but straightforward transformations similar
to those of Niklasson, we find

u(q)pitB (q, co)
m(q, co)= fiq /m

(fico) —(i)i q /2m)

2

( )( l 1 ) ( 1 ) g g f( )
( )

t

2

( + ') u( + ')
sgn(cr)sgn(cr')f '-',

, ( q ')
u( )

ko", k 'o' (31)

where

1
cc(q, co) =—

2

2
fico+(fi /2m)q fico —(A' /2m)q+
fico —(fi /2m)q fico+(it) /2m)q

(32)

The Lindhard response function II (q, co) reduces to

2 2
~o( tifi q /m

(fico) —(fi q /2m)i
(33)

Now we are ready to discuss the asymptotic form of G (q, co) given by Eq. (28). First we consider the case for which
q is finite but co tends to infinity. Vfe obtain
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lim 6 (qm)= g g g f'-' -, , (q') —'q ' g g sgn(rr)sgn(cr')f' ' -, ,(q')[q (q+q'}l'
q2q~2 k0" k 0' q2(q+q t)2 ko'; k 'a'

k, o k ',e'

In the opposite limit, when ~ is finite but q tends to infinity, we obtain

g

lim 6 (q,~)=, g q,q, g g f'" „,, (q') —g g g sgn(Ir)sgn(o' )f'-„"-„,, (q')
q k, g k ', o' k, cr k ', o'

Using Eq. (30) we can express this result in terms of the
pair distribution functions

lim 6 (q,u)= —0.2.
g~oc

(42)

p 3

( )
I ~ (q'q ) d I" I~q

im q~Q) = 4g~ce ~, q q Vq'

X g [2g (r)-1]

g [2g (0)—1]sgn(o )sgn(cr') .

(36)

(q'q ')', —q —. I ~(-, )
q2q 2

lim 6 (q, co)= —,[4g(0)—1] .
g~oe

(39)

It is worthwhile to point out that when q tends to infin-

Ity, Eq. (23) llas a11 a11alogous solutions fol 6~( q, co):

lim 6„(q,co}=—,
g~ OQ

This relation has been derived by Geldart and Taylor
with a different method. In fact, this value is a special
case of Eq. (39) by noting that g{0)=—, in the HF ap-
proxllIlatlon.

The value of the pair distribution function g ( r ) at r =0
depends on the electron density. Overhauser' derived an
approximate formula

g (0)=32/(.8+3r, ) {41)

where r, is the equivalent sphere radius in Bohr unit.
This relation is in good agreement with recent calcula-
tions. " At metallic densities, 2& r, &6, g(0)-0.1. Put-
ting this value into Eq. (39), we find

Hence,

lim 6 (q, ro)= g [sgn(o)sgn(o )——,][—,——,g~~ (0)]f~ ao 0'~ 0'

=
3 [gal(0)+gll(0)]

3[g»—(0)+gal(0)] 3—
The equilibrium pair distribution functions satisfy

g„(0):—g«{0)—:0 and g«(0) =g„(0)=g(0). Thereby we
obtain the desired final result

It is surprising to see a negative value for 6 (q, co). It
is well known that many-body corrections always enhance
the spin susceptibility for small wave vectors. In view of
the decomposition of 6 (q, co} expressed by Eq. (5), the
negative value means that, for large wave vectors, the
correction due to antiparallel spins exceeds that due to
parallel spins. Therefore, the spin susceptibility for large
wave vectors is suppressed by correlation effects in excess
of the enhancement caused by exchange.

Combining the results in Eqs. (6) and (39) along with
the relations given by Eqs. (4) and (5), we also find the
correlation corrections for parallel and antiparallel spin,
respectively,

lim 6~(q, co) = ——,
' [1—2g(0)]

Q~ oo

lim 6,'(q, co) = —,
' [1—2g(0}] .

g~ao

At metallic densities we have 6~( oo )=——0.13 and
6,'( co ) =-0.4.

V. DISCUSSION

The exact asymptotic values of 6+(q, co) and 6 (q, co)
are important because they offer guidance in constructing
approximate expressions. For small q we know that

6+(q, O) =(1+a) (45)

6 (q,O)=P
F

(46)

kz is the Fermi wave vector. The coefficient a is chosen
to satisfy the compressibility relation. ' In the meta11ic



30 EXACT EXCHANGE AND CORRELATION CORRECTIONS FOR. . . 3163

density regime a—:0. 1.' P is determined from the
theoretical calculations of the spin susceptibility. ' '
P—=0.6, a value which has been confirmed by experi-
ments. "

Unfortunately, the construction of interpolation formu-
las to describe 6+ and G between the q=0 and q = oo

limits is at present just a guess. We cite Fig. 1 of Utsumi
and Ichimaru, ' which displays the wide spectrum of

current opinion regarding G+(q, 0) near q =2kF M. any-
electron theory remains in its infancy.
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