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The range of validity of the simple alloy model for magnetism in transition metals is studied. By
assuming that the local magnetic moments point up or down along a given direction, we analyzed
the stability of configurations with various degrees of magnetic order, i.e., from the perfect fer-
romagnet to the paramagnetic disordered moment state. The electronic structure is solved within

the coherent-potential approximation and for two different model density of states. In particular,
results are presented for the behavior of the magnetic moments, the magnetic phase diagram, and
the Curie temperature. The shortcomings of the alloy model are discussed by comparison with
Hubbard's recent theory of magnetism. It is shown how to extend the simple-alloy-model theory to
include the important magnetic moment fluctuations taken into account by Hubbard.

I. INTRODUCTION then a long-range-order parameter can be defined by

The magnetic properties of transition metals have been
a puzzling subject for a long time. The problem arises
from the fact that these metals present properties that can
be understood on the basis of two completely different
theories, i.e., the band and the localized models. Recently,
this problem has been partially solved by models in which
local moments formed by itinerant electrons in a Hubbard
Hamiltonian are assumed to exist. ' The simplest model
of those is comprised of the assumption that the local mo-
ments point up or down along a given direction. At zero
temperature all the moments point in the up direction,
and as the temperature is raised some of the moments flip
to the opposite direction. Then, the Curie temperature T~
is reached when the number of magnetic moments point-
ing up and down is the same. This is the main difference
with the Stoner model, in which Tc is obtained only when
the magnitude of the magnetic moments vanishes.

In this model, the magnitude of the magnetic moments
depends on the degree of magnetic order and it must be
evaluated self-consistently. Then, in this simple picture,
there are two contributions to the change in magnetization
as the temperature increases; the first one arises from the
fact that the number of magnetic moments pointing in
both directions is changing, and the second from the fact
that the magnitude of the moments itself is also changing.

This model includes only two kinds of magnetic mo-
ments. Consequently, the thermodynamics of the magnet-
ic transition can be treated as in binary-alloy theory. The
simplest approximation is to consider only site probabili-
ties. If p; (i = +,—) denotes the probability of finding an
atom with magnetic moment pointing in the ith direction,

The completely ferromagnetic state corresponds to g = 1

and the moment-disordered paramagnetic state to g=O.
Partially ordered configurations correspond to 0 & g & l.

This model has been applied successfully to a system
with parameters corresponding to iron. The question we
address in this work is as follows: Do self-consistent solu-
tions exist for the whole range of g and for the whole
phase diagram?

Since regarding the ensemble of local magnetic mo-
ments as a fictitious alloy is very useful for the physical
interpretation of magnetisrn in transition metals, it is of
interest to understand the limitations of such an alloy
model. These limitations are investigated below.

Heine et al. studied the conditions necessary for the
existence of a disordered local moment (DLM) phase,
which in our model would correspond to g=0. By com-
paring this condition to the Stoner criterion, they showed
that there are regions where only the DLM or the fer-
romagnetic configuration is possible.

Here, we study the stability of partially ordered fer-
romagnetic configurations. The electronic structure is
solved by means of the coherent-potential approximation
(CPA) and for two-model density of states. We also show
how the energy difference between the completely ordered

(g = I) and the disordered (g=0) states, which can be re-
lated to the Curie temperature, depends on the local densi-

ty of states and on the Hamiltonian's parameters.
In Sec. II we present the model and the calculation.

The results are shown and discussed in Sec. III. In the
Appendix we derive a formal expression determining the
limit of applicability of the simple alloy model.
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II. MODEL AND CALCULATION
p~(~) =—(1—~')'~', (2.6)

We consider the Hubbard Hamiltonian in the unre-

stricted Hartree-Fock approximation

H = g t,j.c; cj +g U ( n; )n; —g U (n;, ) ( n;, ),
(2.1)

where t,z denotes the hopping integral for electronic tran-
sitions between lattice sites i and j, o. is the spin index, U
is the Coulomb integral, c;,c; are the creation and an-
nihilation operators for electrons on site i with spin o,
and (n; ) is the average number of electrons with spin cr

at an atomic site i. In order to compare these results with
those obtained with similar theories, ' we do not take
into account intra-atomic exchange interaction, and we
scale the occupation numbers and the Coulomb integral
by a factor of 5 and —,', respectively, to represent the ef-

fects of a fivefold degenerate band. Some possible effects
due to eg and t2g subbands are discussed later also.

For a system with n; electrons per site

which is similar to the density of states obtained in the
Bethe lattice method' and

' 1/2
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1
1z—
2

(2.8)

This model density of states is asymmetric and has some
similarity to the face-centered-cubic lattice type of
band. "' In Fig. 1 we show these model density of states.

The CPA equations for the elliptic density of states are
discussed in detail in Velicky et al. Here we give only
the equation for pz{co). The Hilbert transform of pz is
given by

n; =(n;, )+(n;, ),
and defining the magnetic moment at that site i by

p, =(n, , ) —(n;, ),
we can rewrite the Hamiltonian in the form

1Hgrjc;cj+ + 2U(ll;+/l;)n;
l)J, O'

+ $ 2 U(n; —p;)n;, —$ —,U(n; —p;) .1 2 2

(2.2)

(2.4)

This function corresponds to the pure-metal case. The
function for the alloy Fz can be expressed in terms of F2
by

Fz(z) =F2(z —X), (2.9)

where X is the self-energy containing the information
about the scattering corrections to the effective alloy
Hamiltonian. Using Eq. (2.9) and the self-consistency
equation

Note that Eq. (2.4), and consequently Eq. (2.1), implies
the assumption that a local moment exists at a site for a
time long compared to the electron hopping time. In the
other limit, one should proceed differently to determine

p.
Now, if we allow that the magnetic moments p; point

only in two directions, p; equal to p+ and p respective-

ly, we can solve the electronic structure in a similar way
to the binary-alloy problem. In this case, there is only di-

agonal disorder and the energy levels for electrons with

spin up and down are given by

e', = —,U(n; —p, ;)

(2.5)

e', = —, U ( n; +p; ),
respectively. The probability of finding an atom with
atomic level e' is p;. %'e have then the case of a binary
alloy with concentration p+(p =1—p+), whose elec-
tronic structure can be solved within the translational-
symmetry-preserving CPA, for example. This approxi-
mation permits the determination of the local moments
without breaking the translational symmetry of the sys-
tem.

In order to see how the results depend on the shape of
the local density of states, we studied two cases that can
b~ solved analytically. We take the well-known elliptic
density of states

AOI'2 ~+A]F2 +A2I'2 +33——0,
where

(2.11)
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FIG. 1. Two input local density of states given by Eqs. (2.6)

and (2.7).

X {z)=e —[e+—X (z)]F (z)[e —X (z)], (2.1O)

one obtains the third-order equation
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Ao ——(z ——,
' —e+)(z ——, —& ),

4AO+z ——,—e~,

A2 ——4A0+2(e~ +a~ ) —4e~,

A3 ———4(z +e e—+ —e ), (2.12)
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Equation (2.11) is solved for real z, yielding either three
real roots or one real root and two complex roots. In the
latter case, the one in the lower-half complex plane is the

physical one. The local Green's function can then be ob-

tained from

0.0
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I I I

0.0 . ' 1.0
/

G' (z) =F2 ~(z) I 1 —[e~—X~(z)]F~ ~(z) )

and the local density of states is given by

p' = ——ImG'
7T

(2.13)

(2.14)
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III. RESULTS AND DISCUSSION

In Figs. 2 and 3 we show results for the local density of
states (LDS) in the DLM paramagnetic phase, i.e., rj =0,
for the p2 model density of states. We show only the LDS
at p sites. The LDS at p+ sites is obtained by inter-

changing cr~ —cr. The parameters used are U/W=0. 7

( W equals half of the bandwidth), n =8.5 electrons (Fig.
2), and n =9.0 electrons (Fig. 3). The self-consistent
values for p+ (= —p ) are 1.44 and 0.94, respectively.

In the former case, due to the large value of p giving rise
to a large exchange splitting, one obtains a gap in the
LBS. In a more realistic calculation, one expects that the
gap will disappear due to s-d hybridization. In all our re-
sults we took the energy units such that 8'= 1.

Once the electronic structure is solved for a given set of
parameters and for a given magnetic order q, the self-
consistency must be carried out. This is done requiring
that

& n; &
= f dao p' (co) (3.1)

and the values for (n; ) used in Eq. (2.5) are equal.
Our results concerning the phase diagram are shown in

Figs. 4 and 5. The results using the elliptic density of
states are displayed in Fig. 4, while those corresponding to
the asymmetric density of states are shown in Fig. 5. In
the phase diagram we show the Stoner condition

Up(E~) = 1

by a solid line. Above this line, a ferromagnetic solution
with g=1 is stable. We show also the condition for the
existence of the DLM phase (dashed line),

UI(EF) =1,
where

EF
I(EF)=——Im f (F ) de .

(3.3)

(3.4)

ENERGY
FIG. 3. Same parameters as in Fig. 2 are used and n =9.0

electrons.

ENERGY
FIG. 2. Local density of states in the disordered magnetic

moment phase (p+= —p ) at p sites, using pz. The parame-
ters used are U/W =0.7 ( W equals half of the bandwidth) and
n =8.5 electrons. The LDS at p+ sites are obtained by inter-
changing o.—+ —o..

as also obtained previously. '
In Eq. (3.4), F is the Green's function for a configura-

tion with p+=p =0. As discussed by Heine et al. ,
above the boundary (3.3), there are self-consistent solu-
tions for finite magnetic moments but in the disordered
state. This condition holds for the instability towards the
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1 ~F
dp;= ——Im f (dG'„—dG', )dc@,

7T 00
(3.5)

0.6-

0.4-%

O.'5-

where G' is given by Eq. (2.13). Assuming now that
dp+ = —dp one obtains that

(3.6)

An analogous expression can be written for dG, ~, ~. Sub-
stituting Eq. (3.6) in Eq. (3.5) leads to the instability con-
dition (3.3).

We also studied the instability assuming that
dp+&dp . Carrying out a calculation analogous to the
one described above, we arrived at the equation

DLM [1—Up(EF)][1—UI(JE,'F)]=0, (3.7)

0.2
5.0 6.0

I

7.0 8.0
I

9.0 IO.O

formation of a single local moment in a paramagnetic

p =0 phase. The instability condition towards the forma-
tion of local moments has also been derived in the
Gutzwiller model assuming a rectangular density of
states.

It is found that the condition for a DLM situation also
holds for the case where we have equal number of mag-
netic moments pointing in both directions. This phase is
physically equivalent to that originally described by Heine
et al. '

The instability condition in this case is obtained from

0.5

&
I =I max

0.5-
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rl
FIG. 5. Results for p&. The same notation as in Fig. 4 is

used.

FIG. 4. Phase diagram using density of states p~. The solid

curve corresponds to the ferromagnetic-nonmagnetic boundary

determined by the Stoner criterion, the short-dash curve to the

boundary between saturated-nonsaturated ferromagnetic state,

the long-dash curve to the paramagnetic-nonmagnetic boundary

given by the criterion of Penn (Ref. 13), and the dashed-dotted

curve to the boundary with respect to formation of single local

magnetic moments in the ferromagnetic state. Here, a refers to
global charge neutrality and b to local neutrality.

which is the product of the Stoner and DLM conditions.
This indicates that one can leave the nonmagnetic state
continuously only by entering the ferromagnetic or the
DLM phase. It is worth noting that the DLM condition
is less dependent on the fine structure of the local density
of states than the Stoner condition.

We compared the energy of the DLM phase, g =0, and
the ferromagnetic phase, q = 1. Systems lying between the
Stoner line (3.2) and the DLM boundary (3.3), on the
right-hand side of their crossing, would be completely or-
dered at all temperatures, while those lying on the left-
hand side would be disordered. The effect of temperature
there is only to reduce the magnitude of the magnetic mo-

ments. However, the DLM phase might not be the con-
figuration with lowest energy. It has been shown' that in

this phase there are ferrimagnetic and antiferromagnetic
solutions.

We investigated at p+ ——1 the limiting behavior of p,

viewed as an impurity in the vast collection of p+ mo-

ments. In Figs. 4 and 5 we show by the dashed-dotted
curve the boundary for the occurrence of p &p, + at

p+ ——1. Clearly this instability with respect to local devi-

ations for the homogeneous magnetization will depend on
the boundary condition on the charge transfer between +
and —sites. For this reason, the calculation was per-
formed with a constant Fermi energy, and by allowing

charge transfer and then by suppressing it via the intro-
duction of an extra shift a of the electronic impurity level

eo ———, U( crp; ~+—n) +a,p; ~=p, determined by

the condition of local-charge neutrality.
In the phase called partially ordered PO, there are self-

consistent solutions for values of the long-range-order pa-
rameter g = 1 and 0(g (g &, where g& ( 1. The boundary
for q~ 1.0 is shown——. These systems would be completely
ordered for 0(T(T&. At the temperature T&, g jumps
to g~. Then, further increasing the temperature, one finds
the system disorders following the normal magnetic tran-
sition.

Looking at Figs. 4 and 5, we see that the magnetic
properties are extremely sensitive to the shape of the local
density of states. Although the qualitative features are
the same in the two cases, in order to apply the theory to
a specific system it is necessary to have a realistic density
of states.

If we assume that one of the two subbands eg or t2~, de-

pending on the crystal symmetry, will lie in the range of
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FIG. 6. Local magnetic moments p — in units of pg as a

function of the concentration x =p+ for an elliptic density of
states and U/8'=0. 49 and assuming local-charge neutrality
{shifting e+). Full curve corresponds to n =8.0 and dashed
curve to n =7.7. pHF indicates the Hartree-Fock value of the
moment.

interest below the Fermi energy, it will suffice to take

only one subband into account as a crude approximation.
Then we must rescale the n axis in Figs. 4 and 5 to the
corresponding occupation number in order to estimate the
influence of subbands to our conclusions.

Figure 6 shows the local magnetic moments p—+ as a
function of the concentration using the elliptic density of
states. Note that for the case n =8.0, the solution

[p+(p+},p (p+)j starting with p+= —p at p+=0. 5

joins at a concentration p+ o & l, another solution which
is unfavorable because it has a higher energy for
0.5&p+ (p+o. The solution p+=p =pHF ——2.0 (HF
represents Hartree-Fock) is valid for all p+ and is also
shown. Notice that for p+ o&p+ &1, pH„ is the only
solution. This behavior is typically found for high occu-
pation numbers and indicates the breakdown of the alloy
model because then there is no continuous solution be-

tween p+ ——0.5 and p+ ——1 except the trivial one pHF.
The range of validity of the alloy model for magnetism is
consequently given by the condition that this anomaly
does not occur for 0.5 (p+ & 1. Figure 6 also shows that
for Fe with U=0.98 eV, half-bandwidth %=2.0 eV,
and occupation number n =7.7, the alloy model has con-
tinuous solutions for p

+—
(p+ ). Within this framework the

Curie temperature for Fe was found to be Tc ——2250 K.
However, using the elliptic band and for parameters ap-
propriate for Ni, U=1.5 eV, %=3.0 eV, and n =9.5

eV, the alloy model has no physical, i.e., no magnetic
solutions at all in the whole range 0.5 &p+ & 1. This does
not happen if one uses p2(m), which is more appropriate
for fcc systems. For p+ ——0.5 we obtain p+(0.5)=0.42
resulting in p+(0. 5)/p+(1}=0.84 as compared to 0.77
given by Hubbard. We roughly estimate kTC for
Ni by taking the difference in energy of the phases
characterized by p+(0.5)= —p (0.5) and p+(1)=pHF,
b, =E(p+ ——0.5)—E(p+ ——1). Then we obtain Tc 630——

F=ag +by + (3.9)

and the Curie temperature Tc is given by the condition
a =0 from where we obtain

kTc=2~E (3.10)

Note, a better treatment of the entropy would decrease
the coefficient in front of hE in Eq. (3.10). Since a proper
treatment of the magnetic entropy is still a major prob-
lem, in the following we use a factor of the order of 1 in

order to estimate Tc.
In an Ising model the internal energy E is proportional

to g . However, in our theory we are calculating E from
the electronic parameters and the coefficient of g near

Tc is not AE but smaller.
Therefore, to estimate Tc we take kTC =b,E, where the

energy is given by

EF
E(p+ ) =p+ g ——f dco ImG;+(co)co

E~
+(1—p+) g ——f de ImG; (co)co—'

(3.11)

where ellipses indicate Hartree-Fock corrections.
The general behavior of Tc as a function of n is shown

in Fig. 7 for the two densities of states p~(co) and pz(co).
While Tc depends sensitively on 8' U, and n, note that
these parameters are determined from band-structure cal-
culations and by fitting the magnetic moment at T =0.
These results for Tc are 1 order of magnitude smaller
than those predicted by the Stoner theory.

We may conclude that the alloy model for magnetism is
valid only in that region of the phase diagram where at

p+ ——0.5 there is a solution with p = —p+ and where at
p+ ——1 'there is in the ferromagnetic phase a single local
magnetic moment p &@+(p+——1). This region in the
phase diagram is bounded by the dashed-dotted curve on
the right and by the Stoner criterion curve from below
(see Figs. 4 and 5). By comparing Figs. 4 and 5, one sees
that the difficulties encountered for cases p+ o & 1 are not
density-of-states effects. For the density of states with the
singularity at the high-energy edge, the situation is even
worse, because the phase-diagram region in which the al-
loy model can be applied is more restricted. It would be
interesting to extend the calculations of Heine et aL and
investigate the occurrence of @impurit&pHF.

There are qualitative arguments' for the existence of
strong short-range order in itinerant magnetic systems.
From our calculation we can confirm this statement at
T =0. A single impurity in a homogeneous ferromagnet-

K as compared with Tc ——1200 K obtained recently by
Hubbard.

That kTc-b, E can be seen by taking the simplest ap-
proximation for the free energy per atom

F= bE—g2+ k T [p+ Inp+ + ( 1 —p+ )»(1—p+ )],
where the spin entropy has been given by the configura-
tional entropy resulting from the fictitious alloy. + can be
expanded as
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1500—

It might be interesting to study whether the validity of
the aHoy model may be extended by corrections to the
Hartree-Fock approximation including the most impor-
tant fluctuations of the magnetic moments. From the
local Green's function g; (e) = 1/(e —a ), where
u = —or(U/2)p;, one finds with the help of the decou-
pling procedure of Hasegawa' for the average Green's
function, dmpping the spin index now,

1000-

500—

I I

7. 5 8.0 8.5 9.0 9.5 10.0

n
FIG. 7. The Curie temperature given by Tc/8'

=[E(p+ ——0.5)—E(p+ ——1)]/k8'as a function of n

ic system means a strong local disturbance of the magnet-
ic order and it tends to destroy the order in its vicinity.
From Figs. 4 and 5 we see that there are large regions in
the phase diagram where a single p cannot exist in a
uniform collection of p+ moments.

The validity of the alloy model for magnetism in transi-
tion metals is thus not so much limited by the choice of
the electronic density of states as it is by the improper
handling of the distribution function for the local magnet-
ic moments. The typical results of p—+(p+ ) shown in Fig.
6 mean simply that p;(p+, pNN, . . . ) has not always a
solution if we approximate the magnetic moments pNN of
the nearest neighbors to i by only p+ or p . However,
solutions will still exist if one allows a distribution of the
pNN determined by p(p)-exp[ —P bE(p)]. Here,
b,E(p) is the energy of the moment p embedded in a
medium with a magnetic moment p.

In the alloy model the moment distribution is given by
a linear combination of two delta functions whose weights
are given for all temperatures by p+ and p and whose
positions are determined by the self-consistent values of
p-. In contrast, in the theory of magnetism in transition
metals by Hubbard' and Hasegawa the distribution
function of the moments, i.e., of the exchange fields, is in-
cluded. Thus difficulties described in this paper do not
appear in those treatments.

The mean value of the local moment, i.e., the magneti-
zation of the homogeneous magnetic medium, attains the
Hartree-Fock value at T =0, at least for high occupation
numbers, due to the very definition of the distribution
function used by Hubbard. This implies that the existence
of a magnetic Hartree-Fock ground state is sufficient to
make the theory valid at all temperatures.

This corresponds to an alloy with concentration

p+ ———,
'

~

I 1+[&a&/(&a &)'/ ]I and P =1—p+ of atoms
with levels e~ ——+(&a &)'/. By using this scheme, the
system can be regarded as an alloy again. Now, the
alloy's energy levels e+ are not determined self-
consistently corresponding to Eq. (3.1), a procedure which
was shown to fail in some cases; instead, they are deter-
mined as averages via p(p) just as the concentration p+.
Here p(p, ) is governed by the energy of the moment em-
bedded in the alloy. This extended version of alloy theory
could be used for treating magnetism also in Ni and alloys
thereof.

The applicability of the simple-alloy model is related to
the occurrence of a double-peak structure in the distribu-
tion function p (p ), of course. A minimum in bE (p ) cor-
responds to a maximum in p(p) and vice versa. Then,
having three extrema in b,E(p) at p;, i =1,2, 3 means that
for a medium with moments P(T) there are three self-
consistent single-impurity solutions p;. On the other
hand, the new boundary, shown in Figs. 4 and 5, is deter-
mined by the condition that at T=0, respectively at
p+ ——I, two single-impurity solutions coincide. This cor-
responds to a situation with P(0)=pHF and p~

——p2 only
giving rise to a single dip in bE(p) at p3 —pHF A
double-peak structure of p(p), triggered by two dips in
bE (p, ), cannot be seen at T =0 but for T)0.

In summary, the alloy model is useful since calculations
in its framework are relatively simple and it permits the
formulation and calculation of important magnetic prop-
erties such as short-range spin correlations and entropy in
a physically transparent manner. Furthermore, extensions
to study magnetisrn in alloys and magnetic impurities are
straightforward. Its limitations are as follows: (i) The al-
loy model can be used if the lifetime of the fictitious alloy
components is longer than the hopping time, i.e., if the
distribution of magnetic moments is well centered around
p, + and p . (ii) The alloy model is valid in the region of
the phase diagram where solutions in the range
0.5 &p+ & 1.0 can be obtained. (iii) The validity of the al-
loy model is limited by the simple moment distribution
consisting of a linear combination of two delta functions.
An improvement to the simple alloy model was
discussed —how to take into account a distribution of lo-
cal moments going beyond the Hartree-Fock approxirna-
tion. Obviously, we are stilL far from understanding the
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puzzling magnetic properties of transition metals and

many more studies of these materials must be performed.
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resulting in

Bf c)g

Bn; an+
Bg

Bn.;

E
1=U ——Im f dco[G~+(co)]~

where EF is the Fermi energy of the medium.
The condition for the coincidence of two solutions

n;+, n; is fulfilled when both curves touch each other.
This can be expressed as'

APPENDIX

The homogeneous medium, p+ ——1, is described by the
Green's function

1 E~
X ——Im f dco[G; (co)]2,

F (co)=F (co e~), —

with

e- = —,U(+ILc+n) .

The impurity Green's function is given by

G; (co)=F (co)/[1 (e; e)F —(co)],—

with

which gives the new boundary U/W(n) for the case of
global charge neutrality.

The equivalent condition for local charge neutrality is
achieved by introducing a shift a to the local impurity po-
tential which is determined by n; =n

e;= —,U(+p;+n)+a .

The equations for p; and a are given now by

e,
—= Un;

+
The impurity occupation numbers n;

— are determined

then by the equations

f =pt Im f dco[G;+(co) —G; (co)]=0,

1f =n;+ — ——Im f dco G;+(co)=0, g =n — ——Im u 6&+ co +6; co =0.

1
g =n; — ——Im dco6; (co)=0,

7T
Using the same arguments as before, we obtain

1=—U

E 6F
Im f "dco[G;+(co)] ——Im f dco[G; (co)]

EF
Im co 6; co + 6 co

2 7T

~J. Hubbard, Phys. Rev. 8 19, 2626 (1979).
J. Hubbard, Phys. Rev. 8 20, 4584 (1979).

3J. Hubbard, Phys. Rev. 8 23„5974 (1981).
4H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979).
5J. L. Moran-Lopez, K. H. Bennemann, and M. Avignon, Phys.

Rev. 8 23, 5978 (1981).
V. Heine, J. H. Samson, and C. M. M. Nex, J. Phys. F 11, 2645

(1981)~

7C. M. Sayers, Z. Phys. 8 46, 131 (1982).
P. Soven, Phys. Rev. 156, 809 (1967).
B.Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,

747 (1968).
L. M. Falicov and F. Yndurain, Phys. Rev. B 12, 5664 (1975).
J. A. Verges and F. Yndurain, J. Phys. F 8, 873 (1978).
F. Mejia-Lira, K. H. Bennemann, and J. L. Moran-Lopez,

Phys. Rev. 8 26, 5398 (1982).
D. R. Penn, Phys. Rev. 142, 350 (1966).

4J. C. Stoddart and N. H. March, Ann. Phys. (N.Y.) 64, 174
(1971).

~~L. M. Rath, in Proceedings of the International Conference on
the Physics of Transition Metals, Toronto, 1977, edited by
M. J. G. Lee, J. M. Perz, and E. Fawcett (IOP, London,
1978), p. 473 ~

J. Dorantes-Davila, J. L. Mora, n-Lopez, and M. Avignon,
Phys. Rev. 8 27, 575 (1983).

7H. Capellmann and V. Vieira, Solid State Commun. 43, 747
(1982).

~~H. Hasegawa, J. Phys. Soc. Jpn. 49, 963 (1980).
R. Linke, J. Phys. (Paris) 35, L203 (1974).


