
PHYSICAL REVIEW B VOLUME 30, NUMBER 6 1S SEPTEMBER 1984

Local polaron effects in mixed-valence systems: Exact model calculation
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The Anderson impurity model including a linear coupling to a local boson mode is solved exactly
in the large-degeneracy limit for infinitely large f-f Coulomb repulsion. Ground-state properties
and the f-level Green's function are discussed. For a small boson frequency coo, two different types
of mixed-valence behavior occur, dependihg on the strength v of the electron-phonon coupling. In
the weak-coupling limit the "lattice" shows small fluctuations around its average position, while for
a strong-coupling u there exists a narrow regime of energies, ef, of the f-level where mixed-valence
behavior with large mean-square "lattice" deviations occurs. For finite phonon frequencies ~o,
quantum fluctuations smooth out the first-order transition occurring in the limit coo~0. In the
weak-coupling limit, the mean-field approximation of the electron-phonon coupling, leading to a re-
normalization of the f-level position, provides a good description of the ground-state properties and
the f-level spectrum. In the strong-coupling mixed-valence regime, some ground-state properties
can be interpreted in terms of a renormslized f-electron —conduction-electron coupling
b, ~kexp( —U/coo)—:Z. This renormalization does not occur for the width of f-level peak in the
one-particle Green s function. In this regime, the f-level spectral function can be described as a su-

perposition of two spectra. The relative weight of these two spectra varies rapidly when ef varies of
the order Z in the transition regime, while the individual spectra change little. The large-boson-
frequency limit {"plasmon case") is also discussed with special emphasis on the renormalization
occurring in this limit.

I. INTRODUCTION

The strong correlation between the f electrons in
mixed-valence systems' is responsible for the fact that
the electronic properties of these systems cannot properly
be described in the one-particle model. Theoretical pro-
gress has therefore come mainly from the study of model
Hamiltonians such as the Anderson impurity model or the
Anderson lattice. An important progress in the treat-
ment of the Anderson model was the realization by
Ramakrishnan and Anderson that for the calculation of
thermodynamic properties there is a small parameter
1/Nf, where Nf is the degeneracy of the f level. We
have used similar ideas in the calculation of spectral func-
tions ' related to various electron spectroscopies and have
presented some exact results in the limit Xf~oo. %'e
have applied this theory to Ce compounds and, by com-
parison with experimental data, we have obtained esti-
mates for the f-level occupancy nf and the coupling 6 of
the f level to the conduction states. ' Recently, several
other authors have proposed methods for obtaining sys-
tematic corrections in 1/Nf. Using the Bethe-Ansatz
technique some exact results also have been obtained for
finite Nf for the case of an infinitely broad valence band
with a constant density of states. As the coupling 5 has
usually been assumed to be comparable to the relevant
phonon frequencies, and because there is a large difference
in the ionic radii associated with the two valence states,

the question of strong f-electron —lattice coupling has
been considered by various authors. ' ' All these studies
use Anderson-type Hamiltonians coupled linearly to bo-
son mode(s). Similar models have been used in the
description of chemisorption on metal surfaces, where the
boson is usually considered to be a surface plasmon. '

A formally rather similar problem is the vibration-
induced narrowing of electron scattering resonances near
threshold. ' Sherrington and von Molnar' concluded
that, for low-temperature properties there is a large pola-
ronic reduction of the f-level —conduction-electron cou-
pling, b.~A exp( —U/too), if the electron-phonon coupling

is sufficiently large that the "relaxation energy"
U =A, /coo is much larger than b, and too. This result is
obtained using perturbation theory in the f-
level —conduction-electron coupling. Hewson and
Newns' presented the exact (numerical) solution to the
impurity-type model with coupling to one boson mode
and with a single electron in the system. In a later paper,
Hewson and Newns removed the restriction to a single
electron and proposed variational Ansatze to describe the
many-electron system. Concerning the renormalization of
5, they found' more restrictive conditions than Sher-
rington and von Molnar. ' A very detailed discussion of
phase diagrams for these types of models was given by
Haldane, where both the f fCoulomb repulsion a-nd the
electron-phonon coupling are treated in a mean-field ap-
proximation. The strong correlation between the f elec-
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trons and the large degeneracy Nf has been taken into ac-
count in a variational Ansatz proposed by Kohn et al. '

In this paper we show that the exact solution to the im-

purity model with a linear coupling to one boson mode
can be obtained in the large de-generacy (Nf ~ ao,
Nfb, =b =const) limit for infinitely large f fCo-ulomb
repulsion. In Sec. II we introduce the model and reduce
the exact ground-state calculation to a pure-boson prob-
lem in Sec. III. The exact result for the part of the f-level
Green's function that describes valence photoemission is
presented in Sec. IV. To obtain explicit results for the
ground-state properties and the f level, Green's-function
tridiagonal matrices have to be inverted numerically. In
Sec. V the limit of a small boson frequency, called the
"phonon case," is discussed. To obtain a better under-
standing of the exact numerical results the (Born-
Huang' ) adiabatic approximation is used to obtain ap-
proximate analytical results for the ground state and the
spectrum. Phase diagrams of the f-level occupancy in the
(ef, u) plane are presented, where ef is the (bare) f-level
energy. In the limit coo~0 the adiabatic theory produces
the exact result: At a critical point (v,„„(ef),„,) with
u,„,-b„a critical line u, (ef)-ef starts, across which
there is a first-order transition from nf occupancies close
to 1 to values close to 0. For finite frequencies cup, quan-
tum fluctuations smooth out this discontinuous transition.
For v &&v,„., the transition then occurs on an energy scale
b, exp( —u/cop), in agreement with the conclusion by Sher-
rington and von Molnar. ' This renormalization does not
occur in the width of the effective f level in the f-level
Green's function. The effective f-level position stays close
to e= —u, i.e., far below the Fermi energy (on the scale of
b,), during the transition, and only the overall weight of
the spectrum is reduced. In the narrow mixed-valence re-
gime near v, (ef ) the spectrum can be described as a super
position of two spectra. Both spectra are "insensitive" to
changes of ef by an energy of the order b, exp( —u/cop),
while the relative weight factors change very rapidly with

ef. These results show quite clearly that the question of
the renormalization of b, depends strongly on the property
studied.

The mixed-valence behavior for v & u,„, and u )v,„, is

very different. For u &u,„, the "lattice" is in an inter-
mediate position with fluctuations that are small com-
pared to the extremes corresponding to the two pure ionic
configurations, while for u & v,„, there are fluctuations
comparable to the difference in the pure ionic radii. In
Sec. VI we discuss the limit of large boson frequency p]p,

called the "plasmon" case. In agreement with conclusions

by Hewson and Newns' ' for the single-electron case, we
find that the question of the renormalization of 4 depends
strongly on the ratio coo/B where B is the conduction-
band width. In Secs. VII and VIII, a short discussion of
the cases 1 —nf «1 and nf «1 are given. In Sec. IX we
summarize our results and discuss what are "realistic" pa-
rameters. In two appendixes some of the details of the
calculations are given for the limits 8~0 and oo.

II. MODEL

As discussed in the Introduction, we treat the (single-
impurity) Anderson model with an additional coupling to

a local boson mode. We use the partial-wave representa-
tion for the conduction electrons and introduce a com-
bined index v=(m, o ) for the orbital and spin degeneracy
(v= 1, . . . , Nf ), which are equivalent in our model,

+ g efn„+ g Vk(fk g +H.c. )
k, v v k, v

+U g n&n„+top b+j],(b+bt) gn (2.1)

Here, pk„denotes the creation operator of a conduction
electron with the wave number k, and p„ that of an f elec-
tron. The hopping between the f level and the conduction
states is described by Vk and the Coulomb interaction be-
tween the f electrons is given by U. The energy ef of the
f level obtains an additional v dependence if an external
magnetic field is introduced or if one wants to simulate
spin-orbit splitting. The operator b creates a local pho-
non mode with the frequency cop. The last term in the
Hamiltonian (2.1) presents a linear coupling of the oscilla-
tor to the total occupancy of the f level. Similar model
Hamiltonians have been used previously in the discussion
of local polaron effects in mixed-valence system. '

The Hamiltonian (2.1) conserves the number of electrons
corresponding to a given value of v,

PA'. + g PkA'k
k

(2.2)

In the following we will discuss the limit when the de-
generacy Nf of the f level goes to infinity. To obtain a
proper limit for various physical quantities, the coupling
between the f level and the conduction electrons has to be
of the form Vk

——Vk/(Nf)' with Vk independent of Nf.
In the limit U~oo, i.e., when double and higher occu-
pancy of the f level is suppressed, it is possible to con-
struct the exact ground state for Nf ——oo.

III. GROUND STATE: GENERAL RESULTS

=Ep IB;), (3 2)

where the
I
8; ) = &i

I
Ep) are boson states and

nf = g„p li is the number operator for the f electrons.
In the following we choose basis states

I
i) which are

eigenstates of nf. Then (3.2) simplifies to

g &&'
I
H ] Ij &+Ha(n )&j ] I

+j & =Ep
I
+ &

l

In the Schrodinger equation for the ground state we
split the Hainiltonian (2.1) into three parts,

(H ]+Hj]+H ] j]) I
EQ) Ep

I
EQ) (3.1)

an electronic part, the free-boson part, and the electron-
boson interaction. The ground state

I Ep) is a state in
product space, M,~A ~. We now introduce an orthonor-
mal set

I
i ) of the electronic states which are complete in

~,]. Then (3.1) can be written as

X l&] IH ] I J &+Ha&;, +~(b+b')&]
I nf li &1 I &j &

J
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with

Hg ( n; ) =boob tb+ kn; (b +b t), (3 4)

{H (o)—I'[ef —&E+H (1)]I IBo&=DE IB ), (3.14)

with AE =ED —ED and

@=1 k gkF
(3.5)

where n;=(i
I nf li) is a c-number (0 to 1). The cou-

pling between the
I BJ ) then is only due to the electronic

off-diagonal elements (i
I
H, & I

j). The construction of
the electronic basis set now proceeds in complete analogy
to the case without the boson mode, which we have
presented earlier. ' We first introduce a state

1(z)= g I Vk I

'

kgkF
(3.15)

(3.16)

IE.&= I»- X
~k

Ik) IB,) .
ef &F +—Htt(1) —ek

where all conduction states below the Fermi energy are
occupied and the f level is empty. This state couples via
H, 1 to states

To determine the ground-state-energy shift hE one must
solve Eq. (3.14}. To obtain a more explicit form of this
equation, we introduce the eigenstates

I
n )tt of Htt(1),

(3.6) HB(1)
I
n &B neo —

I
n &B

Q)o
(3.17)

with one f electron and one hole below the Fermi energy.
For U = 00, these states only couple (apart from coupling
to

I
0)) to further states,

I~,k)= „, gy„'„1i„„ lo),
(Nf )'~' (3.7)

(0 IH, i I 0) =Eo,
& k IH.i I k'& =5kk «o —ek+ef },

(3.g)

(3.9)

with one electron above the Fermi energy (a & k~) and one
hole (k(kz}. The matrix elements of H, ~ with these
basis states are given by

Multiplying (3.14) to the left with e (n
I

leads to an in-
finite set of coupled equations for the coefficients
b„=—~(n IBo),

A2 A,
2

n coo+ —n coo b~
COO Q)0

—AF. —P gf —AE—

(V n b, „,+V'n+1b„+i)=0. (3.18)

Owing to the tridiagonal form' 's of the matrix cou-

pling the b„, it is possible to solve these equations numeri-
cally even if one has to go to very large n before the equa-
tions can be truncated. Numerical results will be present-
ed in Secs. V and VI. In the variational Ansatz used by
Kohn et al. ,

' the boson states

(oIH„lk)=vk, (3.10)

IB )= IB,)
ey —AF. +Hg(1) —ek

(3.19)
& k IH„ l, k '& =s„,, v„)(Nf)'",
(a, k

I
H, i I

a', k') =5kt, 5„„(Eo ek+e„) . —
(3.11)

(3.12) are replaced by ak I
A ), where the ak are c-numbers and

I
A ) is a (variational) boson state independent of k. This

Ansatz therefore leads only to the exact solution in the
narrow-band limit 8~0.

To obtain a better understanding of the nature of the
ground state, it is useful to calculate expectation values.
In particular, we have calculated (Eo

I nfA IEo) and
(Eo I

(1 nf )A
I
Eo—) where A is an arbitrary boson

operator. Using (3.16) one obtains

&Eo
I
(1—nf }A IEo &

= g b~ ~&m
I
A

I
n &a b (3.20)

Eo
I
"fA IEo&= —g(b ) a&n I

A ln&a I"(&+n~o)

For arbitrary large but finite systems (i.e., a discrete set
of ek), the total Hilbert space of the problem separates
into disconnected parts in the limit Nf ~ ao if we choose
Vk ——Vkl(Nf )' with Vk independent of Nf From Eq..
(3.11) we see that the set of states { I

0),
I
k) I is discon-

nected from the rest of the electronic Hilbert space in this
limit. The same would happen if instead of starting from
IO), we start from an other state which already has

electron-hole pairs present. As
I
0) has the lowest energy

to start with, the electronic basis set { I
0), I

k ) I leads to
the exact ground state in the limit Nf +no . With—
(3.8)—(3.10), Eq. (3.3) then reads

[Eo+Ha(0)]
I
8o &+ g Vk

I
Bk & =Eo

I Bo&
k

(3.13)

—g b ti(m IA In)~b„

Vk
I
Bo &+[Eo+ef ek+~a(1}] I Bk & =Eo

I Bk—& .

After eliminating
I Bt, ), one obtains an eigenvalue equa-

tion for
I
Bo ) only,

1(5+ntoo) —I (5+mtoo)
X

(n —m)too

(3.21)
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with 5=eI b—E —A, /coo and I' '(z) the derivative of I (z)
with respect to z. To obtain expectation values of pure-
boson operators, one must simply add the two results.
The f-level occupancy, nI is obtained by setting A = 1 in
Eq. (3.21).

The nature of the ground state strongly depends on the
coupling strength A, and how the oscillator frequency coo

compares to typical electronic energies in the problem. In
the limit of "small" coo ("phonon case"), as well as in the
limit of very large coo ("plasmon case"), it is possible to
obtain approximate analytic solutions to (3.14). It is
therefore useful to present the exact numerical results for
both limits separately and to compare them with the ap-
proximate analytical results. This is done in Secs. V and
VI. In the next section we derive the exact result for the

I

part of f-level Green's function which describes photo-
emission from the f level.

g~ (z)=N~(Eo g„
1

V. ED) .
z —Ep+H

(4.1)

With the use of our result for the ground state (3.16), this
can be written as

IV. VALENCE PHOTOEMISSION:
GENERAL RESULTS

Photoemission from the valence electrons is an impor-
tant tool for studying electronic properties of mixed-
valence systems. %e therefore present the exact Xf~ 00

result of the part gI of the f-level Green's function
which describes photoemission from the f level, '

gI~(z)= g Bo (k, v
I
G(z)

I
k ', v) 8o

eI b.E +H—z (1)—ek eI bE +H—g(1)—ek
(4.2)

where the summations are restricted to k, k' (kz,

I
k v&=4k

I
o& (4.3)

I

[z bE ek —ek +—eI—+H~(1)](k,v;k"
I
6

I
k', v)

+ Vk-(k, v
I
6 Ik', v) =0.

6(z) =(z —Eo+H) (4.4)

Here we have replaced the square root appearing in (4.7)
by 1 because we only discuss the limit Xf—+oo. These
equations can be easily solved and one obtains

To evaluate the resolvent matrix element (k, v
I
G

I
k ', v),

we start from the identity

( k, v
I
(z Eo+H)G (—z)

I
k ', v) =5kk ~,

k, v
I
G(z)

I
k ',v)

= [z bE ek+H~—(0)—
r[z bF. +—~I &—,+H, (I)]] '5,„, . -

(4.8)

g P. Pk' 'fk Io&.
(NI 1)', (~„)—

(4.5)

The coupling to the states with two holes in the "v
channel" can be neglected in the limit Xf~ oo. The cou-
pling of the states (4.5) to states different from the states
(4.3) goes to zero in the limit N~~no. With the matrix
elements

and insert those basis states between H and 6 (z) which in
the limit NI~ao couple via H to k ', v). Analogous to
the case without phonon coupling, ' these are the states

where we have introduced the abbreviation

(4.9)

If this is inserted into (4.2) we have reduced the calcula-
tion of gI (z) to a pure-boson problem,

@(')= X I
I'kl (Ilolik [z ik ~f 7(5+b

k (kg

—1(z ik)] '&k 'I&—o&,

hk ——ok+ b.E eI Hg(1) . — — (4.10)
& k v

I

H
I
k ' v & =5kk [Eo &k+H~(0)]—

1/2
Nf —1

&k,vIH
I

k', v;k "&=5„„
f

(4.6)

(k,v;O'IH Ik",v;k"')
0=5kk-5k k [Eo—ek ek'+FI+H~(l )], —

this leads to a system of coupled equations

[z bE &k+HB(0)]&k, v
I
6

I
k '

v&

+ g Vk-&k, v;k"
I
6 Ik'v&=5,„,

k"
(4.7)

To obtain an expression for gI (z) suitable for the numeri-
cal calculation one inserts the complete set of eigenstates
of H~(1), Eq. (3.17), in the matrix element of (4.9). Then
one has to invert a tridiagonal matrix for every value of z.
In the limit A, ~O,

I
Bo)—+ IO)z, and gI (z) properly

reduces to the exact Xf~oo result without coupling to
the boson presented earlier. ' For the zero-coupling case
(A, =O), there is an exact relation between the spectral
function pI(e) =Im[gI (e—iO]/m at the Fermi energy e~
and the locally displaced charge, which, for a broad
valence band, can be expressed in terms of the f-level oc-
cupancy nf. Below, we generalize this relation to finite
electron-boson coupling, A, . This can be done starting
directly from the exact (NI = oo ) solution (4.9).

A more transparent procedure is to use the spectral rep-
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resentation for pf(e) =Im[gf (e —i0)]/m,

Pf(~) Nf g I &Ek, v, n I fv I
Eo & I

~(e' (Eo Ekv, a

(4.11)

where the
I
Ek„' ) are the exact eigenstates of the system

with X—1 electrons, which can be constructed in analogy

to the procedure for the ground state
I
Ep & described in

Sec. III. The only difference is that we have to use the

states
I
k, v) =gk„ I

0) instead of
I
0) as the basic elec-

tronic state to construct the eigenstates. The lowest state

for each of the resulting sets of eigenstates is denoted by

I

E ). Apart from correction terms which vanish in
kv, 0

N —1 N
the limit Nf —vao, I Ekv P )~gkv IEP ), i.e.,

1(EN 1
I @ I—EN) (EN

I
@f y I

EN) 1+0
f

(4.12)

and Ek„p' ~Eo ek. We—call that part of pf (e) in (4.11}
which results from taking only the a=0 state for each
k, pf (E) Usll.lg

&Eo I PkA" IEo &=&Bo IBk&/(Nf}'"

and (3.13), we obtain

pp(Ep) =conf lb, . (4.16)

This is the Nf +oo—version of the generalized Friedel sum
rule for our model. It should be obvious from the discus-
sion leading to Eq. (4.14) that this sum rule is not a very
useful relation if E&p is much smaller than the relevant
electronic energies and the difference pf '"(E) pf '—(e) is
not small compared to pf (e}. A detailed discussion of
the full spectral function will be presented in Secs. V and
VI.

V. "PHONON" CASE

In this section we discuss in detail the limit of small bo-
son frequency cop«b, and couplings A, such that we are
near the adiabatic Iimit in which the electrons adjust to
the motion of the oscillator instantaneously. Before we
present exact numerical results for this limit, we give an
approximate solution in the spirit of the Born-
Oppenheimer approach for the description of the coupling
of electronic and nuclear motion. ' For that purpose it is
useful to return to the spatial coordinates of the oscillator
and write the Hamiltonian in (3.4) as

H=H ~+P /2m + i cx —cop/2+ (2mcop) M nf

For a broad valence band with a constant density of
states, we therefore obtain with 6=ImI,

p"'( )= y I (B, I
B„)I

'5( — ) =H(x )+p /2m, (5.1)
k (kf

1 Iml (e—i0)
0 0e—h) 7T

(4.13)

with h i Hq(1}+ef——bE. Near the —Fermi energy this is
the only contribution of pf(e). The energy range over
which pf(e) and pf '(e) coincide is at least as large as
the energy separation between the ground state

I
Bp ') ( =

I
Bp) ) and the first excited state

I
Bp" ) which

one obtains by solving (3.14). As discussed for the "pho-
non case" in Sec. V this energy separation is extremely
small for a small range of ef values if U =A, /cop is large.
For these parameter values, (4.13) presents pf(e) only in
an extremely small energy range below e~. It is then
necessary to use

Pf' (e')=Pf (&).(""...,
'. .. "")

ImI (e+Eip)
(4.14)

where Eip (bE) i (bE)o is ——the lowest excitat—ion energy
to be obtained from (3.14). The f-level occupancy

nf (Eo
I nf I

Eo) can be expressed as

nf= g &BklBk&= f«—
k &kf

where c =mcoo is the force constant. It is useful to intro-
duce a new coupling constant X=A, /coo since X=const1/2

corresponds to a fixed value of the relaxation energy. The
electron-phonon —coupling term in (S.l) is then given by
V2c Ax nf If .for .given c and A, the mass m goes to in-
finity, the kinetic-energy term can be treated as a small
perturbation. Replacing the operator x in (5.1) by a c-
number x, we write

H(x) =H,((x)+ —,'cx ——,
' (c/m)'~2, (5.2)

where H, ~
is of the same form as H, ~ but with an x-

dependent f-level position Ef(x),

ef (x) =ef + (2m cop)
' (5.3)

We now define the adiabatic electronic eigenstates

I
4„(x)),

H,i(x)
I
@„(x)) =E„(x)

I
4„(x)), (5.4)

and expand the exact ground state following Born and
Huang as'

(x IEo) =gy„(x) Ie„(x))
n

=Pp(x)
I
4p(x)),

(5.5)

(5.6)

where Pp(x) obeys the Schrodinger equation

d2

27?l dx
+Eo(x)+ ,' cx' ,' (c/m)'" yo(x)———

ImI (e—i0)
X (4.15) =~oPo(x) . (5.7)
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With the variational Ansatz (5.6), the ground-state energy
is given by

tential can be written as

np —nf (ef 2vnp ) (5.14)

1 , ~~'o ~C'o
Ep ——ep+ Jdx I Po(x) I2' Bx

(5.g)

In this paper the "adiabatic approximation" means the
form (5.6) introduced by Born and Huang. ' This adia-
batic approximation is different from the so-called "crude
adiabatic approximation" in which, instead of (5.6), one
uses

This is exactly the same equation for no as the equation
for &nf &

'""' in a mean-field approximation concerning
the electron-boson coupling. The function nf(u) is a
monotonic decreasing function of its argument. Frotn
(5.14) we can infer that the curves of constant np in a
(ef, v) plane are straight lines v=const+ ef/2np F.or a
qualitative graphical solution of (5.14), it is useful to work
with the variable u =sf —2Uno, i.e.,

&x
I
Ep & =yp(x)

I
Co(xp) & —(1/2v)(u ef—)=nf(u) . (5.15)

with x fixed to some value xp in the electronic state. In
their paper, Kohn et ah. ' use the term "adiabatic approx-
imation" with the meaning crude adiabatic approxima-
tion. In the crude adiabatic approximation the ground
state

I
Eo & is described as product state

I
iI)p&

I
'Iip(xp) &,

while, for the (Born-Huang) adiabatic approximation
(5.6), this is not the case. To proceed, we first have to cal-
culate the adiabatic electronic ground state. Using the
same arguments as in Sec. III, the exact result in the limit

Ny~ ao is of the form

A plot of nf(u) is shown in Fig. 1 for a constant con-
duction density of states. The energy scale is determined
by ~=lmI (e—i0) (e&0). The absolute value of the
slope of nf(u) has a single maximum occurring at nf
(as discussed in Appendix B). For small electron-phonon
coupling, i.e., small v, a unique solution to (5.15) exists be-
cause the negative slope of the straight line intersecting
nf(u) is larger than the maximal negative slope of nf(u)
As v is increased, multiple solutions to Eq. (5.15) first
occur for a critical value v,„, determined by the max-
imum negative slope of nf(u) As.traight line through
the inflection point nf(u) having a slope less negative
than that of nf(u) produces three solutions: The solution
with nf —,

' t——hen corresponds to a maximum of Vp(x),
while the two new solutions present minima of Vp(x).
This follows from the fact that Vp(x) is dominated by the
term —,'cx for x~ac, or, by calculating the second
derivative V"(xp), by (5.29). For v & v,„, there is a finite
interval of ef values for which double minima occur. At
the lower edge of the interval the "large" np miniinum is
the absolute minimum, while at the upper edge the small

no minimum is the absolute minimum. At an intermedi-
ate ef value, which can be determined by a Maxwell con-
struction of equal area under the straight line and nf(u)
between the two minima, the two minima are degenerate.
At this value of n p there is (in the limit m ~ oo) a discon-

(5.9)

where

KE(ef (x) )=Ep(x) Eo—
is determined by

(5.10)EE(ef(x)}= —I'[ef (x)—AE(ef (x)}],

A(x) =[1—nf(ef(x))]'~

with

nf {ef(x) ) = & ep(x)
I nf I

ep(x) &

Iso(x)&=~(x) Io& —g ef x —AE ef x ek—

a normalization factor.
In the ground state the oscillator shows zero-point os-

cillations around the deepest minimum of the potential,

1.0—

Vo(x) =Eo(x)+ —,
' cx', (5.11)

provided this minimum is nondegenerate and the mass is
sufficiently large. The position xp of the minimum is
determined by setting the first derivative of the potential
equal to zero. Using the Hellmann-Feynman theorem and
units such that (2m cop)' = 1, this leads to

xp = —(2A, /top }nf(ef + )IJcp )

This can be compared with the exact relation

(5.12) 0.0 -5
I

0
c"f Tt;/8,

& Eo I
x

I
Eo & = (2~/rpo) &Eo I nf I

Eo &

which follows from &Ep
I
[(b b), H] IEp&=0. —Note

that with the units chosen above, x =b +bt. Introducing
a new variable np by xp ———(2A, /rvp)np and v=A. /coo
=A, , the condition for the minimum of the adiabatic po-

FIG. 1. f-level occupancy as a function of the f-level posi-
tion for a constant conduction-band density of states in the limit
of zero electron-phonon coupling (A, =O). [See (83) for the defi-
nition of ef.] The intersection points with the straight lines

( v & v„———;v & v„———) give the f occupancy in the
mean-field approximation for the electron-phonon coupling.
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In Fig. 3 we
diagram in the
valence regime"

of no This is . shown in Fig. 2 for the
limit (for a detailed discussion, see Ap-

show the corresponding "m = oo" phase
(ef, u) plane. It shows that the "mixed-
shrinks drasically for increasing u. If one

Ef/V
FIG. 2. {a}Adiabatic ground-state potentials Vo as a function

of the dimensionless variable no ———x coo/2A, for the zero-

bandwidth case. (b) Exact results for the f level occupanc-y as a
function of the f-level position in the zero-bandwidth limit. As

v &U,„„the variation of nf with ef becomes discontinuous in

the limit coo~0.

would define this regime, e.g. , by 0. 1 & nf & 0.9, then the
mixed-valence regime would shrink to the critical line
above a certain v value. For finite mass m, quantum fluc-
tuations prevent the discontinuous change of nf. This is
shown in Fig. 2(b), which shows exact numerical results

using (3.14) for different values of coo, i.e., m. For fre-
quencies coo comparable to the relevant electronic energies,
there is a smooth transition from nf values of order one to
small nf values. As coo is decreased the exact result ap-
proaches the discontinuous I—+oo result very rapidly.
The energy range over which the transition occurs is
determined by the bonding-antibonding splitting of the os-

cillator in the degenerate wells. In the units we use the
zero-point fluctuations in a single well are of order unity.
The separation of the wells follows from (5.12) and is of
order (u/coo)'~ . For u & u,„, the bonding-antibonding
splitting contains a factor exp( —a u jroo), where a is of
order one. This explains the rapid approach to the
m ~ ao (roc~0) first-order transition.

In Fig. 4 we show an exact phase diagram for a finite
bandwidth 8 and a typical phonon frequency coo. For the

hopping parameters Vk we use

where 28 is the total bandwidth and the Fermi energy e+
is set equal to zero. For this value of coo the drastic
shrinking of the mixed-valence regime with increasing u

shows up in the exact solution. In the impurity model
studied in this paper the occurrence of mixed-valence
behavior therefore appears highly improbable for
v ~&v,„,. In a more realistic model, on the other hand, a
mechanism may exist which pins the f level to that
mixed-valence regime. The effect of the quantum fluctua-
tions which suppress the first-order transition can already
be understood within the adiabatic approximation (5.6):
The oscillator wave function Po(x) changes continuously
from being concentrated in one potential minimum or the
other. A rigorous description of this effect can be ob-

tained by considering the exact probability distribution of
the oscillator coordinate,

p(x)=(EO
~

5(x —x)
~

Eo) =(Ec
~

x)(x
~
Eo), (5.16)

3.0

3—

0
2

2.0—

~l

0.9,,"'
I

-2 -1 0 1 2 3
a t/IV I

FIG. 3. "Phase diagram" for the f occupancy in the (ef, u)
plane. The result shown is for the zero-bandwidth case in the
llmlt 620~0.

1.0—

0.0

Kf
FIG. 4. Exact "phase diagram" for the f occupancy for

B =2, 6= 1, and coo ——0.02 eV.
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po(x)=(Eo ~(1—nf) ~x)(x ~Eo) (5.18)

where po(x)dx describes the conditional probability for
the nuclear coordinate to be in the interval [x,x+dx]
knowing that the f-level occupancy is zero. The total
probability for the "lattice" being in the left-hand well is
strongly correlated with the occurrence of zero f occupan-
cy. The exact results for p(x) and po(x) can be easily un-

which can be evaluated using Eqs. (3.19) and (3.20). It
follows from (5.13) that the first moment of p (x) is deter-

mined by the exact f-level occupancy,

f" xp(x)&x = —(2&&roo)&Eo
I +f IEo& .

Figure 5 shows the adiabatic potential-energy curve as a
function of n = —(coo/2A, )x for the finite-bandwidth case.
The parameters are chosen such that the minimum to the
right (n =0.98) is the deeper one. In the limit coo~0 one
is therefore in the "spin"-fluctuation limit. The figure
also shows the exact probability distribution (5.16). For
ioo ——0.075 eV, the "lattice" is still essentially confined to
the right-hand well and the exact f-level occupancy is
0.952. For the same value of U, but for coo=0. 1, the quan-
tum fluctuations change the model qualitatively: There is
almost an equal probability of finding the "lattice" in
either well and the occupancy of the f level is 0.565. This
mixed-valence behavior results from a highly correlated
motion of the oscillator and the f occupancy. This is
shown clearly by the dotted curve in Fig. 5, which shows

derstood by assuming that the adiabatic approximation
(5.6) for the ground state is a good approximation. From
(5.6) one obtains the approximate relations

and

p' (x) =
~

Po(x)
~

(5.19)

po (x)=
~
Po(x)

~
[1—nf(ef(x))] . (5.20)

Therefore, even without calculating Po(x) by a numeri-
cal integration of (5.7), we can test the accuracy of the
adiabatic approximation (5.6) by noting that, according to
(5.19) and (5.20), the ratio y (x)=po(x)/p(x) should be

independent of coo Fi.gure 6 shows that yoo7&(x)lyo ~(x)
deviates from 1 by less than 15%%uo. Since the adiabatic
ground-state potential Vo(x) shown in Fig. 5 is known
only numerically, we have not calculated the correspond-
ing Po(x) to compare Eqs. (5.16) and (5.18) directly with
(5.19) and (5.20). This is done for the zero-bandwidth
case in Fig. 7, for which the adiabatic ground-state poten-
tial is known analytically (Appendix A). Figure 7 shows
that the adiabatic approximation (5.6) provides a qualita-
tively correct description for the parameters considered.

The mixed-valence behavior for v &U,„, is very dif-
ferent from the mixed-valence behavior for U (U,„,. For
U &U,„, the adiabatic potential Vo(x) has only a single
minimum at xo, and the zero-point fluctuations in the
well, determined by V"(xo) and m, are small. In the limit
m ~ Do, a second-order transition occurs at v =v,„„and,
for v &U,„„the distance of the two minima essentially
determines the fluctuation

-0.15

-0.20

in a mixed-valence situation. The behavior of M through
the transition is shown in Fig. 8 for the zero-bandwidth
case. Again, one can see how the quantum fluctuations
smear out the second-order transition occurring in the
limit mirac (coo~0).

The difference in the mixed-valence behavior for
v & v,„,and v & v,„, can be clearly seen in the one-particle

(do =0.1

CL
[

10
0.9

~o =0.075

0.5

0.0 0.5
n0 0 0.5

FIG. 5. Upper part shows the adiabatic potential-energy
curve as a function of n p = —xcop/2X for B =2, 6= 1, v = 1.62,
and ef ——1.385. The solid curves in the lower part of the figure
show the exact probability distribution p(np) of the oscillator
coordinate. The dotted curve shows the exact probability densi-
ty po(no) for the oscillator coordinate corresponding to zero f-
level occupancy.

no

F&G. 6. Ratio y (n)=pp(n)/p(n) (see Fig. 5 for the defini-
p

tion of p and pp) is shown for cop ——0. 1 (solid curve). The dotted
curve shows the exact result for the ratio ypp75(np)leap &(np),

which is independent of np (and equal to 1) in the adiabatic ap-
proximation.
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FIG. 7. Solid curve shows the exact result for the probability
distribution p(n0) in the zero-bandwidth case for V=1, u =3,
and ef=u ("symmetric case") for P=A, 2/())() ——10. The dashed
curve shows the corresponding result p' {np)=

I P()(n()) I
in the

adiabatic approximation. The arrows indicate the positions for
the minima of the adiabatic potential-energy curve, which is
symmetric with respect to n0 ——

2 .

FIG. 8. Solid curve shows the exact result for the fluctuation
bx=((Ep ~x ~Eo) —(Ep LX ~E()) )'~ in the zero-bandwidth
case as a function of U for V=1, ef ——U, and up=0. 02. The dot-
ted line shows the separation of the two minima of the adiabatic
potential-energy curve.

Green's function gf (z) calculated in Sec. IV. Before we
present exact numerical results using (4.9), we introduce
the adiabatic approximation for the ground state in order
to obtain an approximate analytical result for gf (z),

g& (z)=N& fdx dx' (Eo(x')(((x' x)z —Eo

(5.21)

In the narrow-band limit, the exact spectrum shows
sharp phonon satellites when lifetime broadening is
neglected, i.e., when z approaches the real axis. In the
broadband case this discrete structure is lost because of
the continuous spectrum of electronic excitations. There

are, therefore, two reasons why the phonon fine structure
of the spectrum usually cannot be resolved in the systems
we have in mind. We therefore first consider an approxi-
mation which produces the correct "broadened" spectrum
(

~

Im(z)
~

&cop) in the limit of small tg)p. In this approxi-
mation we neglect the kinetic-energy term of the oscilla-
tor, i.e., we replace H by H(x) in (5.2), where H(x) is de-
fined in (5.1). Since the neglected term is proportional to
cop, the "normal" phonon broadening of the spectral lines,
which turns out to be of order A, —(cop) ', is still
described correctly to order (cop)'~ . With this approxima-
tion, the resolvent matrix element in (5.21) is diagonal and
one integration can be carried out. Using the adiabatic
approximation (5.6) for (x

~
Ep), we obtain the approxi-

mate expression g(z) for gf (z),

g(z) (((ff l4o(x(l'(@o=(x( o(. q, go(X))z(x) —E()+H,)(x)

= f ~(/'p(x)
~ g ~„)(z(x))dx, (5.22)

where

Z(X) =Z + Vp(X ) Ep—
and g, ~„) is the purely electronic f-level Green's function6f X

with the f level at ef(x)=ef+Ax. In z(x) we have
dropped the constant shift cop/2 which appears in (5.2)
since (5.22) is only correct to order p)p . The spectral
function p(e) =Im[g(e —i0)]/m is therefore given by the
corresponding electronic spectral function p, ~„)(e) weight-6f X

ed by the ground-state probability distribution

p(e) = f i (I)p(x) i p, („)(e+V()(x) —E() )dx . (5.23)

In the limit p)p~0 the weighting function p'd(x) goes
over to a 5 function 5(x —xp) if the deepest minimum of
Vp(x) is nondegenerate. As the ground-state energy Ep

goes over to Vp(xp) in the limit p)p~0 (U=const), one ob-
tains

Im[gf~(e —i0)]/~=p; (e), (5.24)

with ef ——ef —2noU. This result, which holds asymptoti-
cally in the limit coo~0, can also be obtained using a
Hartree-type mean-field description of the electron-
phonon —interaction term. The qualitative features of the
spectral function on the right-hand side (rhs) of (5.24) has
been discussed in detail in Ref. 6. For ef near the Fermi
energy eF and a broad valence band, p- (e) shows a rise at

Ef
eF and a "plateau" below ef, if ef is of the order
b. =ImI (ef —i0) below the Fermi energy e~ ——0. This is
the mixed-valence regime. In the spin-fiuctuation regime—ef ~~4, there is a Lorentzian peak of width 5 near ef
and a very sharp rise near the Fermi energy. This "Kon-
do peak" has very little weight if ef is sufficiently far
below the Fermi energy. To see how the phonon broadens
the spectrum, in particular, the "Kondo peak" for finite
top, one must go beyond the approximation (5.24). We use
the spectral representation
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p, („)(e+Vp(x) —Ep) = g R;(x)5(e+ V()(x) —E()—[E() (x)—E, '(x)]),

and expand the argument of the 5 function to linear order

around the minimum. Using the Hellmann-Feynman

theorem the expectation value

'( o) ~" ~c," '( o))

enters. Then the x integration in (5.23) can be carried out,

c, =(aA.)' '/
~
A(np —n, ')

~

. (5.28)

Here, we have used the fact that Pp is a Gaussian centered
around xp with a width determined by

p(e)= gR;(xp+f;(e))c(exp[ —a{f;(e)}], (5.25)
COp dn p(Ef)'

V(I'(xp) = 1+2u
d E'f

(5.29)

with

e —[E,"(x,) —E,"-'(x.)]
f((e) =

N —1}((np—n; )

dnp(ef )
1+2U

2 d 6'f

(5.26)

(5.27)

F«m (5.25)—(5.27) we see that the vibrational width js
proportional to A, =(utpp)' and to the difference in the
slope of the adiabatic potential-energy curves Vp (x) and
VP' '(x) at the point xp. To apply these results to our
specific model, we must use the explicit expression for
p~(„)(e), given previously, ' which can also be obtained

from (4.9),

I
Vk I

'
p~~(»(e) =[1—nf(ef(x))] g [ef(x) bE{ef (—x))—ek]

1
X —Im

1

~E(ef(x)} I [e t 0 ek ~E(ef(x)}+ef(x}]

(x
i
E ) =P (x)

~

4p(x)), (5.31)

where the ()I( (x) are the excited states for the motion in
the adiabatic ground-state potential Vp(x) which can be

For every value of k, the spectrum in (5.30) consists of a
pole at e=ek and a quasicontinuous part starting at an

energy ef(x) AE{ef(x)}belo—w ek. As the pole is at ek

independently of the ualue of x, this pole part obtains no
phonon broadening of order A, =(u(up)'~ . In the narrow-
band limit B~O, the continuous part of (5.30) shrinks to
an additional pole contribution. This peak has a phonon
broadening described approximately by (5.25)—(5.28). A
comparison with the exact numerical solution is shown in

Fig. 9. As discussed above, there is no phonon broadening
of order (u(up)'~ of the peak at threshold. (We have in-

troduced a lifetime broadening y =0.05 for numerical
convenience for the exact calculation. ) Except for one
electron at the Fermi level missing in the infinite reservoir
of valence electrons, the corresponding adiabatic final
state is identical to the initial state, as discussed in Sec.
IV, and leads, therefore, to the same adiabatic potential
Vp(x). In order to examine the fine structure of the peak
at threshold on an energy scale mp, one must go beyond
the approximation leading to (5.22). According to the ex-
act spectral representation (4.11), there are (if the weight
factor differs from zero) contributions to the spectrum
from (tll excited states

~
Ek„~')=Pk„~E ) with a&0.

These are automatically included in the exact solution
(4.9). For small (op these low-lying excited states can be
described approximately in the adiabatic approximation,
in analogy to (5.6},

obtained by solving the Schrodinger equation (5.7). The
spectral weight factors in (4.11) are then given by

l &Ek", ' lf. lEo")I'= I@*( )&o{ )

2

&( (@p(x)
~ fk f ~

@p(x))dx

(5.32)

Because of the electronic matrix element in the in-
tegrand, the orthogonality of P and (()p cannot be used to
argue that the matrix element vanishes for a&0. The to-
tal weight in the vibrationally excited states for fixed k is
given by

V=1
v =3.3

u)o= 0.02

-3
I

2

FICr. 9. Comparison of the exact f-level spectral function
(solid curve) with the approximate result (5.25) in the zero-
bandwidth case. A lifetime broadening y =.0.05 has been used

in the calculation and the phonon fine structure of the exact re-

sult is therefore not resolved.
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a kX O
=

O k& 0
cx (~0)

—[& ko I fl (x )
I ko&1

with

fk(»= &4'o(»
I fkA I

@o(»&

VI, [1—nf {Ef(x))]
ek+ BE(ef(x)) ef(x)—

(5.34)

For the case when Vp(x) has a nondegenerate deepest
minimum at x =xp, we expand fk(x) to order (x —xp)
around xp to estimate the rhs of (5.33),

mate and the exact result is very good. In the narrow
mixed-valence regime aboue u,„„the spectra are very dif-
ferent from mixed-valence spectra below u,„,. Above
U,„„mixed-valence behavior occurs when the two minima
of the adiabatic potential Vo(x) are (almost) degenerate:
Vp(x~)= Vp(x2)=0 and Vp(x~)= Vp(x2). As shown in
Fig. 5, there is then a finite probability of finding the "lat-
tice" in either of the wells. In the adiabatic approxima-
tion this leads to a finite-probability amplitude Po(x) in
both wells. From (5.23) it therefore follows that the cor-
responding spectrum is a superposition of two spectra. In
an approximation analogous to (5.23) which neglects the
zero-point fluctuation in the wells, we obtain

X I &@ Ifk(x) I ko& I' Imgf (e i 0—)=w )p (e-) +w 2p- ( e )
7T Ef ) Ef2

(5.36)

&Pp I
(x —xp)

I
Pp&(2mrpp)+O(A, ) .

deaf

(5.35)

The ground-state wave function Pp(x) is a Gaussian and
the width is determined by Vo'(xp) [Eq. (5.29)]. The
mean-square deviation &Pp I

(x —xp)
I Pp& multiplied by

2mrpp is therefore of order unity. In the zero-bandwidth
limit one obtains, using (A2) and (A3),

(df /def ) =[4nf(1 —nf )(2nf —1)]2/V

The weight in the first phonon satellite of the peak at
threshold is therefore smaller than ropu/V . Inserting the
numbers corresponding to Fig. 9 we find that the weight
of the first phonon satellite is a factor of —,', smaller than
the main peak. Similarly, one can show that there are
strongly-energy-dependent but small corrections to the
Kondo peak at threshold, as given by (5.24), as long as
vcoo/b, is smaller than 1.

Figure 10 shows a comparison of the exact calculation
of Imgf (e i 0), us—ing (4.9), with the "mean-field" result
p- (e). For calculational purposes, we have introduced a

lifetime broadening y =Im(z) =0.1. The coupling con-
stant A, is chosen such that v is approximately two-thirds
of the critical value. The agreement between the approxi-

v = 0.72

w; =I !go(x)
I

dx, (5.37)

where the integration is over the range of the ith well and

ef; =ef +Ax;. The zero-point fluctuations in the well can
be included by replacing each of the p's in (5.36) by an ex-
pression of the type of (5.25). The discussion of the
broadening of order cop of the Kondo peak for a nonde-
generate deepest minimum [Eqs. (5.33)—(5.35)] must be
modified in the u & u,„., mixed-valence region. The lowest
excitation energy is then given by the bonding-
antibonding splitting in the double well, which contains
the small factor exp( —v/cop). Then the rhs of (5.33) is
not of order A. if the values of fk(x) differ at the two (al-
most) degenerate minima. From the symmetry of
(df/def) around nf = —,', it follows that the two values

of f are the same in the zero-bandwidth limit if the mini-
ma are degenerate. This is not the case for 8&0, i.e., for
a finite 8 there is an appreciable weight corresponding to
an antibonding final state. This spectral weight "almost"
extends to the Fermi energy for small cop as the bonding-
antibonding splitting vanishes exponentially in the limit
co0~0. This is the reason why we have introduced the ad-
ditional term (4.14) in our exact discussion of the spectral
function near threshold. If one adds the bonding and the
antibonding contributions, neglecting their small energy
separation, one returns to (5.36) and (5.37) apart from a
correction of order A,2,

I &0'o Ifk(» I do& I
'+

I &ki lfa«) I do& I

'

=&Col [fk(»]'ldo& — g I &0 Ifk(»IA& I'
a (+0, 1)

(5.38)

CL

I

-2.0
I

-).0 0.0

FIG. 10. Comparison of the exact result for the f-level spec-
tral function (solid curve) with the "mean-field" result p- (e)

(dotted curve) for B =2. (ef ——1.24.}

where
I P&& is the antibonding state and the sum over u

excludes the bonding states and one antibonding state.
The first term on the rhs of (5.38) is what is obtained
from (5.36) and the sum only gives a contribution of order
A, because

I P~ & is orthogonal to Po and P&.
Figure 11 shows the exact spectrum for a U&U,„,

mixed-valence case. The lifetime broadening is chosen
sufficiently small in order to resolve the main vibrational
structure. The bandwidth was chosen such that p-~~ ~(e)ef(x2)
has a split-off peak below the bottom of the band. where
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FIG. 11. Solid curve shows the f-level spectral function for
6=1, U =1.62, e~ ——1.39, coo ——0. 1, and 8 =2. The dotted curve
shows the mean-field result with the f-level position adjusted to
yield the same f-level occupancy ( n/=0. 55).

e/(xz) is the adiabatic f-level position corresponding to
the nn= 1 (spin-fluctuation) minimum. The exact spec-
trum differs, due to its superposition character, qualita-
tively from the v =0 spectrum shown, for which the same
value of the coupling 6 has been used, and the f-level
position has been adjusted to yield the same f-level occu-
pancy as for the v &v,„, spectrum. Owing to the finite
lifetime broadening, the fine structure of the Kondo peak
is not resolved. With the use of (5.36) a simple qualitative
discussion of the spectrum is possible when the critical
line v, (e&) =@& is crossed for v »v,„, by changing e/ by
an energy of the order of the bonding-antibonding split-
ting. Then the values of e/ e~ 2nv——cor—responding to
thc two m1n1ITla RI'c Gyl U Rnd Gyp

—U. The 1ntcglatcd
weight (up to the Fermi energy) of p-~ (e) is very small be-

cause n I -0, while p- (e) integrates to n2-1. To a good

approximation, the spectrum is therefore given by

Img~ (c iO—)=wzp-, —(e) . (5.39)

For v »v,„,-A, the spectral function p-~ (e) has al-

most all of its weight in a Lorentzian peak of width 5 at
e-e~z- —v (in the broadband case, 8&&v). If one in-
creases e/ from values on one side of the critical line
{spin-fluctuation case) to a value on the other side of the
line ("empty"-f-level case), w2 changes very rapidly from
1 to 0 while the position of the peak remains at e= —U.

Going through the "transition" does not change the shape
of the spectrum but only the total weight. This happens
because the transition is first order: The positions of the
minima of Vo(x) are practically unchanged during the
transition; only the role of the deepest minimum switches
from one to the other.

In a system without coupling to phonons, the variation
of ny from the spin-fiuctuation limit ny = 1 to the
empty-f-level case ni =0 happens when e/ moves from
below the Fermi energy to an energy above the Fermi en-
ergy. The relevant energy scale is given by b. In the
U ))U,„,mixed-valence regime the transition occurs when
e~ changes by an energy of the order of the bonding-
antibonding splitting, i.e., of order Zexp( —v/coo). One
way to interpret this rapid transition is to say that the
bare b, is renormalized to E,=—Zexp( —v/con). While this

FIG. 12. Exact results for the f-level spectral function for v

substantially larger than u,„., for 8 =4. The f-level position is
only slightly changed from ey ——1.560 (n~ ——0.97) to e~ ——1.565
(ey ——0.54). The weight of the "I.orentzian" peak near —3 is
changed drastically but the shift is very small.

interpretation can be considered useful to describe some
ground-state properties, it is incorrect to assume that
this automatically leads to a renormalization of the width
of the one-particle spectrum. Here, highly excited states
also enter and the spectrum is completely dominated b~
the Lorentzian peak having the unrenormolized width h.
Exact results for the spectrum for v substantially larger
than U,„,are shown in Fig. 12. They agree with the quali-
tat1vc d1scuss1on g1vcn above.

From Figs. 9—11 and further spectra that we have cal-
culated, we conclude that the simple "mean-field" approx-
imation (5.24) for the spectrum works reasonably well for
P= v/coo »1 in the "phonon case, " except in the narrow
v & v,„,mixed-valence region, where it fails badly, in con-
trast to the superposition approximation (5.36) which al-
lows a simple description of the transition region.

VI. PI ASMON CASE

In this section we describe the opposite hmit of large
frequency, coo»5. This Is typically thc case whcII thc
model (2.1) is supposed to describe the coupling to
plasrnons. ' ' As there are three additional energies B,
ei, and v in the problem, one must specify how con relates
to these other energies. From approximate solutions of
models similar to (2.1), it is known that one must distin-
guish, B1 particular~ thc cRscs QPo))8 and Mo ++8.- Real-
istically, the coupling constant A, in the plasmon case is
such thai a perturbational treatment in the electron-
plasmon —coupling constant A, is sufficient. For the case
ciao))B it is possible to work out an analytical approxima-
tion even for values of P=v/mo ——A, /coo larger than 1.
This is presented in the following. The bandwidth 8
enters the ground-state calculation [Eq. (3.14)] via the
function I (z) [Eq. (3.1S)]. For z on the positive real axis,
I is real and decays like V /z for z))8, where Vis de-
fined as V =g&J Vk

~

-58. If eI DE&&con, which—
holds for coo » b, in the mixed-valence and spin-
fluctuation limits, and for ei «coo if ey is above the Fer-
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mi energy (ez ——0), we can therefore make the replacement

r[Ef b—.E+Hs(1)]=r(ef b.E)
I
0)(0

with

2
Ef =Ef—A, /coo .

Equation (3.14) can then be written in the form

lao) =r(rf —bE) '
I
0)(o I~o& .

Hs(0) —b,E

(6.1)

(6.2)

If we multiply this equation from the left with (0 I, we

obtain an equation for bE,

gf (z)=(1 —nf) g
k&kf (~k+bE Ef—)

X (0
I
[z bE—ek+—.H~(0)

—r« —hk)] (6.8)

hk) r(z &k bE+ef )
I
0)(0

I
(6.9)

with hk defined in (4.10). The treatment of the resolvent
matrix element in (6.8) now depends on the z values con-
sidered. For z =e+iy and

I
e

I
«coo,

I y I « too, we
write, similar to (6.1),

1 P( =g EKE)(D —
0) . (6.4)

which acts like a separable perturbation in the resolvent
matrix. Using the well-known algebra for treating separ-
able perturbations, one obtains

b.E=
I &olo)—I'r(~f bE) . (6.5)

This equation for the ground-state-energy shift b,E is of
the same form as in the purely electronic problem, but
with renormalizations ef ~sf =of —v and (p=v/too
=A, /coo)

I (z)
I (0l0) I

I (z)=e ~I (z)=I (z), (6.6)

This simplifies further, if we assume
I ef I

«coo, i.e., if
too is the largest of all energies appearing in the problem.
Then we can insert the eigenstates

I
n)s of Hs(0) in (6.4)

and keep only the ground-state term

&
I [ bE ~—k+H (0) I ( hk)] 'I»

7

1 —1 (z —ek b,E+of )goo—(z Ek )

goo(z —ek) = (0
I [z ek bE—+Hs(0)]—

I
0)

l&olo&l'
z —ek —AE

The "smail-z" result for gf (z) therefore reads

(6.10)

(6.11)

Vk(OIO)
I&k&=bo

6k +bE Pf— (6.7)

If this expression is used in (4.9), we obtain

which correspond to the renormalization Vk~ Vk e ~/ = Vk. A different simplification of (6.4)
occurs if the f level is much further below the bottom of
the band than too, i.e., —ef »coo »8. Then one obtains
the result (6.5), but without the renormalization factor

I (0l0) I
. This limit will be further discussed in Sec.

VII.
We next calculate the valence Green's function for the

case when coo is the largest energy in the problem. In that
»mit I&o& in Eq «» is o«h«o~ I&o&=bolO)B
and the

I
Bk) which enter the calculation of gf (z) in

(4.9) are given by

r(z —h„)=r(sz Ek bE+Ef)
I

~ &—&n I— (6.13)

where
I
5z

I

=
I
z+ntoo

I
is smail compared to coo. Using

similar algebra as in the "small-z" case, we obtain

gf (z)=(1—nf) g
k kf (ek+bE ~f

l&ofo&l'
z —ek bE I (z—ek —bE+—Ff)—

(6.12)

Apart from the weight factor
I
(0

I
0)

I
this is of the

same form as in the purely electronic problem, but with
the renormalizations e~—+e~ and Vk~Vk, i.e., I —+I.
Around energies z =novo (n =1,2, . . . ) the spectrum has
satellite structures. To describe the nth-satellite structure
the approximation (6.9) has to be replaced by

gf ( ncoo+5—z)=(1 nf) g— l&n lo)l'
«k, (~k —bE+rf )' Sz —~k —bE —

I &n
I
n & I

'r(nz —~k —bE+rf)
' (6.14)

which, apart from the different weight factor
I
(n

I
())

I
2,

has a different "width" renormalization in the denomina-
tor. This different factor

I (n
I
n)

I

2 multiplying r has
the effect that the shape of the nth-satellite structure de-
pends on n. In particular, the individual terms in the k
sum in (6.23) have a pole contribution which is not exactly
at 6z =ek. The effect of the renormahzation factor

I (n
I
n) I

is most drastic when it vanishes. This hap-

I

pens for n = 1 when p=A, /coo ——1. One way to see this is
to use the commutation relation [b, b t]= 1 to show that

bb =1 P+(A/'to )(b b—)+btb, , — (6.15)
=b +A/too creates , the excited states of the

shifted oscillator (3.17). Multipyling (6.15) from the left
with (0

I
and from the right with

I
0) leads to

&11»=(1—p)&o
I
o& . (6.16)
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The only broadening of the n =1 satellite is therefore

due to k summation, which leads to an asymmetric peak
shape. Figure 13 shows the exact spectrum (4.9} for
coo ——20 and B =2. For P= —, we only show the n =1 sa-

tellite, which has the largest weight. The shape of the sa-

tellite peak is clearly different from the main peak as dis-

cussed above. For P=1 the two-peak structure of the

main peak is lost in the n = 1 satellite, as we found in our

approximate discussion using (6.14)—(6.16). In the exact
spectra we have introduced a lifetime broadening for nu-

merical convenience. The case 8 &&No but coo larger than

the rest of the energies in the problem, is more difficult to
handle. It will be partially discussed for the case when

the "f level" is extremely far below the Fermi energy
("deep-level" case)

VII. "DEEP-LEVEL" CASE

In this section we discuss the limit when the bare f lev-

el e~ is so deep below the Fermi energy that n~ is almost 1

and the energy gain due to the hybridization ey —hE is
the smallest energy in the problem. Then the approxima-
tion (6.1) can be used to determine the ground state. The
operator H~(0) in the denominator on the rhs of (6.4) can
then be dropped and the equation that determines hE
reads

EE= —I (ey —hE} . (7.1}

The components
I

Bk ) which enter the f-level Green's
function are then given by

(7.2)

with

bo —— 1+ g I Vk
I

'

krak (Ey —+E ek}f
(7.3)

X 0(
0

z b,E ek—+He—(0)—I (z —hk )

In the limit of an extremely deep level, the k sum in (7.4)

together with the prefactor bo acts like a 5 function and

(7.4) simplifies further to

Apart from the overall boson state
I
0), the results resem-

ble the purely electronic problem with only the renormali-
zation e~~ey. The f-level Green s function simplifies to

IVkl'
gy (z)=bo g

krak (ey —~E—ek}'f

4}0=20

P = 025

gy (z)= 0 0
z —e~+H, (0)—I [z+H, (1)]

(7.5)

where we have also used AE=e~. Now we must distin-
guish the two cases

I ey I
»B and IF~ I

&&B. In the first
case, the I (e i0) is r—eal near e~, and small, and can
therefore be neglected. One finally obtains, with

I (Oln) I
z=e ~p"In!,

I

-25 -20
I

-15
I

-10
pf ( e ) =e g, 5(e ey ——croip )

On'f
(7.6)

ti)0 = 20

i.e., the Poisson distribution well known in core-level spec-
troscopy. ' The center of gravity is at ef v

ey —2nIU as n~= 1. For
I ey I

&&B and a constant band
density of states, I (z) can be replaced by its constant ima-

ginary part, 6, in (7.5). This leads to a Lorentzian
broadening of the peaks in (7.6) and the width is given by
the unrenormaiized Z. This result was first discussed by
Almbladh and Minnhagen.

VIII. "EMPTY"-LEVEL CASE

FIG 13. Exact. results for the f-level spectral function in the
plasmon case. In the upper curve only the "main peak" and the
first "plasmon satellite" is shown. Note the different shape of
the plasmon satellite. The lower curve shows the spectrum
when the width-renormalization factor

I
(1

I
1) I

i for the first
plasmon satellite vanishes. The parameters are 8 =2,
X=exp( —P)X=1, and e~= —0.8.

If e~ is sufficiently high above the Fermi energy it is
sufficient to use perturbation theory in the hybridization
Vk. To leading order in

I Vk I
2, the resolvent in (4.9) can

be evaluated to zeroth order to obtain g~ (z),

1
gf (z)= g I vk I

' o [z —ek+HB(0)l
k (k ek ej Hg (1)——

1

ek ey Hg(1)——
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Inserting eigenstates of H~(0) and taking the imaginary

part yields
ments. To apply the theory including the phonon
mode one needs values for the phonon frequency coo and
the electron-phonon —coupling strength u. Sherrington
and von Molnar' gave estimates for the parameters corre-
sponding to SmS. They estimate U =0. 1, 6=0.01 eV,
and P=U/too-4. If multiplied with the degeneracy fac-
tor Nf, the more relevant width" 6=Xf2 is comparable
to U, which may bring us into the strong-coupling mixed-
valence regime, and the criterion for the applicability of
the adiabatic approximation (P» 1) is almost reached.

For Ce compounds we have deduced much larger
values of 5, typically 6-0.1 eV. Multiplied with the de-

generacy factor, this leads to values of b, which should
be larger than U. We are therefore then in the weak-

coupling mixed-valence regime which is properly
described by the mean-field approximation (5.24). To a
good approximation the theory with coup1ing to the pho-
non therefore leads to the same spectrum, f occupancy,
magnetic susceptibility, etc. as the theory without the cou-
pling, if the bare f level p-o-sition is renormalized by
—2n~u in the latter case. The results presented in this pa-
per, therefore, do not alter the conclusion we have drawn
from our calculations without the phonon coupling in
Refs. 5 and 6.

Our results clearly show that the question of the renor-
malization of the coupling Z due to polaronic effects gen-
erally depends on the experimental question one asks. In
the "phonon" case the renormalization "appearing" in the
ground state is absent in the photoemission spectrum. In
the "plasmon" case the renormalization can differ from
satellite to satellite.

00
, 2

1
p/(e)= g 0 n

e+ n too e/—H—~ (1)

(8.2)X Iml (e+ntoo)/n. .

For eI » too the operator H~(1) in the denominator can
be neglected and (8.2) simplifies to

1
p~(e) = ImI (e)/vr,

(e ey)— (8.3)

exactly as in the purely electronic case, i.e, without any re-
normalization. For coo ))ey, again only the n =0 term in
the sum contributes for —too & e & 0. Inserting eigenstates
of H~(1) and keeping only the leading term for large coo

gives

(8.4)pf(e) =
(e—e~)'

which is, again, of purely electronic form, but with renor-
malizations e/~@~ and I"~

( (0
~

0)
~

I, in agreement
with the discussion in Sec. VI.

IX. CONCLUSIONS

APPENDIX A

In this appendix we present some of the details of the
calculations in the limit 8—+0. In this case the function
I (z) [Eq. (3.15)] takes the form

I (z)= V'/z . (Al)

The pole of I (z) is at z =0 because we have chosen
e~ 0 Concern=ing . the ground state calculati-on (3.14), the
N~ Do and 8 =0 li——mits of the Hamiltonian (2.1) are iso-
morphic to the nondegenerate (N/ ——1) limit of (2.1),
where the metal band is replaced by a single level

~
b)

with energy e~' ——0 and the system has a single electron.
The single-electron case of the model (2.1) for N/= 1 was
studied in detail by Hewson and Newns. ' The exact
ground-state calculation is not appreciably simplified by
the special choice (Al), but the approximate adiabatic
phonon treatment presented in Sec. V can be performed
rather easily. The equation for the adiabatic electron
ground-state energy, (5.10), reduces to a quadratic equa-
tion with the solution

2 1/2
e/(x) p2e/(x)

b, E(e/(x ) ) =
2

(A2)

with e/(x)=e/+M. Differentiating with respect to e/
yields nf(ef(x)),

%'e have presented the exact solution to the model
Hamiltonian (2.1) in the limit when the degeneracy N/ of
the f level goes to infinity. For the corresponding model
without the coupling to the boson we have also calculated
corrections of order I/N/ for finite N/. Since NI 14if-—
spin-orbit splitting is neglected, or Nl =6 (8) when spin-
orbit splitting is included, I/N/ is a small parameter and
except for N/ close to unity the corrections to the

Nf ~00 results are rather small. Therefore we have not
discussed 1/N/ corrections in this paper. As shown in
Sec. V the adiabatic approximation (5.6) provides a good
description of the phonon case, including the transition
regime near U, (e/). There is no reason to believe that this
fact has anything to do with the large-degeneracy limit
discussed in this paper. For finite N~ the structure of the
results, e.g., Eq. (5.24), for the spectral function, do not
change when finite NI values are considered. One has
only to replace the purely electronic spectral function

p, ~„~ in (5.24) by the corresponding result for finiteX

Calculation of the 1/NI corrections corresponding to our
Hamiltonian (2.4) is therefore straightforward in the adia-
batic approximation, as soon as the corrections for the
purely electronic problem are known. For X~——1, p~
can easily be calculated, and in the spin-fluctuation limit
the main deviation from the N~ —+ oo result is the absence
of a Kondo peak at the Fermi energy (which has extreme-
ly small weight for 1 —n/«1 in the N/~op limit).
Therefore, the discussion of the spectral function in the
strong-coupling mixed-valence hmit given for N~ ~ oo,
Eq. (5.39), also properly describes the Nr = 1 case.

Earlier, we applied the theory without the phonon cou-
pling to various cerium compounds and obtained esti-
mates for ny and 5 from comparison with experi-
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(A3)

U,„t=2i V
f

. (A4)

ef(x)/2
nf (Ef(x) )=—1—

I [ ( )/2]2+ V2] i j2

Since nf(ef ) ——, is an odd function of ef, the inflection

point is at @~=0 and the maximum of the negative slope
is —nj(0)= 4 ~

V~. According to (5.15) or (5.29), this

leads to the critical value

1
nmax(~f ) [ max(~f ) ~f ]

2Uc
(A6)

For nf given by (A3), n a„(ef ) —p and u (Ef ) =0 for
all values of ef &(ef),„t and therefore we obtain, for
~f & ( f )crit~

value of U corresponds to the maximum of Vo(x) by
n,„(ef) and the corresponding value of u by u a„(ef),
Eq. (5.15) reads

The ef value of the critical point follows from (5.15) as
Uc(tf ) =Ef. ' (A7)

(A5){~f)crit Ucrit

From the fact that nf(ef) —,
'—is an odd function with

respect to ef, it also follows that the critical line U, (Ef ) in

the (ef, u) plane, where the first-order transition occurs in

the limit coo—+0, is the straight line v =sf. To see this we
consider an ef ~ (ef),„t and increase U from U,„, until in

solving (5.15) we come to the value U, (ef ) where the three
solutions are such that the Maxwell criterion of equal
areas is fulfilled. If we denote the n value which for this

I

The equivalence of the Ey cc and——the (N~ 1, on——e-

electron} case which holds for the ground-state calculation
does not hold for the spectral function pf(e) because, for
the one-electron (and X~——1) system, the removal of that
one electron makes the electronic problem in the final
state trivial (no electron), while for the X~ ——cc case the
removal of one electron does not change the character of
the relevant electronic states. The expression for the spec-
tral function p, i„i in (5.30) simplifies using (Al) toff X

p, i„i(e)=nf(ef(x)) [1—nf(ef(x))]5(e)+nf(Ef(x))5 a+2
2

t-f(x) p' 2

1/2 '

(A8)

To obtain the approximate spectrum, p(e), this expres-
sion has to be used on the rhs of (5.23). One of the two
peaks in p, i„i(e) is independent of x. This is the peak at

threshold e=O. Therefore only the other peak obtains a
phonon broadening of order (Ucoo)'r, as described in
(5.25)—(5.28). This is confirmed by comparisoon with the
exact calculation as shown in Fig. 9. To resolve the pho-
non structure of the broadened peak in the exact calcula-
tion, we would have to choose a lifetime broadening y
which is smaller than coo. An approximate description of
that fine structure could be easily obtained (for the limit
B =0 discussed here) by also treating the ( X—1)-electron
final states in the adiabatic approximation using (5.32).

APPENDIX B

In all of the exact numerical calculations that we have
performed for a finite bandwidth B, we have used a half-
filled band with a semielliptical density of states. In this
appendix we discuss the case of a constant band density of
states, especially in the limit B~cc. The corresponding
function I (z) [Eq. (3.15)] is given by

I (z) =(b, /ir)ln[z/(B +z)] . (81)

In the limit B—+ oo we can drop the z in the denominator
of the logarithm in (81) for all relevant energies z. The
equation for the ground state, (3.14), can then be written
as

[H~(0)+(b/ir)in[ir(ef —bE" +H~(1))/b, ] bE'I
~
Bo}-

=0, {82)

with

ef ef +(b, /rr——)ln(irB/b, ) (83)

b,E' =b,E+ (b, /rr)ln(irB/b, ) .

b, /irnf(Ef(x)}=
5{sf(x))+hler

(85)

If we insert (85) in (84) we can obtain ef(x) as a function
of nf (ef(x) ),

1 nf (ef (x) ) — 1 —nf (ef (x) )
Ef(x)=' +ln

nf (ef(x) ) nf(+f(X)}
(86)

which allows us to plot ef(x) as a function of nf(Ef(x) }.
The plot of Fig. 1 shows that, contrary to the B =0 limit,
nf(ef) has no symmetry behavior around its inflection
point. Using (84) and (86) one can show that

= —(ir/b, )(1 nf )nf —(87)b,5/vr

(5+Hler )'

and

This scaling behavior has been discussed by various au-
thors for the A, =O limit of the model (2.1). As in the
zero-bandwidth case, the special choice (81) for I (z) does
not simplify the exact ground-state calculation. In the
adiabatic approximation, however, it is again possible to
obtain some analytical results. If we introduce the "Kon-
do temperature" 5:= ef" —bE* the equation for the adia-
batic ground-state energy (5.10) reads

5(ef(x) ) =of (x)—(b/ir)in[5(ef (x)}ir/b ], {84)

with Ef(x ) =ef +Ax The adiaba. tic f occupancy is given

by
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d n/ = (26 b—lvr)
d e/ (5+b./~)'

(88)

U,„,= —,
'

(t~ /n ) =1.076, (89)

The inflection point, which determines the critical point

(U,„t, (e/) 't), therefore occurs for 5= b, /2', i.e, for

rtf —
3 . Using (87) to obtain the slope, we find

e/ —u,„(e/)
U, (eI)=

2n, „(e/)
(811)

eI( —, ) = ( b, /~)(0. 5 —ln2) = —0.1985/tr

is the e& value corresponding to nI ———,'. The critical line

U, (e/) which starts at the critical point is, according to
(6), given by

and from (5.15),

4 g 2
(&f )Cttt 3 UCIlt+ef( 7) ~

where

(810)

As we have no symmetry around the inflection point this
is only a straight line asymptotically for large e/. The ex-
pression (5.30) for the spectral function p, ~„~(e) does not

E)r {,x)

simplify very much compared to the general case, so we
do not consider it any further in this appendix.
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