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High-density jelhum-model calculation of force between half-planes
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The high-density limit of the jellium model is used to study the kinetic energy T(z) of the electron
gas as bulk jellium is separated into two half-planes at distance z. It is shown that, for qz «1,
where q

' is the Thomas-Fermi screening length, the Taylor expansion of T(z) around z=O con-
tains, in particular, a quadratic term with a coefficient proportional to r, ",where r, is the mean
interelectronic separation. Using the virial theorem, this same r, dependence is shown to appear in
the quadratic term in the expansion of the total energy E(z). It is thereby argued that in the limit

r, ~O the constant in the force F(z)=Az for small z in real metals, calculated from phonon-
dispersion relations, must tend to a limit proportional to r, " . Possible implications of this result
for prediction of the surface energy of simple metals are briefly considered.

I. INTRODUCTION

o.=2 F z z.
p

One might mention the earlier studies of Friedel, in
which all attention was focused on the small-z form of F,
namely,

F(z) =Az, (1.2)

the work of Schmit and Lucas, who started from the
large-separation result

The study of the surface energy of simple metals based
on the jellium model is of long standing, and was brought
to full fruition in the fully self-consistent calculations of
the density profile of a semi-infinite electron fluid by
Lang and Kohn. ' They clearly recognized that difficul-
ties arose in the high-density limit, which were connected
with the fact that discrete ions had to be introduced for
the metal to be in equilibrium under the action of purely
Coulomb forces.

Different approaches have been explored by a variety of
workers, in which the surface energy is calculated by in-
tegrating the force F(z) between half-planes at separation
z in order to obtain the surface energy tT:

p(x, z, r, ) =p(r„qx, qz),— (1.5)

Kohn and Yaniv, requires knowledge of phonon-
dispersion curves for its evaluation.

It has hitherto been supposed that this model must fail
at small separation because the jellium model is known
not to satisfy the relation (1.2) at small z since
F(z)~F(0)&0. In this paper, we shall nevertheless
focus attention first on the variation of the kinetic energy
T(z) between two semi-infinite half pla-nes described by
the jellium model in the extreme high-density limit r, ~0.
We shall argue that, notwithstanding the lack of equilibri-
um in jellium, the constant A in Eq. (1.2) can be calculat-
ed in that limit from the curvature of T(z) at z =0, since
this can be related to the curvature of the total energy
E(z) at z =0 by the virial theorem. We combine A and C
for this jellium model, using the scaling used by Kohn
and Yaniv, to calculate the surface energy from Eq. (1.1).

Since we start from a constant density bulk-jellium
model, with density pp, and separate the bulk jellium into
two half-planes at separation z, the density will have very
small gradients, and the Thomas-Fermi approximation,
which becomes exact in a high-density uniform gas, is the
appropriate starting point. Thus in Sec. II below we set
up this theory for the electron density, and show thereby
that the electron density scales according to

F(z)= C
z3 ' (1.3) where q

' is the Thomas Fermi screening radius given by

C =yAcop, y=1.79&(10 (1.4)

where co& is the electronic plasma frequency; the funda-
mental theory of A in Eq. (1.2), given by Zaretnba and

and more importantly the later studies of Zaremba and
of Kohn and Yaniv, who interpolated F(z) between (1.2)
and (1.3).

Whereas, for a nearly-free-electron metal, it is known
that C takes the form

2 F 2 2
g =, ap =A /Ale

m.ap

In Sec. III we calculate the kinetic energy T(z) by an ex-
pansion in z up to and including the term of order z,
from the electron density (1.5). In Sec. IV we then obtain
the total energy E(z) to O(z ), by means of the virial
theorem, while in Sec. V we consider the high-density jel-
lium formula for 2 in relation to the numerical results of
Zaremba for real metals.
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Section VI is concerned with an interpolation formula
for jellium (following Kohn and Yaniv) in which, howev-

er, equilibrium is imposed, i.e., we assume F(0)=0.
Thereby an approximate formula for surface energy in the
high-density limit is obtained. In regimes other than the
high-density limit r, ~0 considered here, exchange and
correlation must also be treated.

and

V«q(x) = V«&(z) exp[ —q (x —z)], x )z (2.6)

3 po
p«I(x) p0 V«I(z)exp[ —q (x —z)], x )z .

2 p
(2.7)

II. THOMAS-FERMI DENSITIES
FOR HALF-PLANES AT SEPARATION z

We take the x axis perpendicular to the half-planes,
which are at separation z. The starting point is the Tho-
mas Fermi theory of the density p(x, z, r, )=p(x). This is
given in terms of the self-consistent potential energy V(x)
and the Fermi energy (chemical potential} p by the usual
result

B. Region II

Evidently,

p»(x)=pa(1 ——', V«/p), 0&x &z (2.8)

while the Poisson equation is modified in this region of
zero positive charge to read

p(x) = (2m)'r [p —V(x)]' ' .
3A

(2.1)
~ ~n= —4~e'po+q'Vu 0&x (z .

The general solution of Eq. (2.9) in this region is

(2.9)

The geometry is specified in Fig. 1, with regions I—III.
We take these in order.

A. Region I

4me po
V« —— +y, exp( —qx)+yzexp(qx) .

2 (2.10)

Since we deal throughout with very small separation z,
it is clear that in region I the electron density p(x) differs
from the bulk density po ——(gm/3' )(2m) r p r by only a
small quantity. This allows us immediately to linearize
Eq. (2.1) to read

Hence

( )
3 po 4mepo2

+y 1 exp( qx) +—y, exp(qx)P i q

p(x) =pa(1 ——, V/p) .

Now we invoke the Poisson equation

2p
p'V=4~e'[p, p(x)]=q'V—, q'=

p
This evidently has a solution

Vt(x) = Vi(0) exp(qx), x &0

(2.2)

(2.3}

(2.4)

(2.11)

C. Continuity equation for potential
and its first derivative

Continuity of V and Bv/Bx at x=0 [Vt(0)=v«(0)
and 8 V&(x)/Bx

~
„0——8 V«(x)/Bx

i „0] gives immedi-
ately

the second solution of (2.3) diverging as x~ —00. The
corresponding density is evidently

4' po +ri+r2
q

(2.12)

3 po
p, (x)—po ———— V, (0) exp(qx) .

2 p
(2.5)

and

q Vi(0)= qr i+qrz—. (2.13)

Region III is completely similar, yielding Similarly, the continuity at x =z between regions II and
III yields

Pp Pp

and

4~e po
V«, (z) = +y, exp( —qz)+y2exp(qz)

q
(2.14)

Region I qV», (z)= —qy, exp( —qz)+qy2exp(qz) . (2.15)

(x —ao)
x=O

(x +)
These equations are readily solved to give

FIG. 1. Showing regions I—III of two identical half-planes
separated by distance z for metal of bulk density po.

27M po p
V1 2 3 r2 y 1 exp( qz) (2.16)
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Pp- panding the exponentials, including that appearing in yz
in Eq. (2.16), we find,

0.5po

5/3

Tn(z) = —,ckpo z+—5 ckp0 2Z2—qz+ +O(z')
2

(3.4)

I—0.5 qx= 0

0.2 ', Adding the three contributions to obtain T(z), we final-
ly form 8 T/Bz ~, o, with the result

FIG. 2. Electron density p(x, z) for case of qz =0.2, and the
bulk density po ——3/4m. r, is appropriate to Al with r, =2.07ao,
with ao the Bohr radius.

as well as

8 T(z)
azz z=0

10 5/3
3 Ckp0 q

11/2
rg

8/3
I 3

211/3 (3.5)

This is the basic result of the present calculation. We
shall show below that, in the high-density limit r, ~0, Eq.
(3.5) is sufficient for determining 8 El' ~, o where E
is the total energy of the composite system, by use of the
virial theorem.

V&(0) =y1[exp( —qz) —1]=V„,(z) . (2.17)

To show the nature of the variation of the electron den-
sity with x, Fig. 2 shows p(x) versus x for the case when
qz =0.2, and r, =2.07 as appropriate to Al metal.

III. CHANGE OF ELECTRONIC KINETIC
ENERGY AS A FUNCTION OF SEPARATION z

We turn to the calculation of the total electronic kinetic
energy T(z, r, ) of the composite system at separation z,
always remembering that the present treatment, because
of neglect of exchange and correlation in the simple
Thomas-Fermi model used, is a high-density theory which
will only become exact in the limit r, ~0. The usual ex-
pression for the kinetic energy in this approximation is

2/3

T(z)=ck I [p(x,z)] d~, ck ——5/3 3A 3

10m 8~
(3.1)

Evidently, since p varies only with x, the volume element
d~ can be replaced by dx, with the understanding that
T(z) is then to be interpreted per unit area. Apparently,
we must split the x integrations into the sum of the three
regions I—III treated in Sec. II. Furthermore, we again
make use of the fact that, at the small separation z with
which we are concerned, p(x) deviates from the bulk den-
sity p0 by only a small quantity. Hence we can again
linearize as in Sec. II. Then the contribution to T(z), for
example, from region I, is explicitly

5 «Vr(0)po5/3
T1(z) —Tot =—— (3.2)2 qp

where Tor is simply obtained from the bulk density, in-
tegrated through region I, and is clearly independent of z.
For region III, the contribution is identical to Eq. (3.2),
while for region II we find

5/3
CkPO T1Tn(z) =

3 ckpo [ 1 —exp( —qz) ]
2p q

5/3
5 ckPO f2

[exp(qz) —1] . (3.3)
2p q

Although we have written Eq. (3.3) fully above, the theory
is limited in its range of validity to qz « 1, and hence, ex-

IV. USE OF VIRIAL THEOREM TO DETERMINE
CURVATURE OF TOTAL ENERGY E(z)

AT ZERO SEPARATION

We recall first that for bulk jellium the virial theorem
reads 8

T+E = —r,
dE
drs

(4.1)

which shows that for arbitrary r, the jellium system is not
in equilibrium under the action of purely Coulombic
forces.

In the system considered in the present paper, we must
clearly add to Eq. (4.1) the virial of force acting between
the half-planes at separation z, the modification of Eq.
(4.1) being then

dE dET+E=—r, —z
de dz

Substituting the Taylor expansions

(4.2)

ZdTZT(z) = T(0)+zt1+
gzz

+ e ~ ~ (4.3)

and

QE zE(z)=E(0)+z + A +
Bz o 2

(4.4)

into the virial theorem (4.2), and using the form (3.5),
which yields

3&'E(z, ~, ) (j &'E(z, ~, )
(4.5)

Q E(z, r, )

Bz

t 0.0278
11/2 11/25 r, r,

with t constant, we obtain by straightforward integration
of this first-order differential equation in r, the result
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with r, measured in units of the Bohr radius. This is the
basic result of the electronic theory developed here. In the
next section, we shall endeavor to relate this high-density
jellium result to results for real, nearly-free-electron met-
als.

V. COMPARISON OF RESTORING FORCE
AT SMALL z %'ITH RESULTS FROM PHONON
DISPERSION RELATIONS IN NEARLY-FREE-

ELECTRON METALS
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FIG. 3. Shows Zaremba constant A times r," versus valen-

cy Z. A is taken from Ref. 6, ordinate being simply proportion-
al to Ar," . The spread of values for the monovalent metals
omits the extreme value of A for one face of Rb metal. The ex-
tremities in the spread of Ar," are otherwise labeled by metal
and face.

Though it is clearly not possible to relate the theoretical
prediction (4.3) directly to experiment, we next note that
the constant A in formula (2.1) can be expressed in terms
of experimentally measured phonon dispersion relations,
following Zaremba and Kohn and Yaniv. Since the
work of Ref. 6 differs in numerical values of A given by
Zaremba by -20 to 40%, for our present semiquantita-
tive purposes we have used the tabulated values of Zarem-
ba in attempting to make contact with Eq. (4.3).

In fact, in Fig. 3 the ordinate plotted is proportional to
r," A, using the Zaremba values of A. The abscissas we
have chosen as the valency Z; this is motivated by the fact
that other physical quantities, namely, the velocity of
sound and vacancy-formation energy, have been fruitfully
plotted, when deduced by jellium predictions, against
valency. ' Though the above is the basic reason for
making the plot in Fig. 3, it should be noted that the
present work neglects electron-ion interaction and is there-
fore a small Z, as well as a high-density limit. That there
is no conflict can be seen as follows. An ion of charge Ze
results in an electron at distance r from it experiencing a
potential energy (Ze /—r) exp( qr) T—aking. q

' as a
characteristic distance at which to measure this perturb-
ing potential energy, its absolute value is -Ze q, which
must be small compared with the Fermi energy EF to
validate the jellium prediction, i.e., Ze q/EF «1. Since
in terms of r, the left-hand side of the inequality involves
the combination Zr, , there is, as already mentioned, no
conflict between small Z and small-r, limits. The result
is that Fig. 3 is the best plot for our extrapolation pur-
poses. In particular, though the scatter for the mono-

valent metals is huge, it is quite clear that the general
trend with Z is nevertheless consistent with a finite value
as Z~O, as predicted by Eq. (4.3). We shall not attempt
further quantitative tests of this equation directly, as it is
a high-density-limit formula. However, in the following
section, we shall use the interpolation method of Kohn
and Yaniv, in conjunction with formulas (4.3), (1.3), and
(1 4), to make a theoretical prediction of the surface ener-
gy o. of metals in the extreme high-density limit r, ~0

VI. PREDICTION OF HIGH-DENSITY LIMIT
OF SURFACE ENERGY

We have already noted that straightforward use of the
self-consistent theory of jellium in Refs. 1 and 2 leads to
nonphysical negative values for the surface energy o as
r, ~0. This problem was corrected by Kohn and Lang by
introducing discrete ions, by means of appropriate pseu-
dopotentials, to restore equilibrium.

Below, we shall merely assert that the lack of equilibri-
um in the jellium model is corrected by insisting that the
force must have the correct equilibrium form in Eq. (1.2)
as Z~O. Following the interpolation method of Kohn
and Yaniv we then obtain

o =(AC)'i &&const, (6.1)

VII. SUMMARY-

The main achievements of the present paper lie in

determining the curvature of the kinetic energy &(z) and

hence the total energy E(z), in the high-density jellium
limit, at z =0. We have argued that, in spite of the equili-

brium condition not being fulfilled in jellium, and hence

F(z) tends to F(0)&0. Provided we insist on the physical
small-z form (1.2), the high-density limit of A, the force
constant, is given by Eq. (4.3). The relation of the
predicted r, dependence, A ~r, ",to Zaremba's values

obtained from measured phonon-dispersion relations is sa-

tisfactory. Combined with the Kohn-Yaniv interpolation
procedure, the present work predicts, by using the jellium
model only to obtain the high-density limit of the force
constant A, that for nearly-free-electron metals the sur-

face energy o. will vary as r, as r, ~O.
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the constant depending on the detailed interpolation pro-
cedure. We immediately see from Eqs. (4.3), (1.3), and
(1.4) that o ~r, , which is to be compared with the
Lucas-Schmit collective mode treatment of r, , and
with a prediction from experiment of r, . This seems sa-
tisfactory, though we recognize that it rests on the validi-

ty of Eq. (6.1).
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