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Band model for the electronic structure of expanded liquid cesium
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Self-consistent, scalar-relativistic, linear-augmented-plane-wave calculations have been carried out
for four {real and hypothetical) crystalline forms of cesium with the body-centered-cubic, simple-
cubic, simple-tetragonal, and diamond structures at a fixed nearest-neighbor bond distance. The re-
sults of these calculations are applied to model the variation with density of several one-electron
properties of expanded liquid cesium, including the total density of states N{EF), its 6s component
X,{EF),and the average Fermi-electron charge density at the nucleus. The calculations fail to ex-
plain an observed enhancement of the magnetic susceptibility at low densities. Also, contrary to ex-
perimental evidence derived from the combined analysis of Knight shift and susceptibility data, the
calculated probability density at the nucleus for Fermi-surface electrons tends to increase rather
than decrease as a function of decreasing density. This suggests that many-electron correlation ef-
fects play an essential role in determining the electronic properties of liquid cesium in the low-

density limit where p & 1.3 g cm and the nearest-neighbor coordination number z & 6.

I. INTRODUCTION

Liquid alkali metals can be expanded to densities that
are about 20% of the normal solid or liquid density by
heating to the liquid-gas critical point. Near the critical
point they undergo a metal-nonmetal transition' resem-
bling that proposed by Mott in his original discussion of
the metal-nonmetal transition in expanded monovalent
crystals. At higher densities, in the metallic range, ex-
panded liquid alkali metals offer a unique opportunity for
experimental study of the effects of large density varia-
tions on the electronic properties of single-component
monovalent systems.

A central question for the understanding of the elec-
tronic properties of expanded alkali metals, indeed, for the
metal-nonmetal transition in general, is the role of
electron-electron interactions. The Mott transition is it-
self a consequence of long-range Coulomb forces, and
Hubbard showed that the short-range intra-atomic
Coulomb interaction can also lead to a metal-nonmetal
transition. Brinkman and Rice considered the role of the
intra-atomic interaction in a metal and showed that the
metallic state near the transition should be highly corre-
lated, having a low instantaneous fraction of doubly occu-
pied sites. They predicted for this correlated metal an
enhanced density of states (effective mass) and, conse-
quently, enhanced values for the paramagnetic susceptibil-
ity and electronic specific heat.

The possible presence of large correlation effects in the
alkali metals was first indicated by the magnetic suscepti-
bility measurements for expanded liquid cesium reported
by Frey)and. He observed an increasingly strong
enhancement of the total mass susceptibility with decreas-
ing density until a susceptibility peak was reached at
about twice the critica1 density. Similar susceptibility
enhancements have subsequently been observed in expand-
ed liquid rubidium and sodium. Nuclear-magnetic-
resonance measurements of the Knight shift in Cs also

showed the low-density enhancement, confirming that the
effect arises from the electron-spin contribution to the to-
tal susceptibility. Freyland suggested that the enhance-
ment was due to correlations, but there was little corro-
borating evidence. Recently' one of us has pointed out
that the susceptibility peak is due to Curie law limitation
of the susceptibility at low density, as might be expected
for the density-of-states enhancement predicted by Brink-
man and Rice.

The combined analysis" of these Knight shift and sus-
ceptibility data has provided additional information con-
cerning the variation with density of the Fermi-electron
charge density at the cesium nucleus, ( ~'k(0)

~
)z . In

particular, the ratio

is found to exhibit a surprising behavior in the low-
density range. Instead of increasing toward the atomic
limit g'= I, g assumes a roughly constant value of about
0.5 at high densities and then decreases rapidly when
p(1.3 gcm . A qualitatively similar effect has also
been observed for expanded liquid sodium although expli-
cit values of g were not reported.

In evaluating the possible role in these effects of
electron-electron interactions, it is important to consider
the predictions of one-electron theory for the electronic
structure of an expanded alkali metal. One-electron
theory has been highly successful in explaining the basic
electronic properties of simple metals at ordinary densities
and should provide a reference for interpreting the proper-
ties observed at 1ow densities. In this paper we describe
the use of self-consistent, scalar-relativistic, linear-
augmented-plane-wave (LAP W) band calculations to
model the electronic structure of expanded liquid cesium.
The principal justification for the application of a band
model to a liquid metal is the fact that many important
features of electronic structure are determined largely by
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local properties such as the number and distance of
nearest neighbors. An experimental demonstration of this
is the observation that most electronic properties of met-
als are only slightly affected by the loss of long-range or-
der at the melting transition.

The simplest approach to modeling the low-density
liquid is to assume an appropriate crystal structure with a
variable lattice parameter. This approach has been fol-
lowed by Rose, ' Sander et aI, ' and Kelly et al., ' who
have carried out spin-density-functional calculations for
bcc hydrogen and alkali metals as a function of the lattice
parameter. One difficulty with this model is the intuitive
expectation that it will yield a density-dependent g which
increases more or less monotonically toward the atomic
limit (g= 1) as the lattice parameter is increased.

The present investigation is based on an alternative
structural model for the low-density liquid suggested by
the neutron-diffraction data on expanded liquid rubidi-
um. ' It utilizes a series of crystal structures with de-
creasing numbers of nearest neighbors and a fixed
nearest-neighbor bond distance. ' An identical model was
adopted in an earlier study of expanded liquid mercury. '

Because of the added complexity introduced by the
changes in both the crystal structure and nearest-neighbor
coordination, it is more difficult to anticipate the varia-
tion of g or N(EF), the density of states at the Fermi en-

ergy, with decreasing density that is predicted by this
model.

The principal results of our calculations include N(EF),
its s-component N, (EF), and the average Fermi-electron
charge density at the nucleus. These results, when com-
pared with empirical properties derived from susceptibili-
ty and Knight-shift data, show that the one-electron pic-
ture, as expected, works quite well at normal (high) densi-
ty. However, the model fails to reproduce either the
enhanced susceptibility or the decrease in g that is ob-
served at low density, thus providing added support for
the description of expanded cesium as a metal whose
properties are strongly influenced by electron-electron in-
teraction effects.

II. DETAILS OF THE CALCULATION

The structural model we have adopted for the present
quasicrystalline treatment of expanded liquid cesium is
suggested by the neutron-diffraction data on expanded
liquid rubidium. ' According to these results, a 50% den-
sity reduction in liquid rubidium is achieved primarily by
a nearly linear decrease in the nearest-neighbor coordina-

tion number z and involves only a modest (-4%) in-
crease in the nearest-neighbor bond distance b. In the
present study, we neglect these small variations in b and
assume that density changes are due solely to variations in
the coordination number z.

The value for the nearest-neighbor bond distance
b=5.31 A for liquid cesium has been determined from
neutron-diffraction studies' at a temperature (-30'C)
just above the melting point. This study also yielded an
average coordination number z=9.0+0.5 for the normal
liquid. It is interesting to note that this value for b in the
liquid is identical to that for the solid at —10'C, ' where
the structure is bcc and the coordination number z=8.
The lattice parameter for bcc cesium decreases by about
?.4%%uo at low (-5 K) temperatures. '

The pertinent details of the crystal structures involved
in our quasicrystalline treatment of expanded liquid cesi-
um are summarized in Table I. As indicated, these struc-
tures include the stable bcc phase of the solid as well as a
series of hypothetical forms of crystalline cesium with the
simple-cubic (sc), simple-tetragonal (st), and diamond
structures.

The simple-cubic and diamond structures are natural
choices for modeling the sixfold and fourfold coordinated
forms of the liquid because of their high symmetry and
the fact that these structures are fully determined by the
nearest-neighbor bond length b. The desirability of an al-
ternative structural model for z =4 is suggested by the re-
sults presented in the following section. In particular, it is
found that the energy bands near EF for cesium in the di-
amond structure are dominated by Brillouin-zone-
boundary effects which eliminate most of the Fermi sur-
face and yield a semimetal in which band overlap exists
only on the hexagonal faces of the fcc Brillouin zone.
Thus, in exception to the general rule, even gross features
of the electronic structure near EF for the diamond struc-
ture might differ significantly from the liquid, where the
loss of long-range order would smear or even eliminate
these boundaries entirely.

A reasonable alternative model for z =4 is provided by
the simple-tetragonal (st) structure with c/a ~ l. In this
case, the nearest-neighbor coordination is planar rather
than tetrahedral. The c/a ratio has been arbitrarily set
equal to 1.5 since this choice yields an atomic volume Q
which is close to that for the diamond structure and sim-
plifies the density-of-states calculations described below.
Because of the absence of specific zone-boundary effects
the simple-tetragonal structure is more appropriate than
the diamond structure, although the planar coordination

TABLE I. Summary of crystal structures and lattice parameters involved in the present quasicrystalline treatment of expanded

liquid cesium, assuming a fixed nearest-neighbor bond distance b =5.31 A and a varying nearest-neighbor coordination number z.

bcc [Im3m (Oq)] sc [Pm3m (O„')) st [P4/mmm (D~I, )] diamond [Fd3m (Ol, )]

a (A)
c {A)

Q (A3/atom)

p„hd(g cm )
—3

pllquid( g cm

8
6.13

115.26
1.92
1.73

6
5.31

149.72
1.47
1.30

4
5.31
7.965

224.58
0.98
0.87

4
12.26

230.51
0.96
0.87
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introduces some two-dimensional character which could
not bc cxpcctcd ln a leal 11quld.

The results in Table I also include values of p„~;q and

p~;q„;q for cesium at different coordination numbers z.
The former values are calculated for a perfect single crys-
tal of cesium with the indicated crystal structure and lat-
tice parameters. The corresponding values for p~;q„;~(z)
have been estimated from the measured p(z) values for
liquid rubidium' by scaling with the density ratio of the
two liquids at the melting point [p(Rb)=1.47 gcm
p(Cs)=1.84 gcm ']. A comparison of p~;q q and p„M
indicates that the loss of long-range order in qthe liquid re-
sults in a 10—12% decrease in the perfect-crystal values
of p„);g(z).

The present electronic-structure calculations for these
various crystalline forms of cesium have been carried out
with the use of a self-consistent, scalar-relativistic ver-
sion o of the linear-augmented-plane-wave (LAPW)
method. ' In this scheme, the primitive unit cell is subdi-
vided into nonoverlapping muffin-tin (MT) spheres cen-
tered at each atomic site and an interstitial region. Each
LAPW basis function consists of a plane wave in the in-
terstitial region which joins smoothly onto products of nu-
merical radial functions times spherical harmonics within
the MT spheres. The coefficients in the latter expansion
are determined by matching the value and slope of the
functions at the MT radii.

This method imposes no shape approximations on ei-
ther the charge density or the potential. These functions
are expanded in terms of lattice harmonics (radial func-
tions times symmetry-determined linear combinations of
spherical harmonics) within the MT spheres and a Fourier
series in the interstitial region. The inclusion of non-

spherical (MT) and nonconstant (interstitial) corrections
to the crystalline charge density and potential becomes in-

creasingly important in achieving high accuracy in calcu-
lations for structures with low coordination (i.e., the dia-
mond and simple-tetragonal phases). The present formu-
lation of the LAPW method employs a frozen-core ap-
proximation in which scalar-relativistic atomic charge
densities are used to represent the cesium core
( . 5s 5p ) states.

In the present calculations for each structure, the
valence-band wave function for a particular wave vector
k has been expanded in terms of a linear combination of
LAPW basis functions with (k+ 6) & 2.0—2.5 a.u.,
where G is a reciprocal-lattice vector. This leads to a
variational calculation for the energies and expansion
coefficients involving approximately 60—70 LAPW s per
cesium atom for each of the crystal structures involved.
Based on past experience, this criterion is expected to
yield energy eigenvalues which are converged to about
0.01 eV.

The MT sphere radii were set at the value 8 =2.63 A
so that neighboring spheres nearly touched along the
nearest-neighbor bond directions for each structure. The
lattice harmonic expansion of the nonspherical contribu-
tions to the charge density and potential within the MT
spheres included all terms through I &4. The correspond-
ing Fourier expansion of the charge density and potential
in the interstitial region included about 400—600 plane

waves per atom.
The self-consistent iterations were initiated by starting

potentials derived from overlapping atomic charge densi-
ties. During each subsequent iteration cycle, the LAP%'
valence charge densities were evaluated by means of a uni-
form special-points sampling of the appropriate Bril-
louin zones. For the bcc, sc, st, and diamond-structure
calculations, the number of special points in the irreduci-
ble wedge of the Brillouin zone corresponded to 8, 10, 12,
and 10 k values, respectively. These valence charge-
density results were combined with those for the frozen
core and applied to calculate an output crystal potential.
In all calculations, the one-electron contribution to ex-
change and correlation effects have been treated in the
local-density approximation using the %igner interpola-
tion formula. (This exchange-correlation term is a one-
electron rather than a many-electron effect; it corrects
the average one-electron coulomb potential to remove the
interaction of an electron with itself. ) The calculations
converged rapidly to a self-consistent solution for each
structure in which the average difference between the in-
put and output potentials was about 0.001 eV and the en-
ergy eigenvalues exhibited even smaller variations.

Density-of-states curves have been calculated from the
self-consistent LAPW results for each crystal structure
with the use of the tetrahedral method. These calcula-
tions have determined both the total density of states
N(E) as well as the angular-momentum projections
NI(E). For the latter, the total density of states is weight-
ed by the factor f~"' " ', the integral over a MT sphere of
the individual angular-momentum components of the
LAPW charge density for the nth band at a given k
point. Since this factor does not include the correspond-
ing LAPW weight in the interstitial region, the sum over
angular momenta, f:g& f~, is less tha—n 1 for valence-
electron states.

The 8rillouin-zone integrations involved in the
density-of-states calculations for each structure have been
carried out using a fairly coarse k-space mesh involving
140, 84, 140, and 44 k points in the irreducible wedge of
the bcc, sc, st, and fcc Brillouin zones, respectively. The
mesh size b,k was chosen to subdivide the principal
Brllloum-zone dlmenslons along k» and ky 1Ilto six (sc, st,
and diamond structures) or 12 (bcc structure) subunits.
The choice c/a =1.5 in the st calculation allows an iden-
tical mesh size along k, with four hk subdivisions. To
simplify the diamond-structure K(E) calculations, the
tetrahedral integrations were extended beyond the hexago-
nal face of the fcc-type Brillouin zone so as to include a
sc-type wedge with twice the volume. The normalization
of the final results was adjusted accordingly.

The use of a fairly coarse k-space mesh in these N(E)
calculations is consistent with the present application be-
cause it tends to smear out fine-structure details in N(E)
which often arise from critical points near the Brillouin-
zone boundaries. The density-of-states results presented
in the following section have been further smoothed by
convoluting the tetrahedral results with a Gaussian func-
tion having a full width at half maximum (FWHM) of 0.1

eV.
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FIG. 1. LAPW energy-band results for bcc cesium along
symmetry lines in the Brillouin zone (inset). The arrows denote
Fermi radii derived from de Haas —van Alphen data (Ref. 26). z
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III. RESULTS

The present LAP%" energy-band results for bcc cesium

are shown in Fig. l, where E(k) is plotted along symme-

try lines of the Brillouin zone (inset). As known from

previous calculations, the unoccupied conduction bands

of the heavier alkali metals are dominated by the presence
of d bands above the Fermi energy EF. In Fig. I these ex-

tend roughly from the H, 2 to the Hzz states
The bands near EF are relatively isotropic and yield a

nearly-spherical Fermi surface. The arrows indicate

empirical Fermi radii that have been derived from de

Haas —van Alphen studies. The measured value of kF
along the 1"—X direction shows that the X& band is above

E~ by about 0.05—0.10 eV. N~ coincides with Ez in the

present calculations. However, this 0.05—0.10 eV error
corresponds to the estimated accuracy of the present
Fermi-energy determination. The general features of
these energy-band results are in excellent agreement with

those obtained in more recent as well as in earlier

theoretical studies.
The energy-band results in Fig. 2 trace the evolution of

the cesium electronic structure near E~ as the coordina-
tion number z is decreased at fixed bond length. Energy-
band results are plotted along symmetry lines of the ap-

propriate Brillouin zones (see insets) for hypothetical
forms of cesium with the simple-cubic (z=6), simple-

tetragonal (z=4), and diamond (z=4) structures. The
band labels in Fig. 2 specify the dominant angular-

momentum component f~"' ' of the LAPW wave func-

tion within the MT spheres at symmetry points. Based on
the band connectivity near EF, one might expect increased
s-p and s-d hybridization at EF in the simple-cubic and

simple-tetragonal structures in comparison with the
diamond-structure results. This is confirmed by the pro-

jected density-of-states results that are described below.
It is evident that the energy-band results near E~ for

diamond-structured cesium are dominated by Brillouin-
zone-boundary effects. This is due primarily to the fact
that the diamond primitive cell contains two atoms. This
leads to a semimetallic-type band structure with limited

S

—2I
r

=Y
xXWK

X 'N!'

(c)
Cil Q.

r K X

FIG. 2. LAPW results for hypothetical forms of crystalline

cesium with the (a) simple-cubic, (b) simple-tetragonal, and (c)

diamond structures. The dominant angular-momentum com-

ponent ft of the LAPW wave functions for individual bands at
symmetry points (see insets) is indicated.

band overlap occurring only near the X—8' line on the
surface of the Brillouin zone. These effects also produce a
deep minimum in the density of states at EF [see Fig.
3(c)]. Because of the fundamental relationship between
the Brillouin-zone geometry and translational symmetry
(i.e., long-range order), one can anticipate that the
diamond-structure results may not be representative of
those for a disordered fourfold-coordinated system. As
mentioned in the preceding section, these considerations
have led to the consideration of an alternate structural
model for z =4, the simple-tetragonal structure.

These conclusions regarding the electronic-structure re-
sults near Ez for diamond-structure cesium are consistent
with those of Joannopoulos and Cohen who have
modeled the electronic properties of amorphous Ge and Si
by means of pseudopotential calculations on complex
crystalline phases. According to their analysis, a specific
feature of the diamond structure is responsible for the ex-
istence of the corresponding density-of-states minimum in
the Ge and Si results, namely the presence of six-
membered chair-shaped rings. Using arguments based on
the distribution of molecular-orbital energy levels, they
show that this density-of-states minimum is washed out
when the local structural topology is modified to include
either five- or seven-membered rings. In this context, it is
interesting to note that stacking faults (which change the
shape but not the size of these rings) have little effect on



30 BAND MODEL FOR THE ELECTRONIC STRUCTURE OF. . . 3107

c) 2—

)
M
hJ
I-

m 0
2

0

~

~S

2

LL0 3—
0

C/)

2
Cl

(d)

0-2
~s

0 I

—1 0 2 -2 0 2
ENERGY (eV)

FIG. 3. Total X{E)and projected XI(E) curves near E+ for cesium with the (a) bec, (b) simple-cubic, (e) diamond, and (d) simple-
tetragonal structures. The projected results are weighted by f~, the integrated LAPW charge of angular momentum I within the MT
spheres. The curves have been smoothed with a Gaussian function with FWHM of 0.1 eV. The free-electron values NFE(E+) are
shown by the square symbols. The triangle in {a) denotes the band-structure density of states that is derived from specific-heat data
(corrected for electron-phonon enhancement effects, as discussed in the text).

the Si electronic structure in this energy range.
Density-of-states curves for these various crystalline

forms of cesium are shown in Fig. 3. As described in Sec.
II, these results have been calculated by means of the
tetrahedral method with the use of a fairly coarse k-space
grid to minimize peaks arising from critical points near
the Brillouin-zone boundaries. The curves have been fur-
ther smoothed with a Gaussian function with an O. l-eV
FWHM. The st N(E) curve in Fig. 3(d) exhibits a step-
like shape at low energies below the d band which is
characteristic of that for a two-dimensional electron gas.

The dashed curves in Fig. 3 correspond to the various
projected density-of-states results N~(E) (I &2) in which
the total density of states N(E) is weighted by the factor
fi, the angular-momentum decomposition of the integrat-
ed LAP& charge within the MT spheres. Since these
projections omit the corresponding LAPW weight in the
interstitial region, the quantities ft and Nt satisfy the rela-
tions g& ft f& 1 and gtNt(E) &N(—E—). The calculated
values of these quantities at EF for each crystal structure
are presented in Table II.

The general features of the bcc N(E) and Nt(E) results
are in good overall agreement with those obtained in pre-
vious energy-band studies. ' ' The resolution of the
N(E) and Nt(E) curves calculated by Jan et aL is par-
ticularly high. This permits one to identify those minor
features in Fig. 3(a) that are artifacts of the coarse
Brillouin-zone integration mesh and energy smoothing.
We note that the weight f~ of the linear-muffin-tin-orbital
wave function is normalized over the unit cell

(g&ft=l) so that the sum of the angular-momentum
projections yields gt Nt N-—

The triangle in Fig. 3(a) denotes the observed band-
structure value for N(E~) that is derived from heat-
capacity data for bcc cesium, using Grimvall's esti-
mate that the electron-phonon enhancement factor
(1+A,)=1.15 in this material. The agreement with the
calculated curve is excellent. Also shown by the square
symbols in Fig. 3 are the free-electron values of the densi-
ty of states at EF, NFE(Ez). The observed value of
N(EF) is clearly in better agreement with the LAPW re-
sult than that predicted by a free-electron model.

Another electronic property that is important for inter-
preting the Knight shift in expanded liquid cesium is the
Fermi-electron probability density at the nucleus,
(

~
%(0)

~
)~ . In the nonrelativistic limit, only s elec-

trons have finite charge density at the nucleus so that the
Fermi-surface average involves only the s component,

~
%,(0)

~

. In the fully relativistic Dirac theory, both the
s, &z and p&&2 functions have charge densities at the nu-
cleus, though the latter are reduced by a factor of order
n Z, where o.=I/137 is the fine-structure constant.
The present scalar-relativistic wave functions represent an
average of the j=I+—,

' components and do not include
this feature of fully relativistic p&&2 wave functions. %'e
estimate that these corrections amount to about 15% for
cesium (Z=55).

The evaluation of
~
%,(0)

~

in both the scalar-
relativistic and Dirac models is further complicated by a
weak though integrable divergence in the s&~2 charge den-
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TABLE II. Summary of calculated electronic properties at EF for cesium as a function of crystal
structure and coordination (z). The results include the free-electron and LAPW values for the density
of states XFE and X, respectively, the integrated charge in the MT sphere f, the square of the 6s com-
ponent of the LAPW wave function near the nucleus (

I
%,(rt)

I )E, and its ratio to the atomic valueF
g. The projected density-of-states values X&(E~) are calculated by weighting X with the corresponding

XFE(EF)'
N(EF )'
E,(EF )

Sp(EF )

Xd(EF)

bcc (8)

0.97
1.58
0.48
0.19
0.32
0.64
0.31
0.12
0.20
5.21

0.68

sc (6)

1.16
1.13
0.38
0.12
0.10
0.54
0.34
0.11
0.09
5.92

0.78

Structure (z)
st (4)

1.52
1.23
0 44
0.11
0.08
0.51
0.36
0.09
0.06
6.03

0.79

diamond (4)

1.55
0.18
0.07
0.02
0.01
O.S4
0.41
0.09
0.05
7.12

0.94

'In units states/eV atom.
"In units (a.u.),where r& -1.14&&10 a.u.
'g—:(

I
+,(r))

I
')E„/I%', (r)) I,'t, , where

I
4,(r)) I',„=7.61 (a u)

sity at r =0 for a point nucleus. As a result, one must
assume a model for the nucleus in order to calculate this
quantity directly. To avoid this complication, we approx-
imate

I %,(0)
I

by I III, (r~) I, where r&-1.14)&10 a.u.
coincides with the estimated radius of the cesium nucleus.

In calculating ( I%', (r~)
I )z for each structure, we

have included in the Fermi-surface average selected k
points from the density-of-states mesh for which the band
energies fall in the range E=EI;+0.2 eV. This average
over a finite-energy shell near E~ was introduced as a
means for modeling the expected band-structure and
Fermi-surface smearing in the liquid state. It had no sig-
nificant infiuence on the results.

In each calculation, approximately, 15 k points in the
irreducible Brillouin-zone wedge were included in this
averaging procedure. The results of this calculation are
included in the lower portion of Table II. This table also
contains values for the parameter g evaluated from the
approximation to Eq. (1):

g'=(
I O, (rg) I')x /I'Ii, (rg)

I „
where IV, (r~) I„, is the scalar-relativistic 6s charge
density at ~~ for the cesium atom. It is preferable to com-
pare experimental and theoretical values of g since this al-

lows cancellation of any systematic corrections to the
theory that occur in both the atom and the solid.

A careful analysis of the results presented in Table II
reveals an important relation between the values for g [or
( I%', (r&)

I )@ ) and f„ the integrated 6s charge density

inside the MT spheres,

f,:—f p, (r)dv .
sphere

To an accuracy of about 2%%uo, g is proportional to f„

/=2. 24f, . (4)

This result is perhaps not very surprising. It confirms the
intuitive idea that p, (r&)=—

I
%,(r~)

I

near the nucleus
should scale with the integral of p, (r) over the MT
sphere.

We can obtain a better understanding of the tabulated
values for g as a function of coordination in Table II by
plotting f,(E) for each of the four structures. These re-
sults are shown in Fig. 4. The corresponding g values are
indicated by the scale to the right, assuming that Eq. (4) is
valid over the conduction-band energy range. It is in-
teresting to note, for example, that the tendency for g to
increase toward the atomic limit ($~1) as the coordina-
tion number z is reduced occurs only in an energy range

l3CC (8)

o.5 — sc (6)--
(4)0.4—

0.2—

0.1

0 I
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C ESI UM
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0.4
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'0
1.0

FIG. 4. Variation with coordination and energy of f„the 6s
component of the LAP W wave functions within the MT
spheres. The corresponding scale of g values shown to the right
are derived with the use of Eq. (4).
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near E„. The opposite trend occurs for states near the
bottom of the 6s conduction band, where g exceeds 1 for
bcc-type coordination. Based on the shape of the f,(E)
curves near Ef, one expects little effect from the energy
averaging over +0.2 eV in the calculation of
( I +.{rt )

I )E„for each structure.

%e can compare the present calculated atomic charge
density near the cesium nucleu~

I
'Il, (& ~ ) I,t,m =7 61

(a.u. ) with the value extracted from atomic-beam mea-
surements, where

I
%,(0)

I „, =3.81 (a.u. ) . The
source of this factor of 2 discrepancy is not fully under-
stood,though it appears to be due to relativistic effects.
For example, a similar but smaller discrepancy has been
reported recently by Chermette, whose scalar-relativistic
calculations of I%', (0) I„, for cesium in the local-
density approximation overestimate the measured value
while the nonrelativistic results underestimate this quanti-
ty. Our atomic calculations carried out in the nonrela-
tivistic limit (c—+oo) yield I%', (r~) I,«~ ——2.77 (a.u. )

which is in reasonable agreement with the Herman-
Sklllman value, 2.5 {a.u. ) . However, these values
are significantly larger than those derived from fully rela-
tivistic and nonrdativistic Hartree-Pock calculations,
where

I
ql, (0)

I „, =2.44 and 1.63 (a.u.), respectively.

3.90

0.8—

Ia 06—
sc ~~ bcc

0 02 04 06 08 30 'I 2 l4 16 58 20
DENSITY (g crn ~)

FIG. 5. Density dependence of the spin paramagnetic mass
susceptibility g~~ for expanded liquid cesium along the coex-
istence curve. Sohd line; experimental results of Ref. 6 decom-
posed as described in text. Solid dots: calculated susceptibility,
enhanced according to Eq. (7}, calculated from the LAP% den-

sity of states X{E~}.Numerals indicate average coordination
numbels. Inset: density dependence of gg' 1n sol1d and llquld
cesium near the meltirig transition (dashed line). Data are taken
from Ref. 44 and normalized to those of Ref. 6 in the liquid
range. Percentage changes of Pg'~ and density are indicated.

IV. APPLICATION TO LIQUID CESIUM

A. Magnetic suscept1b111ty

In this section we compare the predictions of our band
model with the measured magnetic susceptibility of ex-
panded liquid cesium. The susceptibility was measured by
Frcyland along thc llquld-gas cocxlstcncc curve ovcl the
density range 0.65( p&1.8 gcm . In order to compare
our calculations with this result it is necessary to extract
the electron-spin paramagnetic contribution X'~ from the
total measured susceptibility 7„,. %'e consider 7„, to be
the sum of three contributions

where X'~ is the diamagnetic susceptibility of the conduc-
tion electrons and X'~ is the diamagnetism of the Cs+ ion
cores. In terms of mass susceptibilities, X' is known to
be —0.263&10 cm g

' and 7' can be calculated
from the theory of Kanazawa and Matsudawa ' for the
electron gas. Their result is

X'"=—0.8629r, '[I+0.0276r, ( lnr, + 1.51)]

Qp +10 crn g

where pg ls the mean dectron radius Tg =(3M/4&Pop)
a.u., M is the atomic weight and No is Avogadro's num-
ber. The results of this decomposition of g'~ for liquid
Cs along the coexistence curve are plotted as a solid line
in Fig. 5. A.s the density decreases from its maximum
value at the melting point, the spin susceptibility initially
decreases, then rises strongly to a peak near a density of
0.8 gcm

To calculate the mass susceptibility from our density-
of-states results, we assume an enhancement of the Stoner
form4'

pgN(Ep) Xo
1 —a M

where pz is the Bohr magneton and X(Ez) is the density
of states per atom. The enhancement parameter a is the
product JX(Ez ) of the density of states and the
exchange-correlation integral J.

At a density of 1.73 g cm corresponding to z =8, we
have X{EJ;)=1.58 (eVatom) ' from Table II. Nuclear
magnetic relaxation and Knight-shift measurements at
this density yidd (1—a) '=1.82 so that J=0.29 eV.
With these parameters, Eq. (7) yields Xg'~=0. 70X10
cm g

' which can be compared with the experimental
value 0.575+0.015 cm g '. The discrepancy of about
22% is not unreasonable in light of uncertainties in the di-
amagnetic correction and the enhancement parameter and,
of course, our use of a crystalline structure to model the
hquid. In fact, this result shows that a one-electron band
model provides a useful approach for approximating the
electronic structure of the liquid at high density.

Similar calculations are done for the z=6 and z=4
coordination numbers to obtain the band. -theory predic-
tion for the density dependence of Xg'~. We assume a con-
stant value J=0.29 CV and obtain the results plotted in
Fig. 5. It is clear that these one-electron results provide a
poor description of the experimental curve at low density,
predicting little or no increase in the susceptibility on
passing from z=6 to z=4.

Thc band model docs suggest a qualltatlvc cxplanatlon
for the initial decrease in Xg'~ that is observed at high den-
sity. The basic effect is due to a narrowing of the d bands
as the coordination number z is reduced. As shown by
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the z dependence of Nd(E+) and fd in Table II, this
causes a decrease in the average d character of the elec-
tron states at EF as z varies from 8 to 4. This trend is
consistent with the calculations of Yam ashita and
Asano for compressed bcc and fcc cesium which predict
a monatonic decrease in the d character at Ez as the lat-
tice parameter is increased toward the equilibrium value.

Of course, another contributing factor to the large value
of N(EF) for bcc cesium is the proximity of the N& state
to E~ in Fig. 1. Since this Brillouin-zone-boundary N~
state produces a sharp peak in N(E), it may be argued
that this feature is an artifact of long-range order that will

be substantially washed out by the effects of disorder in
the liquid. However, an analysis of Collings data for the

susceptibility change of cesium at the melting transition
shows that the change in N(EF) is exceedingly small.
After correction for ionic and electronic diamagnetism,
the data show that Xz'~ increases by only 2.8% at the
melting transition (inset, Fig. 5). This is thus a particu-
larly clear demonstration of the insensitivity to long-range
order of a feature of the electronic structure which differs
significantly from the free-electron model. For cesium,
the density dependence of Xg'~ across the transition is
identical with that of the liquid just above the melting
point; a weaker density dependence is observed for the
solid as it is cooled under its own vapor pressure.

This discrepancy between one-electron theory and ex-
periment at low density might, in principle, be reconciled
by allowing the exchange-correlation integral to increase
substantially. However, this is inconsistent with the mea-
sured nuclear relaxation rates interpreted according to
the Stoner model as it is usually applied to alkali metals at
normal density. In fact, application of the conventional
model to nuclear relaxation would require that J decrease
substantially at low density.

The resolution of this dilemma must be that the
Stoner-enhanced one-electron picture breaks down at low
density. The NMR data, for example, reveal significant
changes in the q dependence of the susceptibility enhance-
ment. Deviations from the Korringa relation between
the Knight shifts and nuclear relaxation rates provide a
rough comparison of the high-q (q-kF ) enhancement
with that at q =0. Analyses of the data for cesium and
sodium at low density show that the enhancement at high

q increases relative to that at q =0. This implies a trend
toward antiferromagnetic enhancement, in contrast to the
Stoner model which favors ferromagnetism (maximum
enhancement at q=0). Another aspect of the failure of
Eq. (7) is the observation that the susceptibility is limited

by the Curie value at low density. This is responsible for
the peak in the experimental results for Xg'~ shown in Fig.
5.' There is no intrinsic limit to the Stoner enhancement
of Eq. (7) and, in fact, near a transition to ferromagne-
tism, the susceptibility may greatly exceed the Curie
value. On the other hand, a Curie susceptibility is expect-
ed if the density of states itself is enhanced as predicted,
for example, for a highly correlated metal. As a result of
a high density of states, the effective degeneracy tempera-
ture becomes comparable with the experimental tempera-
ture at the high temperatures necessary for study of ex-

panded alkali metals.

B. Conduction electron wave functions

While the susceptibility provides an indication of the
evolution of the density of states at EF in the expanded
metal, the Knight shift combined with susceptibility data
reveals some features of the wave functions at low densi-
ty." The Knight shift may be written

(8)
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FIG. 6. Density dependence of the normalized charge density
at the nucleus g for expanded liquid cesium along the coex-
istence curve. Open circles: experimental values (Ref. 11) de-

rived from Knight shift (Ref. 9) and susceptibility (Ref. 6).
Solid circles: theoretical values from LAP W calculations.
Numerals indicate average coordination numbers.

where (
~

4(0)
~

)E is the average probability density at

the nucleus, averaged over states at the Fermi level. Us-
ing experimental values of E and the values of Xg'~ shown
in Fig. S, we have evaluated (

~

%(0)
~

)E from Eq. (8).
These values, normalized to the experimental atomic
value

I
%(0)

I „, =3.81 (a.u. ) according to Eq. (1),
are plotted in Fig. 6 for liquid cesium along the coex-
istence curve. As reported previously, " the result is that
g is roughly independent of density (/=0. 51+0.01) at
high density but, surprisingly, drops rapidly as the density
decreases below about 1.3 g cm . Since the low-density
atomic limit corresponds to g= 1, one might have expect-
ed g' to increase with decreasing density. Ultimately, of
course, at some density below the current experimental
range, g must again increase to the atomic value.

Our calculations of g from the band model given in
Table II are compared with experiment in Fig. 6. At the
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highest density (z=g), the theory overestimates g by
about 30%. This discrepancy is of the same order as we

found for the susceptibility and again indicates that the
model is reasonably good for the high-density metal.
However, the calculated trend for decreasing density is

opposite to that of the experimental values and the overes-

timate grows to roughly a factor of 3 for z=4. Thus the
theoretical result corresponds roughly to the intuitive ex-

pectation that g should increase toward the value /=1 for
a pure atomic 6s state, while experiment shows that either
the states are becoming less s-like at low density, which
seems very unlikely, or charge is moving away from the
atom and into the interstitial volume. Again, as we found
for the susceptibility, the one-electron model fails badly in

the low-density range.

where the overlap factor is

S= f y*.( r) (bt(r) dr (10)

and the + and —signs apply for the spin singlet and
triplet functions, respectively. Use of the wave function
of Eq. (9) to evaluate the charge density p(0) at one of the

C. Discussion: electron correlation
and exchange at low density

We have shown that the one-electron band model at low
density fails to account for the enhanced susceptibility,
even including Stoner-type exchange-correlation enhance-
ment, and the trend of the probability density at the nu-

cleus. These indications of significant changes in the elec-
tronic structure must be considered in the light of three
additional pieces of information: (i) the trend from fer-
romagnetic enhancement to antiferromagnetic enhance-
ment of the wave-vector-dependent susceptibility X(q); (ii)
the inference of an enhanced density of states and reduced
degeneracy temperature from the Curie limited suscepti-
bility at the lowest densities; and (iii) theoretical predic-
tions that the ground state of expanded atomic hydrogen
and alkali metal crystals should be antiferromagnetic. ' '

The density dependence of the conduction-electron
wave functions is qualitatively consistent with the impli-
cation of the magnetic properties that the short-range ex-

change interaction changes from ferromagnetic to antifer-
romagnetic at low densities. While a detailed description
of this effect represents a difficult challenge for theory,
the essential physics may be illustrated by consideration
of the Heitler-London model for the hydrogen molecule.
It is familiar result that the two-electron wave function
4+(r, , r2) may be represented by combinations of atomic
functions p, (r) and pb(r) centered on atoms a and b,
respectively, and spin functions X+.

%(r& r2)=1/[2(1+S )]' [$,(r))pb(r2)

+P, (rz)Pb(r ) )]X+, (9)

nuclei yields

Thus p+(0)/p (0)=(1—S )/(1+S ) and the charge den-

sity at the nucleus is smaller for the singlet (antiferromag-
netic) configuration than for the triplet (ferromagnetic).
Correspondingly, more charge may be found between the
atoms for the singlet configuration.

The observed trends in the electronic properties of ex-
panded cesium mirror these elementary effects in the hy-
drogen molecule, i.e., a shift of electronic charge from the
vicinity of the nucleus and antiferromagnetic-type ex-
change. Indeed, dense cesium vapor consists of atoms as
well as diatomic molecules whose ground states are spin
singlets. In the expanded liquid with average coordina-
tion number 4, density fluctuations can be expected to
lead to regions of significantly lower (and higher) local
coordination. Thus it is perhaps not surprising to find in-
dications of antiferromagnetic interaction in the low-
density liquid.

V. CONCLUSIONS

In this paper we have applied LAPW band-structure re-
sults to describe the electronic structure of expanded
liquid cesium. A structural model was assumed in which
the average nearest-neighbor coordination number de-
creases in proportion to the density while the nearest-
neighbor bond distance remains constant. The results
show that the one-electron band picture is a good model
for the high-density liquid, yielding reasonable results for
the density of states at E~ and the electronic wave func-
tion at the nucleus. However, this one-electron model be-
gins to fail at intermediate densities and ultimately pro-
vides a poor description of the low-density liquid metal.

We attribute the failure of the band model at low densi-

ty not to inapplicability of the structural model, but to the
dominant role of electron-electron interactions at low den-

sity. The observed physical properties, especially the
enhanced susceptibility limited by the Curie law and indi-
cations of antiferromagnetic interactions, are consistent
with the predictions of Brinkman and Rice for a highly
correlated metal. The magnetic properties of expanded
liquid cesium are essentially those of a nearly antifer-
romagnetie metal or an antiferromagnetic metal at a tem-
perature well above its ordering temperature.
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