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Approximate solution for the electronic density profile at the surface of jellium
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A simple faIMlp of trial functions foI. thc clcctlon1c dcns1tf Rt thc surface of Jelllum» which ac-
counts for Friedel oscillations and incorporates the Budd-Vannimenus theorem, is proposed. The
flcc parameters arc determined l3$ energy minimization. Model calculations g1vc good results foI'

the work function and for the induced surface charge in the presence of an external field.

INTRODUCTION

An advantage of the Hohenberg-Kohn-Sham' formal-
ism for an electronic plasma is the fact that the energy of
the system can be written as a functional of the electronic
density n (x) alone. Since this energy attains its minimum
at the true electronic density, it is suggestive to look for
approximate solutions by choosing a suitable class of trial
functions with several undetermined parameters, and to
minimize the energy within that family. Indeed, the first
rcahstic calculation of the jellium work function by
Smith employed a simple, one-parameter family of trial
functions. Since this approach gave good results com-
pared with the subsequent exact solution by Lang and
Kohn, similar sets of trial functions were employed in
studies on related problems. Recently, this approach has
been used in several theories of the metal/solution inter-
faces.

In this paper, we present a simple two-parameter class
of trial functions which, in contrast to the functions com-
monly used, accounts both for Friedel oscillations and for
the Budd-Vannimenus theorem and which reproduces the
results of Lang and Kohn remarkably well.

THE TRIAL FUNCTIONS
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where o is tile chaige dc11SIty orl tllc jclllum siirfacc, Rnd h
is the left half-moment calcula«d in thc Wigncr app«»-
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portant interfacial region.
The six undetermined parameters A, 8, tz, y, and 5

must satisfy the following relations: continuity of n (x)

(2R)

From the general properties of an electronic plasma,
and from the exact solution of the problem, one knows
that the electronic density n(x) drops off roughly ex-
ponentially on the vacuum side (x &0) of the jellium
cdgc, Rnd that lt tends t0%'Rrds thc bUlk value Pt+ with su-
perimposed Friedel oscillations on the metal side (x &0).
We therefore use the following family of trial functions,
which is a generalization of the one employed by Smith:

cos(yx+5) for x ~0,n x =n+
Be ~" for x ~0.

Frcidcl oscillatloils dccRy Rs 1/x Rild have R, wave
numb«of 2k'. This parametrization does not have this
RsyIIlptotlc bchav101. However» Rs w111 bc scen be10%v» thc
density with the parameters chosen the manner outlined
does have the correct amplitude and frequency in the im-

kz —(3+n+ )
I/' is the Fermi momentum,

=(3/4trn+ )'~2, and atomic units are used th«ughout.
y choosing g and B, say, as free parameters, tile sys-

tem of Eqs. (2) is easily transformed iilto a systc111 of two
nonlinear equations for a and y, which has to be solved
numerically» thc rcmalnlng two parameters can then bc
calculated directly from the others. The free parameters
are determined by minimizing the surface energy. With
an efficient minimization program, convergence is fairly
rapid foI' dcnsltlcs Pg+ + 5 Q 10;OIlly for very 10w densi-
ties it is somewhat slow. For our calculations, we have
used the energy functional given by Smith plus the
second-order gradient term for the kinetic energy as de-
rived by Ma and Sahni. The latter term is important; its
omission leads to work functions that are substantially too
small.
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We have performed model calculations both for un-

charged and charged jellium surfaces. Figure l shows an
example of the electronic density that we obtained for an
uncharged surface and the results of the exact calcula-
t1GQ. IQ GUI calculations thc Fricdcl osc111Rtlons 81c
somewhat less pronounced, but the first maximum ls al-
most exactly at the same position. The overall agreement
1s good consldcr1ng that only t%O paraHletcI's Rrc cIIl-

ploycd.
The jellium work function is a sum of the three terms:

the bulk chemical potential, the potential drop between
thc IDctal bulk RII thc )clI1UHl cdgc, vfh1ch 1s determined

by the half-moment condition, and the potential drop be-
tween the jellium edge and the vacuum at infinity. In our
calculation, the first two terms are exact, and only the
th1rd term 1s CRlcU18tcd through cQcI'gy IIQIIIl1zat1on.
The resulting work functions'compare well with those of
Lang and Kohn (see Fig. 2); they are substantially better
than the Smith values, and also compare mell with those
obtained by Sahm et ah. 1Il thc so-called 11ncRr potcnt181
approximation.

With our trial functions, it is easy to investigate the ef-
fect of an external field on the jellium surface. Figure 3
shows the variation of the electronic density 5n(x) in-

duced by 8 shcct %ith 8 small chRI'gc density s1tURtcd Rt

infinity. The result again agrees quite well with the exact
solution. The position of the main maximum and the
IIla1Q miIl1IDUID RI'c reproduced Nell; they Rrc some%hat
IIloI'c pronounced 1Q our Rpproxlmatlon %'hllc the RIDp11-

tude of the minor oscillations is reduced. Note that for
small o, the left half-moment in x &0 is unchanged; this
feature is not found in trial functions that have no Friedel
oscillations, and that do not obey the Budd-Vannimenus
thcol cm.

The center of mass xo of the induced surface charge
lies in front of the jellium edge. Since xo is also the effec-
tive image plane for a charge situated outside of the jelli-
um, this has the 1nteresting consequence that a metal
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PIG. 2. Elcctfonlc work function ln dependence of thc bulk
clcctI'onlc dcnslty. Solid linc~ oui calculRtlon; broken linc,

Slmth; solid clI'clcs, LRQg Rnd Kohn,

XO=—
CC

X Pl X X— I x 5n (x)dx,do.

capacitor composed of two plates of the same jellium
would have an effective plate separate which is smaller
than thc physical scpRI'Rtloll by 2xo. ' S1Qcc xo 1s typ1-
cally of the order of 0.5 A, this effect is not observable
with real metal capacitors. Thc1c 1s, ho&ever, 8 system
where this effect seems to be important: The double layer
at the interface between a metal and a concentrated inert
electrolyte acts like a capacitor with an effective plate
separation of about 3 A. Models of the interface which
consider the metal to be a perfect conductor, and which
consider the electrolyte to be an ensemble of hard-sphere
1ons Rnd dipoles, predict capac1t1cs %'hich Rrc considerably
too low. ' This can be explained by the fact that the ef-
fective image plane is in front of the metal surface, and
the effective plate separation smaller.

Calculated values for the center of mass xo at small

charge dcns1t1cs arc glvcn 1Q Table I; again thc agI'ccmcQt

with Lang and Kohn is good. For higher charges, we de-

fine xo as a differential quantity, so that it gives the posi-
tion of the image plane for the charge variation

0.0
-0.6 -0.2 0.2

FIG. 1. Electronic density at the jellium surface for zero

charge, Rnd r, =3. Solid line, ouI calculation; broken liIle, Lang
and Kohn. A, =2m/k~ is the Fermi wavelength. The arrmvs

give thc location Qf the IDRxima. FIG. 3. Induced surface charge dcnslty foI' P'~ =2.
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TABLE I. Effective-image-plane position for small excess

charge.

r, (a.u.)

'Lang and Kohn values.

X0 (A)

0.85
0.75
0.65

x0' (A)

0.85+0.03

0.69+0.1

0.5—

f' =2

where we have made use of the Budd-Vannimenus
theorem to reexpress the left half-moment. Note that the
derivative of the right half-moment gives the dominant
contribution for small o, and is necessarily negative, so
that at least for small charge densities, the center of mass
is positive. Figure 4 shows the variation of xz with o.
Over the investigated. range xo decreases vrith increasing
o.. The same trend has been observed by Theophilou and
Modinos" and by Partenskii and Smorodinskii. This in-
dicates that it is easier to pull electrons out of the metal

by an electric field than to push them in. At sufficiently
large negative fields, field emission would occur, which is
not incorporated in our model; this seems, however, to be
the reason why xo becomes unphysically large at higher
negative surface charges for low electronic densities.

CONCLUSION

This simple two-parameter trial function which we
have presented in this paper gives good results for the jel-
lium surface in the vacuum. It seems particularly suited
for the investigation of charged surfaces, and may also be

0.0
-0.2
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Chg den (C/m2)

0.1 0.2

FIG. 4. Effective-image plane posltlon as a funct1on of the
excess surface charge.

of use in more complicated systems such as electrochemi-
cal interfaces or adsorbates on metal surfaces.

An alternative to seeking an approximation solution to
the exact jellium problem is, of course, to seek exact solu-
tions to an approximate potential; the latter approach has
been pursued by Sahni et al. ' Depending on the system
under investigation, and on one's taste, either method may
seem more convenient.
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