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Enhanced far-infrared absorption in CePd3 and Ybcu2si2.
II. Infrared-active optic phonons in metals

L. J. Sham
Department ofPhysics, University of California Sa—n Diego, La Jolla, California 92093

J. %. VA'lkins

Laboratory ofAtomic and So/id State Physics, Cornell University, Ithaca, New Fork 14853
(Received 23 April 1984)

Zone-center optic phonons in a metal can be observed by the far-infrared absorptivity. A pro-
cedure for precisely estimating the intensity and line shape of these optic phonons is given.

I. INTRODUCTION

There have been very few observations of optic modes
in metals. The bulk of the theory and data is for doped
semiconductors. Principally the concern has been with
the effect of doping (i.e., increased screening) to decrease
the I.yddane-Sachs-Teller splitting of the transverse and
optical modes. It has, however, been noted that the rela-
tive contribution of the optical phonons to the far-
infrared (FIR) absorptivity should increase with the resis-
tivity of the metals. Our interest has been motivated by
the recent observation that some optic modes of CePd3
have been seen in a FIR measurement. Here we show
that the strength of the optic mode in the FIR depends on
the relative magnitude of phonon and electronic contribu-
tions to the dielectric function e(co). These relative mag-
nitudes vary with crystal structure and associated pho-
nons and with the nature of electronic scattering process-
es. In many metallic compounds some of the q=0 or
zone-center optic modes should be observable in the FIR.

While much of the analysis in this paper applies to all (3)
4-
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metals, we will specifically analyze the case of a valence
fluctuator CePd3, whose FIR spectrum stimulated this
work. When the spectrum (see Fig. 1) was originally pub-
lished, the two features at 14.7 and 21.6 meV were not at-
tributed to optical phonons. The principal reason for this
was that the preliminary measurements ' have given a
zone-center transverse optic phonon at 13.5 and 17.5
meV —i.e., there was nothing at 22 meV. In addition, the
measured shape of the features was different from that ex-
pected for phonons. One of the points of this paper is to
demonstrate how the electronic contribution to e(co) can
distort the phonon line shape. Nonethe1ess, there is no
doubt that the two features are due to phonons. Recent
measurements of the room-temperature phonons of
CeP13 (see Fig. 2) reveal that three zone-center optic
modes (each mode actually consists of two transverse
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FIG. 1. Absorptivity of CCPd3. Note the well-resolved

features at 15 and 22 mcV. The dashed line is a plot of the ab-
sorptlv1ty using thc measured dc 1cslstlvlty. These curves ale
taken from Ref. 4.

FICx. 2. Phonon spectrum of CePd3 along 5 (from point I to
point X) at room temperature. These curves are taken from
Ref, 6.
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modes and one longitudinal mode) are at 13.4, 15.9, and

21.2 meV. Furthermore, our analysis (see Sec. IIIA)
shows that the middle mode is not infrared active. The
slight difference between the measured energies at room
temperature (13.4 and 21.2 meV) and the position of the
features at 4.2 K (14.7 and 21.6 meV) may be due to tem-

perature dependence of the phonon spectrum.
The plan of this paper is as follows. Section II contains

the general theoretical approach for decomposing the
dielectric function in terms of the electronic and phonon
contribution. Details on the phonon terms are in Sec. III.
In the following paper this analysis is applied to fit the
phonon features in the absorptivity of CePd3.

II. GENERAL ANALYSIS OF SURFACE
ABSORPTIVITY IN THE FIR

A =4r, (2.1)

where r is the real part of the reduced surface impedance

A. Relation of absorptivity to the dielectric constant

The absorptivity A (co) of a surface is the fraction of in-

cident power absorbed on a single reflection. For the case
of normal incidence,

P,tt(q+G, co) = g e '(q+G, q+G';co)
Q S

(2.6)

and the Coulomb interaction is

v( q+G) =4me /
~
q+G

~

0, (2.8)

where 0 is the volume of the system. In Eqs. (2.6)—(2.8)
the wave vector q is restricted to the first Brillouin zone

prescribed by the reciprocal-lattice vectors G.
The macroscopic dielectric function e(co) is the inverse

of the q~0 limit of the element of the inverse dielectric

matrix (2.7) with G=O and G =0. This limit is readily
taken by defining a particular irreducible density-density

—+ -+
correlation factor X(q+G, q+G';co) such that X does not
contain v(q) as a factor. This definition singles out the

G =G'= 0 term. Then it follows that X satisfies

where the inverse dielectric matrix is

'( q +G, q +G', co)

=5-,+v(q+G)X(q+G, q+G';co) (2.7)

Z (co) =r +ix = [p(co)/e(co)]'~' . (2.2) X(q+G, q+G';co) =X(q+G, q+G';co)

Here e(co) and p(to) are the dielectric function and mag-
netic permeability, respectively, of the material. For
nonmagnetic metals, p(co)=1 and we will neglect it
henceforth.

The analysis of the experiment is only slightly more
complicated. In particular the radiation inside the sample
cavity is effectively incident at all angles. To within a few
percent the angle-averaged absorptivity in the FIR (where
r- ~x

~

—10 } is given by

A =4r[ —", +c(r)],
where the correction c (r)=r (2 lnr —0.5).

(2.3)

B. Connection of a{co) to density-density
correlation function

In general the dielectric function depends on wave vec-

tor q and frequency co. However, in FIR (q/2')-10
cm ' which is very small compared to typical electron
wave numbers (approximately 10 ). Accordingly, we want

the q~0 limit of the dielectric function.
In a metal (or any crystalline solid) the dielectric func-

tion is more complicated than for isotropic media. In gen-
eral, an external potential P,„,will induce a density

n;„d(r, t)= f d r'dt'X(r, r ';t —t')P,„,(r ', t'), (2.4)

where X(r, r ';r} is a density-density correlation. The in-

duced density generates a potential via Poisson's equation

+X(q+G, q;to)v(q)X(q, q+G';co) .

In particular (2.9a) implies that

X(q, q;co) =X(q, q;co)/[1 —v(q )X(q, q;co)) .

The q —+0 limit immediately follows,

e(co)=1— lim v(q)X(q, q;co),
q —+0

(2.9a)

(2.9b)

(2.10)

where we understand E(co) to be the macroscopic dielectric
function, i.e., the inverse of the q ~0 limit of
e (q, q;co). Since in defining X we have explicitly re-

moved the long-range interaction v(q), it follows that X
does not contain any long-range potential and hence
should be well-behaved as q —+0.

In Secs. II C and II D we shall work out the lattice and

electronic contribution to X(q, q;to). For simplicity, we
neglect the electron renormalization of the lattice charge
and the phonon effect on the electron conductivity. Then

X—Xph+Xef (2.11)

Rhc xlr+ ulcc ~ (2.12)

C. Ion charge and phonon propagators

In discussing phonons we use standard notation. ' '"
The position of the ~th atom in the 1th unit cell is

V P;„d(r,t)= 4m.e n;„d(r, t), — (2.5) where any equilibrium positions

where e is the magnitude of the electron charge. Both
(2.4) and (2.5) are easily solved by taking Fourier trans-
forms. In particular the effective potential Peff—Ijk

+P;„d is given by

X~&= XI + X&

are the sums of a vector xt defining the Bravais lattice
and of x„giving the relative position of the atoms inside
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the unit cell.
The displacement from the equilibrium position xl„ is

called ul„and can be written in terms of normal-mode
coordinates,

V

g e *'"e(lc
~ q,j)u

qsJ

(2.13)

where M„ is the mass of the lcth atom and N is the num-
ber of unit cells in volume 0; the density of ion s

nI nl——Q. The jth normal mode with wave vector q has
frequency co ., amplitude u ., and an orthonormal ei-

genvector e(lc
~ q,j) associated with the lcth atom.

To calculate Xph(q, q;co) requires the Fourier transform
of that part of the ion density associated with lattice
motion. Since we are interested only in the long-

wavelength part (i.e., q~O) we can approximate the ions
by point charges

npi, (q)= QZ(q, j)u
J

where the effective charge Z ( q,j) is
' I/I

q e(le[ q j) .Z ( q,j)= i g—Z„
M„

(2.17)

(2.18)

The calculation of Xph( q, q;co) reduces to

Xph(q, q;co)= —g ~
Z(q, j)

~
D(q, j;co),

R J
(2.19)

where D is the short-range part of the Fourier transform
of (T[u .(I)u .(0)]), i.e., of the phonon propagation

D(q,j;co). The general form for D is

The phonon density (2.16) can be reduced by the use of
(2.13) to

n;,„(r)=QZ„5(r —Rl„), D( q,j;co)=
co(co+ l p ~ . )—co~ .

qJ qJ

(2.20)

where Z„ is the charge of the lcth ion. The Fourier
transform of the ion density can be decomposed as

n ion( 1 ) n static( q )+ n ph( q ) i

whclc p . gIvcs thc daIIlpIIIg of thc pllonoll IIlodcs. T1Ic
qJ

phonon frequencies co . result from diagonalizing the

dynamic matrix N(q', lc, lc'). To calculate D we need 4.
Fortunately it has been shown that

n„„;,(q)=N5 -QZ„e,
~q O

K

and to first order in the lattice displacement

nph(q) = Q Z„e '"( i—)( q ul .).„
l, x

(2.15)

(2.16)

lim 4(q;lc, lc') =@(q= 0;lc, lc')
q~o

(2.21)

holds for metals. In other words, at q=0 we can usc D
for D.

W now have all the components to calculate the phonon
contribution to the dielectric constant,

I

2

[&(co)]ph= —llm [U(q)Xph(q, q;co)] = —lim
q ~ 0 q ~0 J II co(co+i)') co&&

—„QM„
A.J

2
J co(co+i/. )—co.J J

(2.22)

Here coj are zone-center phonon frequencies and

flj 4IrnIe g —— q e(lc
~

0 j)
M„

(2.23)

are the effective ion plasma frequencies for zone-center
phonons. Equations (2.22) and (2.23) are the central re-
sults in this paper. In Sec. III QJ is evaluated for various
cases; in particular it is nonzero for only those modes that
are infrared active. The special case of CePd3 is also ad-
dressed in Sec. III where a force-constant model is fitted
to the measured phonon frequencies. The resulting polari-
zation for the zone-center FIR active modes is used to
evaluate QJ via (2.23) and hence to deduce the intensities
of 'thc plI011011 features In FIR absorptlvlty.

[e(co )],i ——1+ 4micr(co).
(2.24)

As an example, consldcl thc Drude model 1n which a s1n-

gle, constant relaxation time ~ characterizes the scattering
of the electrons. The Drude ac conductivity is

ne'/m cop/4~
cTD(co) =

1
(2.25)——l QP

——I N

where n is the density of conduction electrons and cop the
electronic plasma frequency. If this is the sole contribu-
tion to e(co) —1 then the surface impedance (2.2) reduces
to

D. Electronic part of e(m) (1 i) . — (2.26)

The electronic part of e(co) for metals is very familiar.
If cr(co) is the ac electrical conductivity then Accordingly the absorptivity for the Drude model would
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increase with the square root of ni. This behavior is
shown by the dashed line in Fig. 1 where the relaxation
time used is that appropriate for the dc resistivity. Clear-
ly we need to enhance the overall absorptivity. A possible
model for doing this which is relevant for a valence fluc-
tuator is discussed in the following paper.

2GG 2.0

OA-

E. General discQ88ion of phonon line Sh.ape

O. I

QG7
QO4

e(n)) = 1

r (I+if)»+& (2.27)

where r(1+if) is surface impedance due to the electrons
at co=co . (Note: g= —1 for the Drude model. ) Then
for simplicity, supposing that ar (& 1, we can immediate-
ly write the absorptivity (2.1),

For the purposes of discussing the phonon line shape
we can concentrate on the frequency region within a few
decay widths of zone-center phonons. In that narrow fre-
quency range we approximate the electronic contribution
to e(co) by a constant. We define a reduced frequency

v= (co —coj )/yj.

and a dimensionless amplitude a=QJ/cojyj. Then the
dielectric constant can be written

O.OI

FICr. 4. Plot of fE, /fU defined in Fig. 3 for —g= x/r. —
Note the Drnde value g= —1.

extrema (fz If„) is plotted in Fig. 4 as a function of the
ratio of the imaginary part of the surface impedance to
the real part (g=x lr) For c.omparison the Drude values
are specifically indicated. Clearly the Drude value of r
and x will not explain the shape of the phonon features
seen in CePd3 (Fig. 1).

III. PROPERTIES OF INFRARED-ACTIVE
PHONONS

r

2v(1 —3g )+g(3 —g )

4v'+ 1

(2.28)

In this section we first survey the infrared- and
Raman-active modes and then analyze the phonons of
CePd3 to calculate the relevant QJ. .

A. Infrared- and Raman-active optic modes

where the second term is that due to the zone-center pho-
non. In Fig. 3 a typical plot of the quantity in the large
parentheses is in units of g versus v. The ratio of the two

We start by remembering that the contribution of a
zone-center phonon nij. to e(co) is proportional to an effec-
tive ion plasma frequency

0~=4nnle QZ„q e(a
~

O,j)/+M„. (3.1)

QJ-Ql)

Xj
-2 -I

Drude~& '
/2 y /

g/

For the large parentheses to be nonzero it must be invari-
ant under the transformation of the space group of any
specific crystal structure. Within the large parentheses we

see that q transforms like a vector, while each e(a
~

O,j)
belongs to an irreducible representation of the point group
of I . But if the scalar product q. e is to be invariant,
then only those e that transform like Uectors are infrared
active. ' For cubic crystals those modes are I 4, I ~5, or
TI„, depending on which notation is employed. A
similar analysis can be done for the Raman-active modes.
Table I contains a listing of the zone-center phonon
modes according to activity for several crystal structures
relevant for valence Auctuators.

FICi. 3. Typical plot cf normalized contribution of an optic
phonon to the absorptivity as a function of renormalized fre-

quency v=(m —u)j/yj-. Note that four characteristic points all
of which depend on the ratio g=x/r: the two extrema fI, and

fU, the value at the resonance frequency (v=0) and the zero
crossing. The dashed curve is for the Drude conductivity in
which g= —1.

B. Application to CePd3

To calculate QJ for the infrared-active modes, we need

to determine the polarization vector e(a
~

O,j). This is
achieved by constructing a force-constant model fitted to
the phonon frequencies measured by neutron scatterings.

CePd3 has the Cu3Au structure which is a simple cubic
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TABLE I. Optical modes in valence fluctuators.

NaZ)3

Pm3m (Op)
CUbiC

I'm 3m (Oy,')
cubic
Em3m (Op)
cubic

Em3c (Op)
cubic
Fd 3m (Op)
cubic

CeCU2Siq

EUCuqSiq

YbCU2Si2

CePd3, CeSn3
YbA13, YbIn3
Sm86

CeN, CeP, SmS
Smse, SmTe,
TmSe, TmTe„YbS
YbSe, YbTe
CeBei3

Acoustic

I 3 +I'5

I 4

I 4

I4

Infrared'

2I 3 +2I 5

I 4

I (++I 2+
+2I;+

I (++I"3+
+I 5+

co (X3 )—co (X4 )=4 (12) (3.2)

for one of three X3 modes. There is only one X4,
mode. Identification of this Xs with the highest mea-
sured Xs mode leads to complex force constants. Identi-
fication with the lowest measured Xs mode yields two
possible sets of force constants. The ambiguity is resolved

by the reasonable choice that the higher-lying mode I 4
'

corresponds to mainly Pd atoms vibrating against one
another wh11c thc lower-lying mode I 4 corresponds to
Ce beating against the Pd atoms.

The calculation of QJ. proceeds as follows. Since the
two transverse and longitudinal zone-center modes of any
symmetry are degenerate in a metal, we can arrange for
the polarizations of these modes to be parallel to three
crystal axes; thus only one set of polarizations is required
to calculate Az. We choose the charge of Pd Rnd Ce to 10

lattice with four atoms per unit cell: Ce at the corners of
the cube and Pd at the face centers: «=0 denotes the Ce
atom in the unit cell and a = 1,2, 3 designate the Pd atoms
on thc x,p, z plRncs, rcspcct1vcly. At thc Brillouin-zone

center, q=0, the dynamical matrix 4 (i~,a') has, from
symmetry considerations, only four independent elements:
@~(1,1), Nyy(1, 1), 4~(1,2), and @~(1,2). The other
elements are either zero or may be obtained from these
four by a pomt-group operation or by infinitesimal
translational invariance. However, these four force con-
stants are determined by only three nonzero phonon fre-

quencies at q=O.
An additional assumption of nearest-neighbor force

constants for phonons at X, zone boundary in the (100)
direction, yields

and 3.45, respectively, the latter number reflecting the
valence-fluctuating character of Ce. Then we found
0 (I 4')=4600 meV and 0 (I4')=420 meV. (If, as
our fourth condition, we had chosen the difference of the
zone-boundary frequency X4 and the higher-lying X3 ',
then we would have obtained 4400 and 610, respectively. )

) 1
4~l'G(co) QJ

J 67(CO+i)' )—CO.J J

where the zone-boundary phonons ~J can be taken from
experiment. The calculation of QJ, via (2.23), depends on
the crystal structure and the phonon dispersion. In the
next paper' we shall consider a model for o(cg) which has
a reasonable fit for all features of the absorptivity of
CePd3. Finally we would stress this central point: optic
modes in metals are observable in the FIR.
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IV. CONCLUSIONS

Wc have shown that the absorptivity can be calculated,
via (2.3) and (2.2), using
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