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The d fcorrela-tion model, proposed by Liu and Ho to explain the double-peak photoemission

spectrum of Ge, has been used to examine the f-band problem in Ce-based mixed-valence materials.

The problem is solved in the spinless approximation and under the assumption that the f-level occu-

pancy is nearly l on every Ce site. Two sets of d fhybri-dized bands, corresponding to the two

screening states of fo sites, have been found, and each set has two branches. At zero temperature,

the upper branch of the upper set of bands has real energies, while all three other branches have

complex energies. At finite temperatures, the quasiparticles in the upper branch also acquire a finite

level width. This effect gives rise to a d finteraction -contribution to the electrical resistivity whose

temperature dependence satisfies a simple scaling relation.

where

Ho = g e~d ~d ~ —ef g ftf
k i

and

—(U/N) g g d-„d-„,f;f; e
i k, k'

Liu and Ho proposed that the double-peak photoemis-
sion spectrum of Ce metal and some of its intermetallic
compounds is a manifestation of a strong d finteraction-
such that the emission of a 4f electron from a Ce site pro-
foundly alters the local electronic structure. ' Subse-
quently, the same authors studied the implications of
strong d fcorrelati-on on mixed valence. Throughout the
discussion the Ce sites are assumed to be independent of
one another. This is a good approximation at high tern-

peratures, but at very low temperatures the sites are
known to be correlated, and the elementary excitations are
well described by Fermi-liquid theory. This paper at-
tempts to delineate the effects of d-f correlation on the
spectrum of the fermion-type quasiparticles in mixed-
valence Ce systems.

The model employed here is the single-band spinless
model whose Hamiltonian is

traction of strength U to the itinerant d electron. The d-f
hybridization is given by the V term. The model is obvi-
ously oversimplified, but it is worth studying because it
allows some insight into the properties of real mixed-
valence Ce systems.

Consider a system in which all N Ce sites are in the f '

configuration. If we ignore the d fhybridization-, we can
construct the ground state of the system,

(4)

where ~0) is the vacuum state and kF is the Fermi
momentum. This state satisfies the Schrodinger equation

Ho
I
Wi&=&i

I fi&

with

Ei ——g e-„+Nef .
k (kF

Similarly, we can define a set of excited states
~
lb„) by

moving an arbitrary number of d electrons above the Fer-
mi level while keeping all f electrons in place.

When an f hole is created at site i, the d-electron states
are modified so that the new eigenstates

~ P (i) ) are

V=N '~ gg [V(k)d f;e '+H. c.) .
i k

There is one partially filled d band and one nondegenerate
f state per Ce atom. The N Ce sites form a periodic lat-
tice. The f levels are normally filled, but when the level
on a site is empty, the f hole presents a strong local at-

The new electron operators c„(i) are related to the band-
electron operators by a canonical transformation, '

ik ~ R;c„(i)=ga -„d„e
k
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and each state
I P~ (i) ) corresponds to a selected set of oc-

cupied one-electron states I nI. The f-hole states satisfy
the Schrodinger equation

Ho
I
P~(i) ) =(E~ —ey)

I
(jan~(i) )

where

E~ = +co„+Ne~,
n

(9)

(10)

and the ~„are the new one-electron energies. A complete
set of coherent one-f-hole states can be constructed.
These are

(k)) =N '~ g I P (i))e
2

and they satisfy the following orthogonality relation:

(12)

H IXi)=$'i IXi) . (13)

Let a be the annihilation operator of a quasiparticle the
k

energy of which is Q; thenk'

The d-f —hybridization interaction in Eq. (3) allows the

f site to propagate, and the propagating states constitute
the quasiparticles of the system. A complication arises in
the calculation because the V term also modifies the
ground state. The quasiparticle energy is, by definition,
the difference in energy between the ground state and the
one-f-hole state. Both energies are O(N), while we are
seeking their difference, which is 0 (1). The d finterac--
tion precludes the use of Wick's theorem to effect the sub-
traction analytically. We therefore do the subtraction for-
mally by using the equation-of-motion technique as fol-
lows. We denote the true ground state by

I Xi), the ener-

gy of which is w'„ i.e.,

electron-hole pairs on the site where an f electron is re-
moved. We will treat this effect by going to the p states
in Eqs. (9) and (11). Therefore, the quasiparticle propa-
gates by changing back and forth between a d hole and an

f hole, and the latter carries with it the response of the d-
electron system. The calculation is valid when the nnm-
ber of quasiparticles in the system approaches zero.

It is still difficult to solve the equations of motion
directly. Since f is only mixed with d, we may sim-

k k'
plify the problem by truncating the d-f —hybridization in-
teraction to one term:

V'= V(k)d f„+H.c. (17)

Ix-„)= I Q-„)+gA, P (k), (18)

where
I g „)=d

I g, &. This state satisfies the

Schrodinger equation

H'IX„) =(E,—Q-„) IX-, ), (19)

with H'=HO+V'. Inserting Eq. (18) into Eq. (19) and
making use of the result

we obtain

(Q
k

—6'
k

)
I f k ) + g A ~ (E~ —Ef E i +Q

k
)

I
lt ~ ( k ) )—

For k (kF it is easy to see that V'
I g, ) =0. Hence the

ground state IXi)= I/i). All other terms in V con-
tribute equally to the ground-state and the one-hole-state
energies. As long as the number of quasiparticles in the
true ground state is few, the use of

I gi) to approximate
the ground state should yield a good approximation. The
trial wave function for a quasiparticle is taken as

Ha-
I
Xi) =(@'i—Q-„)a-„

I
Xi) (14) =V(k)f-„

I fi)+V (k)gA, d-„f„ I P (k)) .
m

(21)

We obtain the equation of motion of a- by combining the
k

two equations,

Q a =[a,H] .
k k k'

Considering the d-electron operator, we find

[d-„,H] =[d-„,Ho]+ V(k)f-„,

where

(15)

(16)

Similarly, for the f-electron operator,

[f-, H] =[f-,Ho]+ V (k)d-„.

In the above equations the V terin mixes d with f-.
k k

The commutators involving Ho are complicated by the
presence of the U term. Consider a lattice in which all
sites are f'. Clearly, the contribution of the U term to
[d, Hp] is zero. In [f,Hp] the U term creates a set ofk' k'

(22)
A,~ = V(k)(p~(k) If-„ I

fi)/(E E~y
—Ei+Q-„) .

The equation for Q- is deduced from these results,
k

(k) If k I Pi& I'
Q- —e„=V g Q ey b, +(E' —E'i )——(23)

where

b.=Ei E'i ——g (e-—co —)
k k

k (k+
(24)

The first term on the right-hand side of Eq. (19) is a one-

f-hole state and can be expanded in terms of
I P (k)).

The second term is a d-hole state which contains
I
P-) as

k

well as its excited states. However, up to order V the ex-
cited states can be ignored. Applying (P I

and

(P (k)
I

in turn to Eq. (19), we obtain
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is the d-f —interaction energy defined in Ref. 3, and we

have ignored the k dependence of the hybridization po-
tential. Since the unperturbed state is a d-hole state, the
result applies for k &kz.

The matrix element can be written in terms of real-

space operators,

(25)

It will be shown in Appendix A that the matrix elements
on the right-hand side of Eq. (25) are independent of the
site i, and that they are identical to the matrix element in
the photoemission spectrum. In fact, if we denote the
spectrum by

p(&)= 2 I &4' (i) If( Ifi& I'&(&—&' +Ei), (26)

A (e), e&0
p E

0, 6&0'
where a=1 (5&r—), 5 is the d-electron phase shift at the
Fermi level, A —= (1.78p) '/I (1—a), and e is the bind-

ing energy. Then Eq. (23) can be cast in the form

(28)

a weaker peak at the Fermi level, should have a higher
band mass.

We also see that Eq. (17) has a real root Q- & of + 5,
k

which is the upper branch of the first set of hybridized
d-f bands. All other branches are inherently damped be-
cause the energy Q- lies within the continuum of the f

k

spectrum.
It is well documented that p(e) has the following

asymptotic expression near the threshold:
|

then Eq. (23) has the simple form

p(e')Q- —e-= V , dE
k k O Q~ Ef Q+E

(27)

Q- —e-=V A
&f ~+& )(& )

(29)

The integral can be carried out explicitly. For the upper
branch we obtain

The lower limit of the integral is the threshold of the
spectrum.

Some analytical properties of the quasiparticles can be
inferred readily from Eq. (27). The function p(e) has two
peaks, one at sf+5 and another at a lower energy

Ef +b.—(p —coi ). Consequently, the f level appears at
two places, each forming hybridized bands with d elec-
trons. The first one is relevant to the mixed-valence prob-
lem because it is situated near the Fermi energy. If the
quantity

~

6 —Ef —5
~

'is greater than the width of the
k

first peak, but much less than the separation between the
two peaks, we can simplify Eq. (27) as

Q- —e = V Ii l(Q- —ef ),
k k k

where Ii ——
& Pi ~

c ic i ~ Pi ) & 1 is the fractional intensity of
the first peak. This shows that the overall width of the
first set of hybridized d fbands is V(-Ii)'f . The bands
are not narrowed uniformly, however, as can be seen by
rewriting Eq. (27) as

(Q- e-)(Q- ef—b,)——
k k k

Q
k= V p(e') Q- —ef —6+g'

The right-hand side of the above equation can be looked
upon as the square of an energy-dependent d-f—mixing
matrix element. The quantity in the large parentheses is
less than unity, which again demonstrates the band-
narrowing effect. The reduction of the effective matrix
element is most pronounced when Q =-sf+5, i.e., when

k

the quasiparticle is more f-like. Thus, the quasiparticle
mass is enhanced over the band mass by two effects, one
being the hybridization with f states as in the convention-
al model, and the other the reduction of effective hybridi-
zation strength by d fcorrelation. The latter ca-n be test-
ed experimentally by correlating the mass with the photo-
emission spectrum. Those materials with smaller I&, i.e.,

Q e=n. V—A csc[ir(1 —a)](Q —ef —5)
k k k

and for the lower branch,

e-—Q-=m. V A [cot[m(1 —a)]—i I (sf+a, Q)—
k k k

(30)

(31)

The damping of the lower branch is strong near the cross-
ing point of the unmixed bands, E —Ef +6, and dimin-

k
ishes away from this point.

It is of interest to estimate the quasiparticle level width
in the lower branch near the crossing point, i.e.,
Q —Ef —b,=V. We find from Eqs. (27) and (28) that

k

ImQ-=mV(1. 78p/V) '/I (1—a)=V

l&i&=
I fi&+ g~ (32)

where

(33)

is a coherent f hole of zero wave vector. A completely
parallel discussion gives the following equation for the
ground-state energy 8'i.

because the multiplicative factor is of the order of unity.
We conclude that the level width is comparable to the
bandwidth, and consequently the lower branch represents
localized excitations as described by the impurity lattice
model.

The quasiparticle spectrum for k & kF must be obtained

by considering the excitation of a d electron and an f hole
pair from the ground state. For this purpose we need to
define a complete set of states ~P (i)) which have one
more band electron than

~
fi). Then the ground state

~
Xi ) is a mixed state of the form
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I
v(k) I'I &4(0) Id'-„f-„ I @i& I'

m

(34)

(k) f-„ I
Tp, & I'

=1+V'g
(f)-„e—g 6—+E~ E',—)2

where E' is the energy of
I P~(i) &. We define the quasi-

particle energy by
=1++ IA,

0-=E) —8')+e
k k

Then Eq. (34) can be rewritten as

(35) The left-hand side of (41) is equal to m*/mo, where m*
is the mass of the mixed d fban-d and mo is the mass of
the d band. It follows from Eq. (40) that

I &0 (0) ld'-„f-„ I Pi& I'
0- e—= V2+

k k
m 0 —e~ —6+p —e +Em —E ~

where we have made use of the fact that E
&

E&+@-—.
Thus, the solution consists of an upper branch of real en-

ergies with Q- & ay+5 —p+e- and a lower branch of
k k

complex energies with ReQ &@~+6—p+e-. It will be
k k

shown in Appendix A that the matrix element

&0 (o)ldkfk l@i&=&0 (i)ldkf I@i&~

where i is an arbitrary site. The last matrix element is
closely related to that for the photoemission spectrum.
Away from the band-crossing point the hybridization in-
teraction is reduced by the square root of

m'/mo ——1/(1 x/) —. (42)

(43)

The same result is obtained for k & kF. The d fcorrela--
tion effects do not appear explicitly in this relation, so it
holds regardless of how the correlation effects are treated.

Metallic Ce and many of its intermetallic compounds
have 4f occupation numbers very close to 1. They also
have high densities of states at the Fermi level. Both
properties are obtained from our model by placing the
Fermi level slightly above e/+ b, i.e., 0 &p —(e/+ 4) & V.

At an elevated temperature the quasiparticle problem
must be solved by considering an ensemble of states

I f„&
which have no f holes and a complete set of states

(k)& which have one f hole. A similar calculation
yields

&g, I d-„c,c,d-„1()& =I)+0 (I/&) (3g)
where

In the vicinity of the band-crossing point the equation for
Q „can be reduced to

PE PEP„=e e

with P= 1/k&T, 5E' =E' E'„and 5E„—=E„E,. By-
momentum conservation the matrix element vanishes un-

less k '+ k is equal to the total momentum of the state

I
1(„&. In the latter case,

&P (k') lf-, lf. &=&4 (i) If lf. &f OO lE'
~' (0; e/ 6+@')(—e')— —

(39)

p(&)= g&„ I &P (i) lf; lg„& I'5(e 5E' +5E„),—(44)

and the sum of k ' is dropped. Again, the result can be
written in the form of Eq. (27) with

which is the analytic continuation of Eq. (28) to the re-

gion k &kF. Thus, the dispersion relation for k &kF
joins smoothly with that for k &kF.

The coefficients A, in Eqs. (16) and (31) measure the
amount of f character in the mixed wave function. We
denote the f content by x/, and then

m, n

which is the photoemission spectrum of the f electron at
finite temperatures. We will calculate this quantity by us-

ing the effective boson model. "'
In the boson model the particle-hole pairs are treated as

independent harmonic oscillators. In the f' state the
Hamiltonian of the harmonic oscillators is

x/=y Iz 1++ IA, (40) K= +co;a;a;, (45)

for all k. We now derive a very simple relation between
x/ and the effective mass of the mixed d fband. It is-
readily found from Eq. (23) that

where co; is the energy and a; is the annihilation operator
of the ith mode. The Hamiltonian of the f state is

H'=H+ gk;(a;+a;), (46)
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where IA,; I are the coupling constants. The Hanultonian
H' is diagonalized by the canonical transformation

T=O

with the result

H'= pro;b;~b; —gA, ;/co; . (47)

The photoemission spectrum from the ground state is the
Fourier transform of the following function:

2

f(t) =exp g (e ' —1) (48)
O

O

The sum over i is transformed into an integral by intro-
ducing the density of harmonic-oscillator states N(co),

T

—~,.t c g (ro)N(ro),
(e ' —1)=

N

(49}

A, (co)N(co) =(1—a)co .

At finite teinperatures we find that

(50)

f(t) =exp (1—a) I I [n (ni) —1](e "'—1)

The edge singularity is reproduced if we identify the cut-
off frequency ni, =p and the coupling parameter'

—0.04 -0.02 0
& /1.78 p.

0.02 0.04

FIG. l. Temperature dependence of the f-electron photo-
emission spectrum. The temperature is expressed in units of
e~p/k, e~=1.78.

+n( )~(0e
'"'—l)I

e" sin (52)

The energy e is again the binding energy measured from
the threshold. The spectrum is shown in Fig. 1 for a
number of temperatures. One outstanding feature is that
at nonzero temperature the spectrum is nonzero at the
negative-binding-energy side. At low temperatures,
P ~

e
~

&&1, we find

(53)

(54)

At high temperatures, p ~

e
~

&&1, the spectrum is rather
flat and

p(e) ~ T (55)

A direct consequence of the finite p(e) on the negative-e
side is that the upper branch of the d-f—hybridized band
now acquires a finite level width. We have

where n (co)=(e~—1) '. The derivation of this result
and the subsequent Fourier transformation are given in
Appendix B. The result for the spectrum is

'1—a

p(e) = (1.78@) sin[rr(1 —a)]
2~ P cosh(Pe }—cos[a.( 1 —a )]

a—1

ImQ =m V p(ReQ —ef —b, ) .
k k

In Fig. 2 we show the temperature dependence of the level
width for a number of quasiparticle energies
e=ReQ- —ef —h. If the quasiparticle is at the Fermi

k

level, then its level width is related to the electrical resis-
tivity of the material. The results in Fig. 2 resemble very
nicely the observed resistivity curves, except at very low
temperatures where the resistivity is determined by
scattering of quasiparticles from each other. For the d-

f—interaction contribution discussed here, the tempera-
ture dependence satisfies a scaling relation

R (T) ~F(e!kjtT),
where e=p —ef —6, and

x 'sin[n. (1—a)] "
y . ~yFx= e~ sin

coshx —cos[~(1—a) ] o x

a —1

dy .

(56)

The scaling relation holds as long as the index a does not
vary too much from one material to another. Such a scal-
ing relation is well documented for the magnetic suscepti-
bility of Ce-based mixed-valence materials. '

At high temperatures the resistivity has the T depen-
dence given in Eq. (55). This result was predicted on the
basis of the impurity model. Thus, the present theory de-
scribes in a natural way the deterioration of f-site correla-
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APPENDIX A: MATRIX ELEMENTS

The properties of the d-f—mixing matrix elements in
Eqs. (23) and (35) are investigated here. Consider an f
hole at site i T.he relevant part of Ho is

Hc g»——-d -d -„—( U/X) g d -d, »

k k, k'

(A 1)

This is diagonalized by the transformation in Eq. (8)
ith3, 10

k 7/ I 78 p.

FIG. 2. Temperature dependence of the level width of quasi-
particles in the upper branch of the mixed d fband. T-he quan-

tity E=Q~ —Ef —5, 1n units of 1.78p, 1s the quas1part1cle ene1gy

measured from the edge singularity at ef+h. The same curves

represent the temperature dependence of the resistivity if e is the
Fermi level measured from the singularity.

a -„=A„/(»-„—co„),

where m„ is a root of the equation

1=(U/X) g (»-—n)„)

and A„ is a normalization constant given by

= g (»-„—co„)
k

(A2)

(A3)

(A4)

tion at elevated temperatures.
In summary, we have studied the effects of strong df-

correlation on the quasiparticle spectrum of a mixed-
valence system in the approximation that all sites have f '

configuration. A new mechanism of mass enhancement
has been found, and experimental verification has been

proposed. At finite temperatures the quasiparticle band
naturally deteriorates into incoherent local excitations,
and this gives rise to an electrical resisistivity whose tem-
perature dependence satisfies a simple scaling relation.
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If we approximate the band states by a dense set of evenly

spaced nondegenerate levels, we find a one-to-one
correspondence between the band states and the new

states, i.e.,

co-„=»-„—( 8'AX)5-,
where W is the bandwidth and 5 „ is the phase shift of the

band electron in state k when scattered by U. ' The nor-
malization constant is found to be

2„=( 8'/m N)sin5„.

The ground state of the one f h-ole-configuration is

~y()&= g „()g f, ~o&. (A7)
j (&i)

The matrix element (Pi(i)
~ f; ~ t'ai ) has the closed expres-

sion '

sin5„(»„—e )(a)„—co )

5„, „(n~„—» )(»„—ro )
(AS)

The sum on k„ is over all occupied states of
~ fi), so it is equal to zero on account of the inversion symmetry of the

ground state
~ fbi ). Further inspection reveals that the exponential factor is equal to 1, independent of the occupation of

the co„ levels. Consequently, all matrix elements (Pi(i)
~ f; ~ Pi ) are independent of the site i. The single-site matrix ele-

ments are identical to those which appear in the photoemission spectrum. '

We now turn to the matrix elements in Eq. (36). Consider a state

—+E =C~ E (A9)
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where the one-electron state c (i) is the one corresponding to the state k. Using the method outlined in Refs. 8 and 9
k

we deduce

sin5 (e-„—e„)(co-„—co„)
&P-„( ) Id-„f; I0 & '=&0( ) If IP & II, , p Xk. R

&@ (i) I"'-„f I @i&=&0-„Id"kf;
I @i&

( W/mX)sin5 „
E~—Q)

k

(co —co„)(co„—e„)
x g (co —e„)(co-co„)

(A12)

In the limit of large X, the product term can be approxi-
mated by exp[D(co ) D(co-„)],w—here

The same mathematical procedure in Ref. 9 leads to the
result in Eq. (28).

The exponential factor reduces to 1 for the same reason as
in Eq. (A8), so the matrix element is independent of the
site. By the same argument as used previously, we con-
clude that matrix elements of this form involving all

(i) ) are independent of the site.
Finally, consider a state

I P (i) ) defined by

l =C~ l ) E (Al 1)

The matrix element of this state can be related to the one
in Eq. (A10),

APPENDIX 8: PHOTOEMISSION SPECTRUM
AT FINITE TEMPERATURES

Consider one harmonic oscillator. In the f' state the
oscillator has the eigenstates

I a„)=(n!) '~ (at)"
I ao), (81)

where the ground state is defined by

Q Iao)=0.
In the f state the eigenstates are

I p„)=(n!) ' '(b t)"
I po),

where b =a +A, /co, and the new ground state satisfies

b
I PO& =o ~

Thc sollltloll of Eq. (84) ls, up 'to tllc lowest slgnlfllcant ol-
der of I,/co,

IPO) =(1—1, /2co )
I
ao) —(A, /co)

I al) .

By using Eqs. (83) and (85) we deduce that, again to the
lowest order of the coupling constant,

I P, ) = [1—(n + —,
'

)(&/co) ] I a„) ()n'~ —(A/)coI a„, g )

(n + I)'~—(A, /co)
I a„+& ) .

The contribution of the state
I
a„) to the f-electron spec-

trum is

p.«)=
I &P. I a. & I

'5(e)+
I &P.+l I a. & I

'5(e —~)+ I & p. -i I a. & I
'5(e+~)

= I+(A/co) [(n +1)5(e co)+n5—(e+co) (2n +1—)5(e)] . (87)

This is averaged over the equilibrium ensemble of states and Fourier-transformed to the time domain to obtain

f (t) = I+(A/co) [(e'"'—l)(&n )+1)+(e '"'—1)&n )]
=cxpI(A/co)'[(e'"' —l)(&n &+1)+(e '"'—l)&n &]I .

The total contribution of all harmonic oscillators is obtained by multiplying the individual contributions. The result is in
Eq. (51).

After expanding the boson distribution function in powers of e, we evaluate the integral in the exponent of f ( t)
term by term to obtain

J (e'"' 1)+ g J— (e '~ +""+e '~ "'" 2e @")=——ln(erp) —ln(5 —it) —g ln(1+t /p I ), (89)
QP I ]

0
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where 5=0, y is the Euler constant, and e~=1.78. The
function f ( t) has the compact expression

I mt

5ip

sinh(mt/P)
~t/

The spectrum p(e) is the Fourier transform

p(e) = J f(t)e '"dt .

(B10)

(Bl 1)

4ip
C~
4~

~ ~

~~).', )(~ p

~ ~

2iP

COMPLEX t PLANE

We use the contour method to evaluate this integral. For
e & 0 we close the contour by an infinite semicircle below
the real axis. The integrand is analytic except for an in-

finite set of branch cuts along the imaginary axis. The
end points of the cuts are t = i 5 an—d t = in —P,
n =1,2, 3, . . . . The contour is then deformed to wrap
around the lower part of the imaginary axis as shown in

Fig. 3. Between the end point —in ft and —i (n + 1)P, the
integrand is a real function multiplied by a phase factor
e '"+"" ' on the right-hand side of the branch cut,
and on the left-hand side the phase factor is the complex
conjugate. This discontinuity across the branch cut gives
the contribution to the contour integral between these two
end points. The sum of these contributions is

'~

C
C

)( —2 iP

;( —4 ip
C
C ~
C
C
C
C

Ret

1
p(e) =—

(erg�)

7r

FIG. 3. Contours for the integral in Eq. (811). The upper
contour is for e & 0 and the lower one is for e & 0.

X g sin[(n+1)~(1 —a)]
n=0

(n+1)P
X J e "~sin(n.r/P)

~

'dr.

(B12)

A few elementary manipulations put the above result in
the form of Eq. (52). For e&0 we wrap the contour
around the upper half of the imaginary axis and repeat
the procedure. The same result is obtained for p(e).
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