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Second-harmonic generation in reflection from a metallic grating
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We present a nonperturbative theory of second-harmonic generation in reflection from a metallic

grating. p-polarized light of frequency co is assumed to be incident on the grating surface from the
vacuum side, with the plane of incidence perpendicular to the grooves of the grating. We employ
the method of reduced Rayleigh equations to solve Maxwell's equations in the presence of a non-

linear polarization and calculate the diffracted field at the frequency 2'. In the vicinity of the fre-

quency where the incident photon couples to surface polaritons on the grating we obtain an enhance-

ment of the second-harmonic intensity by a factor of —10 over its value for a flat surface. The ef-

fect of the surface current density in the nonlinear polarization on the enhancement is analyzed.
Numerical results are presented for a grating of silver.

I. INTRODUCTION

The second-harmonic generation (SHG) of light in re-
flectio from a metal surface' has attracted considerable
interest recently due to the experimental discovery by
Chen et al. that SHG at a silver-air interface can be
enhanced by a factor of —10 by roughening the surface.
The roughness-induced excitation of a surface polariton
by the incident light resonantly enhances the magnitude
of the nonlinear source term in Maxwell's equations re-
sponsible for the reflected light at twice the frequency of
the incident light, and leads to the effect observed by
Chen et al.

A quantitative theory of this effect is difficult to con-
struct because a randomly rough-surface profile is very
difficult to treat, except in the small-roughness limit.
However, the deterministic, periodic surface profile pro-
vided by a one-dimensiona1 grating can be used as a model
for a randomly rough surface. Such a surface also allows
the incident light to excite surface polaritons and thereby
enhance the intensity of second-harmonic generation in
reflection. Recently, using perturbation theory, Agarwal
and Jha calculated the enhancement of the SHG in re-
flection from a metal grating surface.

However, one of the advantages of using a grating sur-
face instead of a randonily rough surface in studying opti-
cal interactions at rough surfaces is that such interactions
can be studied exactly in this case without the amplitude
of the grating being treated as a small perturbation.

In this paper we present an exact calculation of the
SHG in reflection from a metallic grating, assuming p
polarized light of frequency co to be incident on the grat-
ing surface from the vacuum side, with the plane of in-
cidence perpendicular to the grooves. Since in p polariza-
tion the magnetic field has only one nonzero component,
in Sec. II we obtain a scalar wave equation for this com-
ponent of the magnetic field, at frequency 2', in the pres-
ence of the nonlinear polarization. For the nonlinear po-
larization, which consists of a bulk term and contributions
from two surface current densities, one normal and one
tangential to the surface, we use the results of Sipe et al.

In Sec. III we employ the method of reduced Rayleigh
equations to solve the equation for the magnetic fidd at
frequency 2co and obtain the amplitudes of the reflected
waves. An advantage of this method is that only the elec-
tromagnetic fields directly required are calculated, which
reduces the computations by a factor of 2. Thus, in the
calculation of the first-order fields only the fields in the
metal are obtained: The first-order fields in the vacuum
are not required and enter the theory indirectly only
through the boundary conditions satisfied by the fields in
the medium. Similarly, only the second-harmonic fields
in the vacuum are calculated: Those in the metal appear
only indirectly through the boundary conditions satisfied
by the fields in the vacuum. In Sec. IV we present numer-
ical calculations for a grating of silver and discuss the re-
sults obtained. In Appendix A we obtain the amplitudes
of the magnetic field —at the fundamental frequency co-
inside the metal. These amplitudes are required for the
calculation of the nonlinear polarization presented in the
text. Finally, in Appendix 8 we present the boundary
conditions at a corrugated surface, for the magnetic field
at frequency 2co, in the presence of the nonlinear polariza-
tion.

After the present work was completed a paper appeared
in which a very general treatment of nonlinear optical in-
teractions (viz. , nonlinear mixing of two incident fields,
optical rectification, and second-harmonic generation) at
grating surfaces is presented. In this work, as in the
present paper, the surface profile function is not treated
perturbatively, but the authors of Ref. 9 do not use the
Rayleigh method: they use instead the differential
method, ' in which the Maxwell equations are integrated
numerically across the selvedge region. With this method
it is possible to study more strongly corrugated surfaces
than is the case with the method of reduced Rayleigh
equations used here. Fortunately, many of the most in-
teresting effects occur for corrugation strengths that are
sufficiently small for the method of reduced Rayleigh
equations to be valid. Another difference between the
present work and that presented in Ref. 9 is that in the
latter work, in the case of a metal, the nonlinear polariza-
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tion appears both as a source term in the Maxwell equa-
tions for the second-harmonic fields and in the boundary
conditions they satisfy. In the present work the second-
harmonic (magnetic) field satisfies a homogeneous equa-
tion, and the nonlinear polarization enters only through
the boundary conditions. This formulation of the prob-
lem leads to some computational simplifications.

II. FIELD EQUATIONS IN THE PRESENCE
OF A NONI. INEAR POI.ARIZATION

H(x, t) =(O,H„(x,z i
t),0) (2.1)

E(x,t)=(E„(x,z i t), O, E,(x,z i t)) .

From Maxwell's equations, with p = I, we have

H„(x,z i
t) = D„(x,t—i t),

1

z " c t

In this section we present the basic equations for the
electromagnetic field of the system that we are analyzing,
which consists of a nonlinear medium (metal) filling the
half-space z g g(x), while vacuum occupies the half-space
z & g(x). The surface profile function g(x) is assumed to
be a periodic function of x with a period a (Fig. 1). A @-
polarized electromagnetic wave of frequency co is incident
on the vacuum-metal interface at z =g(x) from the vacu-
um side. If the plane of incidence is taken to be the xz
plane, i.e., if it is perpendicular to the grooves of the grat-
ing, the electric and magnetic fields in our system can be
written as

FIG. 1. Geometry analyzed in the present paper. The metal
has 8 s1IIuscldal profile wltll period 0 slid amp11tucle go.

and

H„(x,z i
t)= —D,(, i t),

8 1 c)

Bx c Bt
(2.3b)

E„(x,z (
t) E—,(x,z

~

t) =—— Hy(x, z
~

t) . (2.4)
8 c) 1 8
Bz Bx c c)t

Since H(x, t) has only a single nonzero component it is
convenient to work with it. Thus, expressing the displace-
ment vector in Eqs. (2.3) and (2.4) as

a' a' 1 a'
2 + — Hy(x, z

i
t) =0, z & g(x)

Bx Bz c Bt
(2.6a)

D(x, t) =E(x,t)+4IrP (x, t)+4IrP {x,t), (2.5)
~I. ~XI

where P {x,t) and P (x,t) are the linear and nonlinear
polarizations, respectively, we obtain a scalar wave equa-
tion for the magnetic field given by

I) C)

Bx CIZ

a' 4~a -, , a
H, (x,z

i
t) —J dt'X(t t'), H, (x,z

i

—t')
c Bt -~ Bt'

47TBC) N'i. C) Ni(x,z (t) P„(x,z /—t), z~g(x), (2.6b)

where X(t t') is the linea—r susceptibility. In order to ob-
tain an equation for the harmonic components of the
magnetic field we expand all fields in the usual way'

Hy{x,z
~

t)= Hy"(x, z
~

co)e

+Hy '(x,z
i
2co)e '"'+, (2.7)

E„(x,z
~
t) = E„'"(x,z

~

~)e-'"
E„' '(x, z

~
2')e '~'+, (2.8)

E,(x,z
i
t)= E,'"(x,z

i
c0)e

+E' '(x z
i
2co)e '"'+ (29)

and substitute these expansions into Eqs. (2.6). In this
way we obtain as the equations for the amplitude of the
magnetic field at frequency co

c) B c0 e(co) H~"(x,z
i
co)=0, z&g(x),

c1x Bz c

c) 8 4' e(2')
Bx c)z c

8+i'm [V'Xp (x,z ~2')]y, z(g(x), (2.11b)

where e(m) is the frequency-dependent dielectric constant
of the metal, while the equations for the amplitude of the
second harmonic of the magnetic field take the forms

$2 . 2 4 2

2 + I + Hz '(x,z
i
2')=0, z &g(x) (2.11a)

c)x Bz c

Cl C) C0—
I + z + H~"'(x,z

i
co)=0, z&g(x) (2.10a)

where we have used the fact that
~NI. ~NL
P (x

i
t)=P (x i2co)e (2.12)
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The solution of the first-order equations (2.10), together
with the associated boundary conditions, for the elec-
tromagnetic fields in the metal [z &/(x)] that enter the
nonlinear polarization is described in Appendix A. In the
remainder of this section we focus our attention on the
second-order fields.

In Eq. (2.11b) only the bulk contribution to the non-
linear polarization can contribute to the inhomogeneous
term. However, as given by Eq. (Bl) in Appendix B, this
bulk contribution to the nonlinear polarization can be
written in the form

NL
P2i (x

i
2co)= VP(x

i
2co), (2.13)

where P( x
~

2co) is a scalar function. Since V && V

p( x
~

2co) =0, P ii ( x
~

2co) does not contribute to the inho-

inhomogeneous term in Eq. (2.11b), and consequently the
wave equation for the second harmonic of the magnetic
field becomes a homogeneous differential equation given
by

Q2 Q2 4~2
2 + 2 + H„' '(x,z

i
2co)=0, z) g(x) (2.14a)

c)x clz c

c) cI 4co E(2co)
H„' '(x,z

~

2co)=0, z &g(x) .
c)x c)z c

(2.14b)

The nonlinear polarization therefore contributes to the
magnetic field only through the boundary conditions. As
shown in Appendix B, they are given by

and

Hy' '(x,z
~

2co)
)
+= — Hy"(x, z

~

co) g'(x) HY'"(x, z
~

co)+ Hy"(x, z
~

co)
coe(co)2 g dn ' '

c)z Bx z=g(x)

(2.15a)

Hy '(x,z
~

2co)
e 2co z dn

1 167rl'1 c 1 cI (i)
Hy x,z ~co

E(2co ) coe'(co) g c)x

cl2
Hy "(x,z

i
co)

c)x

+g'(x) H'"(x, z
~

co)
c)z

82
Hy "(x,z

i
co)

82
+ Hy"'(x, z

~

co)
BxBz

32myca, ]

coE( co ) g

&&
&

~~ (x,z ~co)+g'(x) H~"(x,z leo)az ~ Bx

Hy "(x,z
~

co)

z =g{x)

02
g'(x)g"(x) Hy'"(x, z

~

co)+ H'"(x, z
~
co)

g2 gx2

+ ~ g"(x)[1—g'(x)2] Hy"'(x, z
~

co)
g Bz

a2 1 82+ ~( )~ ~
H ( '

I )+g' Ox' g' gz'

+ H,'"(x,.
~

~)

82.&'(XC"(x)
~ H,"'(x,z

~
~)+,g'(x)' H,"'(x,z

~
~)g' BxBz

a2
+ 2 g'(x) Hy'"( zx~ co)

g Bx

82
, H,'"(x,z ~~) (2.15b)

where we have used the notation
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and where the quantities y, b„c(„g,e(2co
~
z), etc a. re defined in Appendix B.

(2.16)

III. THE METHOD OF REDUCED RAYI.EIGH EQUATIONS
FOR THE SECOND-HARMONIC FIELD

In this section we obtain the amplitude of the second-harmonic field refiected from the grating, by the method of re-
duced Rayleigh equations. We require the solutions of Eqs. (2.14) to be outgoing waves or exponentially decaying at in-

finity. Then the solutions of Eqs. (2.14) outside the grooves of the grating that satisfy these boundary conditions can be
written as

Hy' '(x,z
~

2co)= g A~(2k
~
2co)exp[ik~ 'x+icz~(2k

~
2co)z], z) g(x),„ (3.1a)

and

H„' '(x,z
~

2co)= g 8&(2k
~ 2co)exp[i' 'x cP&—(2k

~

2co)z], z &g(x),„, (3.1b)

where we have defined

1/2

~ (2k
~

2~) (k(&))2 (k(2))2 4 2y 2
(3.3a}

' 1/2

(k(2) }2 4co
P

(k(2))2)4 2y 2 (3.3b)

4co e 2co
Pq(2k i

2co)= —(k' ') ReP~(2k
~

2co) ~0, Im/3~(2k
~

2co) &0, (3.4)

k = (co/c)sin8, (3.5}

where 8 is the angle of incidence. If az(2k
~

2co) is real, Az(2k
~

2co) is the amplitude of the pth-order beam diffracted
from the grating at the frequency 2co. If ccrc(2k ~

2co) is imaginary, the corresponding contribution to H„' '(x,z
~

co) and
the remaining electromagnetic field components are localized to the grating surface.

The Rayleigh hypothesis" consists of the assumption that the expressions for the fields given by Eqs. (3.1), which are
valid outside the selvedge region, can be continued in to the interface itself and used to satisfy the boundary conditions,
Eqs. (2.15). When this is done we obtain the following pair of equations for the determination of the coefficients

[ A~(2k ~2co)j and [B~(2k
~
2co)j:

[Az(2k ( 2co)exp[iczz(2k ( 2co)g(x)] —8&(2k
~
2co)exp[ iP&(2k

~

2c—o)g(x)] jexp(i' 'x)

2m& ybs 1
(X)

[[P (k
~
co)+g(x)k ][k„—g'(x)P„(k

~
co)] j

coo(co) 1+ I &'(x)]

X& (k ~co)&„(k ~co)expIi(k +k„)x )[P (k ((co)+P„(k—~co}]Px)j,

(3.6a)
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[az(2k
I
2co) g—'(x)kz ']A&(2k

I 2co)exp[i'(2k I
2co)g(x)]

[pp(2k I
2co)+g'(x)kp ']Bp(2k

I
2co)exp[ —ip~(2k

I
2co)g(x)] exp(ik~ 'x )

4 00

( —k [«.)'+p « l~». (k I~)]+0'(x)p « l~)t[p. « l~)]'+k k. })
7

xB (k I~)8.(k lco)expIi(k +k„)x i[p (k l~)+p. (k l~)]g(x)}

32miyca, ~ g"(x)k
Ig'(x)k„+[1—g'(x) ]p (k

I
co)}

co«co)' „„ t 1+[g'(x)]'}'

I
—(k„) +2('(x)k„p„(k

I
co) —g'(x) [p„(k I

co)]'}
1+[g'(x)]

P(k—
I
co)P„(k

I
co)

'(x)g"(x)

I 1+[/'(x)] }

, p «
I
~)I20'(x)k.p.« I

~)—«.)' —&'(»'[p. (k
I

)]'}1+[g'(x) ]

yB (k
I
co)B„(k

I
co)expi(k +k„)x i [p —(k

I
co)+p„(k

I
co)]g(x), (3.6b)

where the quantities k;, P;(k
I
co), and 8;(k

I
co) (i =m, n) are associated with the field H~" (x,z

I
co) and are defined in

Appendix A.
Now we focus our attention on the coefficients I A~(2k I

2co) } that give the amplitudes of the waves reflected back into
the vacuum. We can eliminate the coefficients I 8&(2k

I
2co) } from the pair of equations (3.6) to obtain an equation for

the I Az(2k
I
2co) } alone. We do this by first multiplying Eq. (3.6a) by

[P„(2k I
2co) —g'(x)k„' ']exp[ik„' 'x —iP„(2k

I
2co)g(x)],

then multiplying Eq. (3.6b) by e(2co)exp[ ik„' 'x—ip„(2—k
I
2co)g(x)], adding the resulting pair of equations and finally

integrating the result with respect to x over the interval ( —a l2, a/2). In this way we obtain

—I dx expI i (k„' '
k~—')x —i[—P„(2k I

2co) a~(2k
I
2co)]g—(x)}

P =—00

&& I[p (2k I2~)+«2~)ap(2k I2~)]—0'(x)[k,"'+~(2~)k,"']}~,(2k I2~)

+ f i dx exPI i(k,'" k'")x —i[p, (2k—
I
2co)+p (2k

I
2co)]g(x)}

X I
—[p„(2k

I
2co) —p~(2k I

2co)]+/'(x)(k, ' '+k~ ')}8&(2k
I
2co)

—I dxexpI i(k„'" —k —k„—)x —i[p„(2k l2co)+p (k Ico)+p, (k
I
co)]g(x)}

m, n= —m
a

, [p.(2k
I
2~)—g'(x)k'"][p (k

I
~)+g'(x)k ][k„—g'(x)p„(k

I
m)]1+[g'(x)]

+8 (k
I
co)B„(k

I
co)
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+ ~z g —I dx exp[ —i(ki ' —k —k„)x —i[p, (2k
~

2m)+p (k
~

m)+p„(k
~
a&)]c(x))

m, n= —w ~

X(—k [(k„)'+P (k
~
~)P„(k

~
~)]

+&'{»P {k t)I[P. « l~)l'+k k. j)& (~~)a„(k ~m)

I— dxexpI —i{k„' ' —k —k„)x i[—p„{2k
~
2co)~p (k

~
co)~p„(k

~
co)]g(x)j

coE(co)'

g"(x)k
X ~ (f'{x)k„~Ii —[g'(x)]~jP„(k

~

co))i+ [g'(x)]'
0+, , I

—(k„)'+2/'( )k„P„(I
~

) —g'( )'[P„(k
[ )]'j&+/'(x)'

~ ~ P (k
i
co)P„(k

i
co)

g'(x) g"(x )

&+ '(x) ~ ~

1 ~g(x) P (k
~

)I2$'( )k„P„(k
~

)—(k„)'—g'( )'[P„(k
~

)]'j

X 8 {k )co)8„(k (co) .

When we integrate by parts the terms containing g'(x) on the left-hand side of Eq. (3.7), the coefficient of
I 8~(2k

~
2co) j vanishes, and we obtain

P, (2k ( 2co)a„(2k I 2co)~k„' 'k~ '

P„(2k i
2co)—a~(2k

i
2co) a

xcxp —E k„—
&

x —I, ~ 2k 2M —
A& 2 2' x 3& 2 2M

CC

[P,(2k
~
2co)P (k

~
co)k„F„' ' „(P,(2k

~
2co),P (k

~
co),P„(k (

co))
e(2co) j cog(co)2 m, n= —ce

~ IP„(2k
~
2co)[k~k„P~(k

~
co)P„(k—

~
co)]—k„' 'P~(k

~
co)k„j

X &,"',(P„(2k
~
2co),P (k j co),P„(k (

co) &

—Ip, (2k
I 2~» p„(k I

~)+k„"'[k k„p(k
~
~)p„(k

~

~—)]j

XF, „(P„(2k i2co),P (k /co), P„(k fco))

+k'"k P.(k I
~)~"-' —.(P.(2k I2~»P (k

I ~»P.{k
I
~))94{k

I
co)&.{k

I
~)

I6miey
&(2co)—& coo(co)~
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m, n = —oo

P (k
I co)[[P„(k

I
co)] +k k„](k„' ' —k —k„)

p, (2k
I
2')+p (k

I
co)+p„(k

I
co)

a/2
~ (2)

&&
— dx exp [ i —( k, —k~ —k„)x
a

—i[p„(2k
I
2'))+p (k

I
co)+p„(k

I
ct))]g(x)]B (k

I
)B (k

I
~)

32mi @ca,e(2' )

&(2'�)—1 co&(co )

where

X g [ i[k (k„—)'+ ,'[k k—„—p (k ice)p„(k ice)](k„' ' —k —k„))
m, n =—oo

x I'"' .(P.(2k
I
2~) Pm(k I~»P. (k

I
~»

+ ~ [[2k~P.(k I ~)+Pm« I ~)kn]kn

~ [k~k. P~—(k l~)P. (k l~)][P,(2k
I
2~)+P (k

I
~)+Pa(k l~)]

+k k„(k„"'—k —k„)}&„"' „(P„(2k
I
2~),P (k

I
~),P.« i~))

+ i j [2p (k
I
~)k„+k p„(k I ~)]p„(k

I
co)+ k k„[p„(2k

I
2')+p (k

I
co)+p„(k

I Qy)]]

&& y,' ' „(p,(2k
I
2'),p~(k

I
co),p„(k I

co))

iP (k I~—)[P„(k I~)]'r,'" „(P„(2k I2~),P (k I~),P„(k
I
~)}

+[i P„(k leo) —k k„]U, „(P,(2k I 2'),P (k icy), P„(k Ico))],

—.(p.(2k
I
2~» p~ «

I
~»p.« I

~))

dxexp[ i(k„' ' k——k„)x——i[p„(2k 2~)+p~(k
I
~)+p. (k

I ~)]Ax)1
g —a/2 1+[g'(x)]

(3.8)

with /=0, 1, 2, 3, and

U„„(P,(2k
I
2'),P (k

I
a)),P„(k

I
co))

II

=—f dxexp[ i(k,' ' k~ —k—„)x i[—p„(2—k
I
2')+p (k

I
co)+p„(k

I
co)]g(x) J . (3.10)

a 1+[0'( )]'

IV. DISCUSSION OF NUMERICAL RESULTS

In this section we present and discuss the numerical results obtained for the intensity of the second-harmonic field re-
flected from. a grating characterized by a sinusoidal profile, given by

g(x) =cocos
2m

X
a

(4.1)

For this profile function we can rewrite Eq. (3.8) as

M„z(2k
I
2')A&(2k

I
2') = g C„~„(2k

I
2')B~(k

I
co)B„(k

I
co), r =0, +1,+2, . . .

with

(4.2)
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/3„(2k
I
2co)ap(2k

I
2co)+k„' 'k~ '

(4.3)

C„„(2kI2co)= — k [(k„) +p (k
I
co)p„k Ico

"J. ~ n-( [—P.(2k I2~)+p « I~)+p. (k I~)]go)

+(2b,P„(2k I2co)P (k
I
co)k„

+ia, e(2co)I2k (k„) +[k~k„—p~(k
I
co)p„(k

I
co)](k„' ' k ——k„)])

x Y„' ' „(P,(2k I2co),P (k Ico),P„(k
I
co))

+(», fp, (2k 2~)[k k. —p « I~)p. (k l~)l k' 'P —« l~)knI

ia, e—(2 co){2[k p„(k
I
co)+/3 (k co)k, ]k„—[k k, P(k

I
c—o)p, (k

I
co)]

x[P,(2k
I
2~)+P~(k

I
~)+P.«

I
~)]+2k k.«' ' —k —k }I)

x y„"' „(P„(2k I2co),P (k
I
co),P„(k

I
co))

—(2b, IP, (2k
I
2co)k P„(k I

co)+k„"'[k k„P(k
I

co)P—„(k
I
co)) I

+i a«2 c)oI
—2[2P~(k

I
co)k„+k~P„(k

I
co)]P„(k co)

+2k k„[P„(2k
I
2co)+P (k

I
co)+P„(k

I
co)]I)

x I'„' ' „(P„(2k
I
2co),P (k

I
co),P„(k

I
co)}

+2Ib, k,' 'k P.(k I~)+ia, ~(2~)p (k f~)[p.(k l~)]'j I„'" „(p„(2k I2~),p (k I~),p„(k f~))

—2ia.«2~)[k p.« I~)—k k. ]U, .(p, (2k I2~),p (k I~),p. (k l~)}, (4.4)

where J„(x) is a Bessel function.
In order to calculate the enhancement of the second-harmonic field we must normalize all Fourier components

[ Az(2k
I
2co) I by the amplitude of the reflected field at a flat surface. This amplitude can be calculated by taking g(x),

g'(x), and g"(x) equal to zero in Eq. (4.4). In this way we obtain

Po(2k
I
2co)ao(2k

I
2co)+4k 1 16aicy

Af(2k I2co)= Cppp(2k I2co)[Bf(k leo)]
2co —1 co«co)'

where

CQ 0 0 (2k
I

co ) =k ( —[k ' + [Po«co )]' I +2b, Po( 2k
I

2co )Po« I
co ) +2ia. «2co )k ' )

From Eqs. (4.5) and (4.6) we find that

(4.5)

(4.6)

Bf(k
I
co)

veAf(2k
I
2co) = —16mi k.—

C

y
E(2co)ao(2k

I
2co) +Po(2k

I
2co)

x 2b, c 2k 2

2 PQ(2k
I
2co)Pp(k

I
co) —2l'a e(2co)

E(co)co E(co)co' (4.7)
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where A/(Zk j
Zco) and B/(k j

co) are the amplitudes of
the fields at the flat surface.

We define the efficiency of the nth-order beam diffract-
ed from the grating at the frequency Zro in the same way
that this is done for the nth-order beam diffracted at the
frequency ro, viz. , by dividing the total energy in the dif-
fracted beam crossing a plane z =const in the +z direc-
tion by the total energy in the incident beam crossing the
same plane in the —z direction, and picking off the con-
tribution proportional to j A„(Zk j Zco) j . If we now nor-
malize this efficiency by the corresponding one for the
flat surface, we obtain the grating induced enhancement
of the second-harmonic efficiency,

I„=a„(Zk j Zco) j A„(Zk
j

Zro) j (4.8)
ao(Zk

j
Zco) j A/(Zk j Zco) j

I

-0 Ir/a -kpo~ (Pui) -P~/0

k (real)
FIG. 2. DispcxMGQ Iclation foF sUIfacc polaAtons on a f1at

sUIfacc (solid 1inc). Thc dashed 1inc j.s thc 1lght linc.
We will call this quantity the intensity of the nth-order

diffracted beam at frequency Zro. We will be concerned
only with the values of I„associated with diffracted
beams, i.e., those for which a„(Zk j Zco) is real.

In order to present the numerical results illustrating the
gl'Rtliig llldllccd cilllallcclncllt of second-harmonic gcllcla-
tloll, wc assume R gl'Rtlilg of silvcI' wltll R period
a=8000 A and the frequency of the incident radiation
corresponding to 1.17 CV. This frequency corresponds to
the one used by Chen et a$. in their study of the enhance-
ment of SHG by 8 randomly rough surface. The dielec-
tric functions at the fundamental frequency and at the
second-harmonic have the values

Iae— 0 -" SOGQ. O

go=(20.0
b~"- - l.G

Og = -2.0

1 1 1 1 1

C(ro) =(0.04+7.5i) (4.9a)

respectively.
The coefficients I A~(Zk j Zro) j are obtained by solving

Eq. (4.2) with a matrix M of finite dimension K (corre-
sponding to r,p= —N/2, . . . , 0, . . . , E/2 —1) and in-
CrCSS1Qg X QQt11 3, COQVCrgCQt SOIUtlOQ 18 ObtMQCd. S1QCC

in the method of reduced Rayleigh equations the solutions
converge only for small values of the corrugation strength
go/a, we consider values of go/a (0.03. For these values
of the corrugation strength we obtained convergence for
X &20.

Tllc dlspcrsioI1 curve fol 8 sllIfacc polarltoI1 011 R glRt-'
ing surface depends on the corrugation strength. Howev-
er, for small values of this corrugation strength, the
difference between the dispersion curves for a surface po-
lariton on a grating at a flat surface is not significant.
ThUS, %"C C3Q 3Q817ZC thC COUPI1Qg bCtWCCQ thC 1QCidCQt

radlatlon Rnd tllc sllIfacc polarlton 0Il 8 grating by uslllg
the dispersion curve for a flat surface.

In Fig. 2 we present the dispersion curve for a surface
polRrlt011 011 8 flat sllrfacc. Fol 811 RIlglc of lilcldcllcc
e—= 18.39' we observe that at the fundamental frequency

1=- —k~1(r0), where k~1(ro) is the real part of the
wave vector of the surface polariton at the frequency ~.
Thus, at this angle the incident photon excites a surface
polariton, with frequency ~, on the grating surface, and
enhances the amplitudes A l(k j ro) and B i(k j ro), Eq.

1 1 1 1 1 1 1 I

0 = 8OOQ. O

(0= ISO.O

b@ =- l.O

0~= -P..G

)2 14 t6
8 (deg)

PKr. 3. Intensity I I as a function of the angle of incidence
for b, =—1, c,= —2, and (8) go/a =0.015 and (b) go/a =0.02.
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(A3). ln fact, the propagation constant a i(k
~

ca), Eq.
(A5a), at this angle of incidence is imaginary, which

means that A i(k
~

co) and 8 i(k
~

co) correspond to lo-

calized fields. However, the corresponding a i(2k
~
2co),

Eq. (3.3a), is real, and the second-harmonic beam associat-
ed with A i(2k

~

2') is an outgoing wave. Since from
Eqs. (4.2) and (4.8) the intensity I

&
is approximately

proportional to
~

B i(k
~

co) ~, we expect that an increase
in the amplitude 8,(k

~

co) corresponds to an enhance-
ment of the intensity I i of the second harmonic. In
fact, we observed that not only I, is enhanced, but other
diffracted beams can have significant amplitudes at this
angle of incidence.

Now, if we consider an angle of incidence 0—= 16.15' we

observe that k'
z
-=—k~&(2ca), where k~,~(2co) is the real

part of the wave vector of the surface polariton at the fre-

quency 2'. Thus, at this angle the incident photon excites

a surface polariton, with frequency 2ca, on the grating sur
face and enhances the amplitude A 2(2k

~

2co). However,
the propagation constant a 2(2k

~

2co), Eq. (3.3b), is
imaginary, and we cannot observe the diffracted intensity
I 2 because A 2(2k

~

2ca) is the amplitude of a localized
field. However, the excitation of the surface polariton at
the frequency 2' is associated with a decrease of the
determinant of the matrix M in Eq. (4.2), because the van-
ishing of its determinant is the dispersion relation for the
surface polariton at the frequency 2'. Consequently not
only 2 2(2k

~

2co) increases but 2 i(2k
~

2co) also can in-
crease, and in this way we can observe an enhancement of
the intensity I i of the mode ( —1) and of other modes at
this angle. At an angle of incidence 8=22.6' we have
k i '=k~i(2co), but a i(2k

~

2co) is imaginary and Ii cor-
responds to an evanescent wave. However, as is the case
at the angle 0=16.15, we expect an enhancement of the

I

IO — 0

Lp
bs

IO - Os

I I I

= S000.0
= SO.O
= —

I 0
+ I .0

I I I I I I I

(o) I 08

I 06

a =8000 0
(p = 80.0
bs = —I.Q
o = 0 0

( b)

I I I I I I I I I I I I

I 04
I 04

I

I 02 I

02

10

Io
I I I I I I I I I I I I

I2 I 4 I6 IS 20 22

8 (deg)

IO

IO
I I I I I

l2 I4
I I I

l6 IS

8 (deg)

I I I I

20 22

I I I I I I I I I

l08
o =80000 (c )

I 06

Cp = 80.0
bs = —I.O

as = —2.0

I 04

I 02

10 2

IO l2 l4 I 6 IS 20 22

8 (deg)

FIG 4. Intensity .I i as a function of the angle of incidence for gp/a =0.01; b, = —1; and (a) a, =l, (b) a, =0, »d (c) a, = —&.
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intensities of other modes associated with outgoing waves.

In Fig. 3(a) we present the intensity I
&

as a function
of the angle of incidence, for a corrugation strength
(0/a =0.015 and surface current-density parameters
b, = —I and a, = —2. We observe an enhancement
(I ~

——1.09X10 ) at the angle 8=18.39 which is associ-
ated with excitation of the surface polariton on the grat-
ing with frequency co. At the angles 16.15' and 22.6', I
increases due to the excitation of the surface polariton at
the frequency 2'. However, the enhancement of I

&
at

an angle of 16.15', due to the increase of I 2, is larger
than the enhancement at the angle 22.6', due to the in-
crease of I„because the mode ( —2) is closer to the mode
(—1) than to the mode (1). In fact, the increase of I& has
a larger effect on the intensity of the outgoing beam (0).

In Fig. 3(b) we present the intensity I
&

as a function
of the angle of incidence, for the same parameters b, and
a„but with the corrugation strength $0/a =0.02. Again,
we observe enhancements of I ~, but the angles at which
they occur differ from those obtained in Fig. 3(a) by
58=0.005'. This difference is due to the fact that the
dispersion relation for a surface polariton on a grating
surface depends on the corrugation strength, and conse-
quently the relations k

&

———k~,~(co), k~„~ ——
~
k~,&(2') ~,

n = —2, 1, depend on the ratio $0/a. The enhancement at
the angle 18.39' is now 1.49&10, which means that the
enhancement of I, increases with the corrugation
strength, at least for the values of (0/a considered in this
paper. In fact, at the fundamental frequency co the ampli-
tudes 2 ~(k ~co) and 8 &(k ~co) initially increase when

we increase the corrugation strength, reach a maximum
value at a critical value of the corrugation strength, and
then decrease. This effect does not occur for the ampli-
tude 2 ~(2k

~

2') in SHG for the values of go/a we have
considered, although it is not ruled out for larger values of
$0/a.

In the present paper we have used the result of Sipe
et al. for the surface current density, which contains two
phenomenological parameters. One is associated with the
current parallel to the surface, b„and the other is associ-
ated with the current perpendicular to the surface, a, .
They have argued that b, has the universal value —1,
while a, is of order unity but could have either sign. In
Figs. 4(a)—4(c) we present the effect of the perpendicular
current on the enhancement of I

&
when go/a =0.01 and

b, = —1 for a, =1, 0, and —2, respectively. The enhance-
ment of I

&
at the angle 18.39' is 4.26&& 10, 3.5 && 10,

and 8.5)&10, corresponding to the values a, =1, 0, and
—2, respectively. Since a, =0 means that we neglect the
effect of the perpendicular component of the surface
current, from the results obtained we conclude that the
contribution of this component is significant and it in-

creases or decreases the value of I
&

for a, positive or
negative, respectively.

Recently Agarwal and Jha, using perturbation theory,
calculated the SHG from a grating. In this calculation
they assumed that the tangential component of the elec-
tric field was continuous across the boundary surface.
However, from the results obtained in the present paper,
we find that the perpendicular component of the current
cannot be neglected, that is, we have to take into account

the fact that the tangential component of the electric field
is discontinuous across the boundary surface.

In our problem we generalized the surface current den-
sities, assuming that the surface was locally flat. For a
rough surface Rudnick and Stern' suggested a value of
b, = —,

' to take into account the diffuse scattering of the
electrons from it. It is therefore of interest to see the ef-
fect of changing b„particularly in the direction of values
closer to —,'. If we consider go/a=0. 01, a, = —2, and
b, = ——,, the enhancement of I

&
at the angle 18.39' is

1.1&10, which is smaller than the result shown in Fig.
4(c) for b, = —1. However, since we used small corruga-
tion strengths, we expect that we can use the flat surface
value b, = —1, but for larger corrugation strengths we
would have to take into account the fact that the surface
is nonflat.

Finally, we note that the method of reduced Rayleigh
equations can be used to obtain an exact solution for the
SHG at a grating surface with small corrugation
strengths. Since we can control the period and the ampli-
tude of the grating, we expect that this system can be used
to obtain the coefficients b, and a, experimentally.
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Hy (x'z
i
co)

i p i
H (x z

i
ct)) (Ala)

Hy"(x, z
i co)i, ~,„,

—— Hy (x,z
i
co) i, ~(„)+,

(A1b)

where 8/Bn is the derivative along the normal to the in-
terface and is given by

=
I I+ [g'(x)] I

'i —g'(x) + (A2)

The solutions of Eq. (2.10), outside the grooves of the
grating, that are outgoing waves or exponentially decaying
waves can be written in the forms

APPENDIX A: MAGNETIC FIELD
AT THE FUNDAMENTAL FREQUENCY

A calculation of the magnetic field at the frequency co,
for a p-polarized electromagnetic wave incident on a
dielectric grating, is presented in Ref. 8. In this appendix
we summarize the results needed in the present paper.

The scalar wave equation (2.10) satisfied by the magnet-
ic field has to be supplemented by the following boundary
conditions at the interface z =g(x):
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H„'"(x,z
~

co)=exp[ikx —lao(k
~
co)z]+ g A~(k

~
co)exp[ik~x+Ia~(k

~
co)z), z) g,„

g Bp(k
~
co)exp[ik~x iP—~(k ~co)z], z(g;„,

P= —oo

a~(k
i
co)=[(co /c )—k~]'i, kp &co /c

=i [k~ —(co2/c )]I~I, k~ )coz/cz,

(A4a)

(A4b)

QP

P~(k i
co)= e(co) k~— RCP~(k ~co))0, ImP~(k ~co))0,

kp
——k+, p=O, +1,+2, . . . .2m

Q

The Rayleigh hypothesis" is the assumption that the solutions given by Eqs. (A4) can be continued in to the interface
itself and used to satisfy the boundary conditions, Eqs. (Al). When this is done we obtain a pair of equations for the
determination of the coefficients t Az(k

~
co)] and [Bz(k

~
co)]:

~I (k
I
~)exp['kI x +'aI (k

I
~4(»]+BI (k

I
~)exp['kI x 'pI (k

I ~)P»l] =exp[lkx —iao(k
/
~)g(x)]

[ ia (k
/

—co)+ik g'(x)]A (k /co)exp[ik x+ia (k [ co)g(x)]

+ [ iP~(k [co—) ik~g'(x)]—B~(k
/
co)exp[ik~x iP&(k —

) co)g(x)]

= —[iao(k [
co)+ikg'( )x] epx[ik x iao(k

/

co—)g(x)] . (A7b)

Since the second-harmonic fiel depends on the field inside the metal, we can eliminate the coefficients t A~(k
~
co))

from the pair of equations (A7) to obtain an equation for the t B&(k
~
co)] alone. We do this by first multiplying Eq.

(A7a) by [—ia„(k
~
co) ik„g'( —)x]e px[ik„x+ia, (k

~
co)g(x)] and Eq. (87b) by exp[ ik„x +ia„—(k

~
co)g(x)]; we integrate

each of the resulting equations with respect to x over the interval ( —a/2, cI /2); and finally we add the two equations so
obtained. The result can be written in the form

a„(k i co)pp(k
i
co)+k„k~ 2e(co)ao(k

i
co)

F, ~(a„(k i co),Pp(k i
co))B~(k

i
co)= tI„o,

1 —c'(co
(A8)

a/2I; (a,(k
~
co),p~(k

~

co))=—J dx exp f i (k, k~)—x +i [—a„(k
~
co) p~(k

~
co)]g—(x) j .

In particular, if we assume

2m
g(x) =cocos x

the function defined in Eq. (A9) is

I'„~(a„(k
~
co),P~(k

~
co)) =(i)" I'J„~(fa„(k (

co) P~(k ( co)]go),—

where J„(x)is a Bessel function.

APPENDIX 8: BOUNDARY CONDITIONS
IN THE PRESENCE OF A NONLINEAR

POLARIZATION

In this appendix we present the boundary conditions for
the magnetic field at the frequency 2co in the presence of a

nonlinear polarization. Before we analyze the boundary
coIldltlolls Rt R gl'RtlIlg surf Rcc lct lls fll'st coIlsldc1' thc
boundary conditions at a flat surface of a metal occupying
the rcg10Il z ~0.

Ill tlM11 111vcstlgatlo11 of second-haH11onlc gcllclatloll Rt

flat metal surfaces Sipe et al. expressed the nonlinear po-
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larization as the sum of a bulk contribution and a surface
colltrlbutloll. Tllc blllk contrlbuflon was wrl'ttcll 111 tllc

NI ~ ~(1) ~(1)
PII (x ~2~)=yV[E (x (ro) E (x (I0)],

A~(2) A
t E (x f 2') )+=4m.(V~, ).t, (810)

where t is the unit vector tangential to the surface. For p
polarization t =i and Eq. (810) can be written as

E„' '(x
i
2m) i

+ =4Ir Q, (x i
2') . (811)

was adopted for the coefficient y. In the work of Jha and
clarke' the bulk contribution. to the nonlinear polariza-
tion &hen nonrcsonant 1Iltcl band tl Rnsltlons arc taken
into account is given by Eq. (81) but with

Equations (82) and (83) are identical if we use the free-
electron model for c(co), but they differ by a non-
negligible amount for silver at the frequency which we are
considering. Since Eq. (82) represents a better choice for
the bulk contribution to the nonlinear polarization, we
will use it in Eqs. (Bl) and (85) below.

The surface contribution to the nonlinear polarization
was expressed by Sipe et a/. ' in terms of an effective
currcIlt density

J (x
~

co) =(—2iro)g(x
~

2')5(z —0+), {84)

@(x)
/

+=@(x)
] p„,~ —@(x)

/ p

n is the unit vector normal to the surface,

(813)

n= —[ g'( x)i +—k],

In general, the values of the parameters a, and b,
change from their values at a flat surface when the inter-
face is described by an arbitrary profile function g(x). '

However, if we assume that the parameters a, and b, do
Ilot cllRIlgc slglllflcalltly from 'tlM11 valllcs Rt a flRt sllrfacc
when we consider an interface with slowly varying profile
function z=g(x), we can generalize the current E„, Eq.
(88), and the dipole moment density ~„Eq. (89), by
changing the x and z components of the fields at the in-
terface into the tangential and normal components,
respectively. In this way the boundary condition for the
tangential component of the magnetic field is obtained as

(2) 4m.
n ~H (x

f
2co)

/

+ = K(((x f
2'),

Q„(x i
2a))=4yb, E,"'(x

i
co)E„"'(x

i
co) i, , (85a)

Q, (x i
2to) =2ya, E,'"(x

i
I0)E,'"(x

i
co)i, (85b)

and a, and b, are phenomenological coefficients. The no-
tation 5(z —0 ) in Eq. (84) indicates that this effective
current density is placed just outside the metal, while the
notation z=0 in Eq. (85) means that the electric fields

~NL
entering J ( x

~

co) are evaluated just inside the metal.
The existence of a current at the surface implies that

the tangential component of the magnetic field is discon-

tinuous, and the boundary condition is given by

kxH (x ~2a)) (+= J,(x ~2a))i,

P(x)
~

+=/(x) ~, 0+
—P(x) ~,

In Eq. (86) E„ is the surface current, which in the case of
p polarization is g1vcn by

X„(x i 2')
=( 2ito)[4yb, E,'"(—x

f
co)][E„"'(x

f
co)]

/
. (88)

Associated with J, (x
~
2') there is a dipole moment

density at the surface given by

~, =Q, (x i
2'),

and the boundary condition for the tangential component
of the electric field can be written as

~(1)
K~)(x

~
2') = ( 2ico)t[4y—b, n E (x

~
co)]

)&[t.E (x
~
co)]

~
(816)

A A~(1)
where t[t.E (x

~
RI)] is the tangential component of the

electric field at the surface. Using the free-electron model
for e(m) in Eq. {816)and the value of b, for a flat surface,
the boundary condition given by Eq. (812) coincides with
the corresponding conditions used by Agarwal and Jha.

The boundary condition for the tangential component
of the electric field is'

t-E (x
i
2e)

i
=4m.[V~g(x

i
2(0)] t, .(817)

where t is the unit vector tangential to the surface,

t =—[i+/'(x)k],

~~(x /2a))=2ya, [n E (x /co)]
~(&)

is the component of the dipole moment density normal to
the surface. For a flat surface v~=w, as given by Eq.
(89).

81ncc i've Rlc consldcrillg p polar1zat1on, thc magnetic
f1eld has only R p COIIlpoIlcnt, RIld wc can rc%'rite tile

g = I 1 + [g'(x) ]zj'~

and K~~(x ~
2') is the tangential component of the current

at the surface, which is given by



30 SECOND-HARMONIC GENERATION IN REFLECTION. . . 3015

boundary conditions in terms of H» '(x,z
~

2co) and

H» "(x,z
~

co). For this we use the fact that inside the met-
al

H» (x,z
~

2co)
~

+ =(2) 32~icyb,

to6(co)
H»"'(x, z

i
co)

"dn

(&) jc (1)
E (x

i
co)= V&(H (x ito)

co&(co)
(820)

z =g(x)

(822)
and

(2) ~(&)
(x I2co)= (t'XH (x I2co)

2coE(2to ')

PN"(x
~

2m),
e(2co)

and from Eqs. (812) and (816) we obtain

(821)

where t') /c)n has been defined in Eq. (A2) and

t) 1 8, 8+g'(x)
tjt g Bx Bz

(823)

(
i

1, z)g(x)
e(2'), z &g(x) . (824)

is the derivative along the tangent to the interface.
Now substituting Eqs. (820) and (821) in Eqs. (817)

and (819), we obtain Eq. (2.15b), where
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