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For regimes of flame propagation and diffusion-limited aggregation in which cluster contact is rate limit-

ing, we find that the propagation velocity exhibits a new form of scaling related to percolation. We com-

pute a "propagation exponent" ItI and derive it in terms of static exponents. W'e also derive bounds on a
"transport exponent" P' governing the critical diffusivity of fast tracers in lattice gases and the critical con-
ductivity of stirred binary mixtures.

Scaling properties of contact processes have been investi-
gated in recent studies of diffusion-reaction systems
modeled as directed percolation problems. ' Here, we con-
sider a different type of contact process associated with
"stirred percolation, "2 3 which is a dynamical generalization
of ordinary (uIldll'ected) pcfcolatloI1.

In stirred percolation, the random process which gen-
erates the "allo~ed" region incorporates time evolution, in-
troducing the processes of cluster merging (contact) and
separation. If we postulate a propagation process in the al-
lowed region, dynamical evolution proceeds on two levels,
namely, propagation within a cluster and the time evolution
of clusters. Intraduster transport in the absence of cluster
evolution has been studied intensively, and it has been
shown that many aspects of transport near the percolation
threshold are governed by purely geometrI. cal considerations.

For the case of stirred percolation, we postulate an intra-
cluster propagation process for which the dynamics again
reduce to a purely geometrical problem. Specifically, we as-
sume that intracluster propagation is so rapid that the clus-
ter equilibrates competely in a time short compared to the
time scale for cluster evolution. At first glance, this seems
no different from the frozen-cluster assumption. Here,
ho~ever, we consider the dynamics on the slow time scale,
so that the intracluster propagation process becomes trivial,
while the influence of cluster evolution Introduces a rich,
new structure. In particular, novel scaling behavior is ob-
tained far from as well as close to the percolation threshold,
though only the latter is considered in detail here.

We introduce the contact process associated with cluster
evolution in the context of a flame propagation problem. 5 If
the fuel vapor and air are not fully mixed, the flammable
zone at each instant may consist of isolated regions, and yet
the flame propagates because advection ("stirring") brings
ignited regions into contact with flammable unignited re-
gions. We consider the regime in which this contact process
is rate limiting (a regime denoted here as "contact propaga-
tlo11 ), so tllat lt ls valid to assuIllc Illstall'tallcous plopaga-
tion through a flammable region. Thus, details of the pro-
cess of flame propagation through a flammable region are
irrelevant on the time scale of interest. We focus on the
dependence of the flame propagation velocity v on the flam-
mable volume fraction p, followed by a brief examination of
the relationship between the propagation velocity and trans-
port coefficients.

We model contact propagation on a lattice on which in-
dependent random walkers are randomly distributed, allow-
ing multiple walkers per site, with an average of $ walkers

per site (except in one computation involving mutually
avoiding walkers). Sites which are occupied at a given
epoch are denoted flammable (F), and vacant sites are non-
flammable (N) . The lattice analog of the flammable
volume fraction is the site occupation probability, p
=1—exp( —@). At each time step, a fraction q of the
walkers, randomly chosen, move to nearest-neighbor sites.
We consider finite-q processes as well as the continuous-
time regime q && 1.

It is important to note that the random walkers employed
here represent the time evolution of the flammable region,
awhile the random walkers employed in the studies cited ear-
lier represent intracluster transport in a frozen geometry.
This is the essential manifestation of the distinction between
the slow and fast time scales.

We distinguish two types of ~alkers: ignited and unignit-
ed. After the walkers move, clusters of flammable sites are
identified, and if a given cluster has at least one ignited
~alker, all walkers within the cluster are redesignated as ig-
nited. (This is the instantaneous propagation of the flame
through the flammable region. ) Treating ignition as a site
property at a given epoch, F sites are thus either ignited (I)
or unignited (U). If all walkers in the half space x (0
(x )0) are initially ignited (unignited), then after a tran-
sient, the mean propagation velocity relaxes to a value
v= r/p, where r is the mean. rate of increase of the number
of I sites per lattice row in the +x direction. 6

As p approaches the percolation threshold p„we expect
that v is dominated by propagation of the ignition through
large clusters at each time step. By analogy to the scaling
theory of percolation clusters, we anticipate a scaling re-
gime v —(p, —p ) ~. We have verified scaling and estimat-
ed the "propagation exponent" p by means of Monte Car-
lo simulations on triangular, square, honeycomb, and
simple-cubic lattices.

In the simulations, periodic boundary conditions are im-
posed in the transverse direction(s) for moving the walkers
and for propagating the ignition through flammable clusters.
At regular intervals, the computational domain is shifted in
the direction of propagation so that propagation can be
simulated over an x interval much larger than the longitudi-
nal span of the computational domain. Details of the algo-
rithm are presented elsewhere.

Car e was exercised to assure that flQ1te-size and 1nlt1al-

transient biases were negligible. Transient relaxation took
tens of time steps near p„but more time steps for lower p.
Computational domains as large as x xy =600x400 were
required near p, . [In three dimensions (3D), an 80 X 80& 80
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box was employed. l Five replicate simulations were used to
estimate v for each p.

Figure 1 exhibits the anticipated scaling. For q= 1 (a
discrete-time process), simulations performed on 2D lattices
give the estimates P„;=1.51+0.03, @„„=1.48+0.03, and
ph, „——1.44+0.03.'0 Taking these results to be indicative of
the universality of Q, we pool these estimates to obtain

P = 1.48 +0.02. Computations on a simple-cubic lattice"
give the estimate P = 0.80+0.06 for d = 3.

The continuous-time (q « 1) regime was simulated on
the triangular lattice. For given p, v was computed for suc-
cessively smaller q until it approached a constant value.
Convergence consistently occurred at q & 0.02. Scaling is
again exhibited, with @=2.44+0.06. We also performed
computations for q « 1 employing mutually avoiding rath-
er than independent walkers. In this case, a given site is oc-
cupied by at most one walker, so p = P. We obtain
@=2.43 +0.02, which indicates thc insensitivity of f to thc
spatial random process governing thc walkers. '2

For the continuous-time regime we propose that Q is
equal to the cluster size exponent7 y. Near p„ the singular
part of v is proportional to the mean number of sites ignited
per unit time duc to I-U contacts in a given lattice row.
This quantity is equal to thc mean size S of a newly ignited
cluster times the number X of I-U contacts per lattice row
per unit time. %c take S to be thc mean cluster size for
static percolation, so that S —(p, —p) " for p & p, . X is
proportional to the width 8' of the propagation front times
thc number density p„of Unscreened I S1tcs, 1.c., I sites
adjacent to unignited clusters. If wc assume that in-
dividual-cluster properties are applicable, then W —

g [g is

FIG. 1. Log-log plot of propagation velocity v vs p, —p for tri-
angular (5}, square ( ), honeycomb (V), and simple-cubic (&&)
lattices. Lines of slopes —1.48 and —0.80 indicate the scaling re-
gime for d =2 and d =3, respectively. The line segments span the
ranges of data used to estimate the propagation exponent Q for the
discrete-time (q = 1) process. Also shown are results for the
continuous-time (q && 1) regime for a triangular lattice with in-
dependent (+) and mutually avoiding (x) walkers. A line seg-
ment of slope —2.43 indicates the scaling regime.

the "correlation length, "which diverges as (p, —p) "],
d/d +d —d —2

and p„—g ~ ~ (Ref. 13), where d~ is the fractal
dimension of a cluster. Since d~& d, the exponent of g in
the product 8'p„ is negative, implying that X vanishes near
criticality. Since X Inust be at least of order unity, we infer
that individual-cluster properties are not applicable in this
instance and wc take X to be nonsingular. Therefore,
v —S, which gives P=y. For d=2, y=+, =2.389. . . , '

in fairly good agreement with the computed results.
For finite q, a given cluster can experience multiple I-U

contacts siITlUlt8ncously, so 8 modification of this sc811ng ar-
gument is needed to avoid multiple counting of ne~ly ignit-
ed clusters. Since the largest clusters should experience the
most multiple counting, we expect Q to decrease with in-
creasing q. In particular, we consider the regime
1 « q « g. (q & 1 stgntftes more than one nearest-
neighbor step per walker per time step. ) In this regime we
assume that all unignited clusters bordering the propagation
front at a given time step arc contacted so the propagation
front advances a distance ( per time step, giving u—(I/q)(p, —p) ". Holding q fixed as p approaches p„we
obtain @= v.

v equals ~ foI' d = 2 Rnd has Rn cstiInatcd v81Uc of
0.88+0.02 for d =3.' The computed results for P for the
q =1 process are close to these values, " indicating the ap-
proximate correctness of the above reasoning for q of order
UA1ty.

By introducing various asyInmetrics in the random pro-
cess govcining thc walkcls, models arc obtained which arc
applicable to diverse physical systems. For example, if the
unignited walkers arc frozen while the ignited walkers arc
Inobile, we obtain a model of the contact propagation re-
gime for combustion of solids. The onset of mobility
represents melting or sublimation duc to heat release. The
nonflaIYlIYlablc zone now 1cpicscnts 1Qc1't bindc1 material 1Ii

which the solid propellant is imbedded.
By freezing the ignited walkers rather than the unignited

walkers, we obtain a model applicablc to diffusion-limited
aggregation at high particle concentration. %hen the con-
centration of mobile particles is high, the outward advance
of the perimeter of thc aggregate, rather than the inward
diffUsivc flux of pRI't1clcs, provides thc dominant. contribU-
tion to the growth rate of thc aggregate. If the particle
concentration in fact approaches the percolation threshold
(well defined on a lattice, extended to the continuum by al-
lowing some overlap of the diffusing particles), then the
rate of advance of the aggregate periInetcr will diveIgc. To
apply OU1 model, wc employ mutually avo1ding walkers Rnd
freeze the motion of the unignited walkers upon contact
with ignited ~alkers, which represent the aggregate. Results
computed for the continuous-time regime exhibit the antici-
pated scaling, but we now obtain /=2. 99+0.07, higher
than prcvlously.

The difference is due to the fact that ignition (aggrega-
tion) now occurs only by motion of a walker toward the ag-
gregate. Such a move tends to detach the walker from thc
unaggregated cluster containing it, thus biasing thc mean
size of ne~ly aggregated clusters downward from the uncon-
ditioned mean cluster size. Therefore, the derivations relat-
ing P to static exponents are no longer applicable. (This ar-
gument, further implies that in the previous case, the dom-
inant propagation mechanism near criticality is motion of ig-
nited walkers toward uniginited clusters. )
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Computational procedures and detailed results for these
and other asymmetric models are presented elsewhere.

%'e now consider the relationship between the propaga-
tion velocity and transport coefficients for systems in which
cluster contact is rate limiting. One application with the
latter feature is diffusion of fast tracer particles through the
vacancies in a concentrated lattice gas of slow-moving parti-
cles, '~ of interest due to the use of muons as fast tracers in
studies of hydrogen diffusion in metals. '8 Another applica-
tion is the conductivity of a stirred binary mixture of con-
ducting and nonconducting components. 2

The transport coefficient 5 is defined by the relation

j = SE, ~here E is a driving field which we take to be a con-
centration gradient. The material flux j is the product of a
velocity v, in this instance the contact propagation velocity,
and a concentration p which is the typical concentration
change resulting from a cluster contact event. We consider
two clusters of size s~ and s2, respectively, just prior to con-
tact, labeled so that s~ ~ s2. The concentrations on the two
clusters are p~ and p2= pt +Ef, where the correlation
length g is an estimate of the mean x separation of the clus-
ter centroids. (This relationship is valid provided that pt))Eg, i.e., in the linear response' regime. The sign
depends on which cluster centroid is at larger x. ) The key
premise of contact propagation is that the merged cluster
formed upon contact rapidly equilibrates, resulting in a uni-
form concentration

p = (s &p t+ s2p2)/(s )+ s2) = p t + E(/(1+ 8 )

where R is the size ratio st/s2. Taking p to be the magni-
tude of the concentration change p —

p~ on the larger clus-
ter, we conclude that p is of order Eg/k. Combining fac-
tors, we obtain

5=(u/R

This result is valid for contact propagation at arbitrary p.

Here, we use it to characterize the divergence of 8 near the
percolation threshold.

As p approaches p„g and v diverge with exponents v and
ili, respectively. 8 may be nonsingular, or at the other ex-
treme, it may diverge with exponent y (the cluster size ex-
ponent), depending upon the random process governing
cluster evolution. (This range of behaviors reflects the pre-
viously mentioned possibility of cluster size bias. ) There-

fore, the transport coefficient diverges as 5 —(p, —p)
where the "transport exponent" iIi' obeys the inequalities

Q+u —y & Q & Q+v

Taking Q = y and using previously quoted values of v and y
and the estimate y = 1.73 + 0.03 for d = 3, we obtain

~ & @' & —,8 for d = 2 and 0.88 & ili' & 2.61 for d = 3.
A measurement by Lagues of the conductivity of a mi-

croemulsion in a "stirred'* (Brownian motion) regime gives

le = 1.2 + 0.1, within tlm d = 3 bounds. (Our iII is his s
Our notation emphasizes the distinction between contact
propagation and static percolation exponents. ) He derives
the felatlOnshlp if/ = 2p —P (which gives IP = 1.3 for d = 3)
by generalizing the random-walk model of de Gennes.
This model omits important features of the contact propaga-
tion regime, so we regard the success of his prediction as
not fully explained.

We briefly mention some additional results concerning
con.tact propagation. In addition to the scaling regime at
p p„ five other scaling regimes have been identified. For
p && 1, we obtain v —p, and for p of order unity but well
below p„we obtain a regime in which v-p. For p ~p„
three finite-size scaling regimes are obtained. Details are
reported elsewhere. ~
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