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Dynamic scaling for dilute magnets near percolation threshold
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A convenient formulation of the principle of dynamic scaling for multicritical points is presented and ap-

plied to the dynamics of dilute magnets at the percolation threshold. The dynamic exponents observed

along the temperature axis near the multicritical point are related to percolationlike exponents and a cross-

over exponent. Scaling also enables us to see the role of fractal geometry of the percolation cluster on spin

dynamics in a transparent way.

C(k, o)) = C(k)F(kg, cu/co(k, g)), (1)
cu(k, g)

where g is the correlation length, and «&(k, () is the typical
relaxation (or spin wave) frequency associated with the or-
der parameter. co(k, g) has the following scaling form

co(k, f) = k'f (kg) (2)

where z is the dynamic exponent. Near the multicritical
point p =p, and T =0, the correlation length g can be writ-
ten as9

where 4p =p —p„and e is the appropriate temperature
variable e = exp( —2J/ks T ) for an Ising system and
«=ksT/J for a Heisenberg-type system. v~ is the index

The principle of dynamic scaling has been used with not-
able success in a number of systems undergoing second-
order phase transitions. ' Recently it has also been used
for spin-wave excitations in dilute magnets near their per-
colation threshold p, . Harris and Stinchcombe have veri-
fied the validity of the principle for ferromagnetic spin
waves at zero temperature by explicit calculations on fractal
and dilute systems. The purpose of this Rapid Communica-
tion is to extend the application of this principle to the mul-
ticritical phenomena at the percolation threshold of dilute
magnets and relate the dynamic exponent along the tem-
perature axis with the percolation-type exponents and the
percolation-thermal crossover index. Another advantage of
this approach is that by relating the behavior between small
k regime, and the large k regime, it becomes possible to in-
corporate the geometrical effects due to fractal nature of the
infinite cluster on the spin dynamics, in a transparent way.
Thus we find that we can extend and throw more light on
the recent stimulating arguments of Aeppli, Guggenheim,
and Uemura' concerning the role of fractal geometry on the
dynamic exponent of an Ising antiferromagnet near its p, .

Recently Harris has also presented a generalization of the
dynamic scaling principle to multicritical behavior. Here we
present a somewhat different generalization, which seems to
us more convenient and more in keeping with the basic idea
of having a single correlation length and a single relaxation
time to which all other lengths and times scale. We write
for the Fourier transform of the order-parameter correlation
function C(k, co) as

—V /qb

yahoo (4)

As a result
r

g=Xol~p I

~ 1+ at + ', «0, Ap &0
(&p)~

—V /f —VT=X~e ~ =X~e, 4p =0, e~ 0

Let us consider now the case of the kinetic Ising model.
The relaxation function f (x) in Eq. (2) has the form

f(x) =f„, x » 1

=f&pc ', x«1
which yields the relaxation behavior

o) =fpg; for k &( g

=f k*, for k »(
(7a)

(7b)

We can consider the long wavelength relaxation behavior
in two limits (7a) hp = 0 and «(( 1, and (7b) hp
W 0 e ——0. For case (7a) we have

co= foXgg (t)
while for case (7b)

~=foXo~p ', (9)

where PI is the percolation-thermal crossover index for the
Ising model, and its value is exactly known to be unity. ' In
the spirit of the argument due to Aeppli et at. we try to es-
timate z in terms of its value, z, for the pure system and
the fractal effects. For this purpose, we make use of the
large wave-vector form of co, i.e. , Eq. (7b). For length
scales smaller than the correlation length g, the wave vec-
tor, K, on the fractal lattice is related to the Euclidean wave
vector, k, as

(10)

where d is the fractal dimension of the infinite cluster.
d = d —/3~/u~, where P~ is the index associated with the

characterizing the divergence of the percolation-correlation
length, and @ denotes the percolation-thermal crossover in-
dex.

The asymptotic forms for the function X (y) are

X(y) =Xo(1+aty+ ), y 0
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fraction of sites in the infinite cluster. The use of Eq. (10)
has led to a rather nice prediction for the index of spin-
wave stiffness. " Now we write Eq. (7b) as

Noting that at T = 0, cu =D,„(hp)k, with D,„~ (4p)
one easily sees that

z =2+ (t —)8 )/v) =2+8 (18)

o)(k) =I k +~, (~
' & k & f (12)

V

where (~ = Xolb p I
~. For percolation clusters, 0= (t

—P~)/) ~, where t is the index associated with the conduc-
tivity. Now if one assumes that, just as for the pure sys-
tems, the conventional Van Hove theory is right,
I ~X '~(~, and

o)(k)~g + ~ (k(), g~ '&k&$

This yields z = 4+ 0 —q and a critical mode

(13)

~ —f Q& —f k& dtd

and identify z =z'd/d. For the pure kinetic!sing model in

two dimensions, z'= 2.32 (Ref. 12) and 1= 1.896, which
yields z = 2.45. This agrees well with the measured value of
2.42 for Rbz(CoMg)F4, but this agreement is somewhat for-
tuitous as the exponent z' for pure Rb2CoF4 is 1.67, and it
is not clear what kinetics is applicable to this system. Aeppli
et al. have suggested the relation z = z'+ 0 = 2 —q + 0 for
this system, where 0 is the index of anomalous diffusion on
fractal lattices. ' Though this expression is in excellent
agreement with the measured value, it is difficult to under-
stand at first sight how diffusion enters Ising kinetics
without conserved order parameter. Below, we see how 8
enters in the kinetics of models with conserved order
parameter. The above arguments, of course, assume that
the kinetics is affected only by geometrical effects, which
may be a good approximation at very low temperatures in
the multicritical region, but can only be justified by a micro-
scopic calculation.

Let us now consider one component system with a con-
served order parameter. For such systems, there is a re-
gime of diffusive relaxation above the transition tempera-
ture. For crystalline systems, we have the usual co (k)
= 1 k, but near the percolation threshold, the basic
geometry on which the diffusion is occurring is fractal, and
we expect for certain range of k

(z —2) v /@0 Hv /yH (19)

where @H is the percolation-thermal crossover index for the
Heisenberg system. On the other hand, for Ap & 0 and
a=0

(z —2)v

Dr =fOx 0
'

I ~p I (20)

Equation (20) corresponds to diffusion in the large finite
clusters.

Finally we discuss an isotropic dilute antiferromagnet.
The hydrodynamic spin-wave mode governing transverse
order-parameter correlations is given by"

b ( ) (t+r)i2

—(I+(t+v)/2v )
ac g (21)

where ~ is an index governing the divergence of the
transverse susceptibility X q of an antiferromagnet, " i.e.,
X) ~ (p —p, ) '. For d =3, the numerical estimate for 7 is
0.5.

From (23), we identify z = (1+ (t + r )/2) ~ and write
generally

o) = k'f (k() (22)

For large k, we get a critical mode ~~ k'. Considering the
hydrodynamic regime above the transition point, we know
that sublattice magnetization relaxes at a k-independent
rate, which should depend on g as

(23)

We can now relate these exponents to diffusive regime
above the transition temperature. Writing co (k) = Drk,
one finds for A~ = 0 and e && 1

ru(k)~k + ", k && g (14)

We can now use Eq. (5) to write relaxation rate for Ap = 0
and e « 1. In the anomalous diffusion regime we have

Use of Eq. (5) now enables us to write

~~ l&p I
'. ~ = 0, Ap & 0

and

(24)

o)(k)=I'o(e) ~ k +
g '&k & g

and in the normal diffusive regime

(15a) V Z/$H
cu~e ~ H, Ap=0, a&&1 (25)

(15b)

Next we consider the case of dilute Heisenberg magnets,
which have propagating hydrodynamic modes below the
transition temperature. Consider ferromagnets first. The
low-temperature spin-wave mode has the frequency propor-
tional to k', and can be generally written as4'

(16)

with the function f (y) having the asymptotic forms

f y ', asy 0

For convenience, we present the values of z for various
models discussed here in Table I. Result of a similar
analysis for a planar ferromagnet is also included.

In summary, we have presented a convenient formulation
of the dynamic scaling principle at multicritical points and
thereby related the dynamic exponents obtained when ap-
proaching the multicritical point along the temperature axis
to the percolation-type exponents and other known critical
exponents. The dynamic scaling principle also enables us to
throw more light on the arguments of Aeppli et al. connect-
ing fractal dimension and anomalous diffusion index to
dynamic exponent. Our argument clearly shows that these
relations should depend crucially on the basic dynamics of
the system. We illustrate this for four cases.
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TABLE I. Values of exponent z for the models discussed in the text.

Kinetic
Ising

z =z d/d

Kinetic Ising with
conserved order parameter

Isotopic
Ferromagnet

z = 2+ (t —P)/vv

Antiferromagnet

z = 1+ (t + r)/2vv

Planar
Ferromagnet

z = 1+ (t —P&)/2v&

2 (Ref. 16) 2.24

(@t=1.0, v =4/3)
4.47 2.72

(QH= 1.5, vv =4/3)
2.34 5.60

(y, =1.0 .,=0.86)
3.64 2.22

($ =1.2, v =0.86)
1.82
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