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Spin-glass order parameter of the random-field Ising model
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The Edwards-Anderson spin-glass order parameter Q is calculated in the critical region for the random-
field Ising model. It is proportional to h " +'l ' 'l in d dimensions for a root-mean-square random
field h and critical exponent q. Thus Q approaches zero as h 0, whereas simple linearized theory
predicts it to diverge at the critical point of the pure system. The results are exact to order h4 and in
agreement with scaling theories. Numerical values are given both for 0 and the amplitude of the
"Lorentzian-squared" structure factor.

The random-field Ising model has been a subject of much
interest and controversy. The controversy' is mostly con-
nected with whether the lower critical dimension is 2 or 3,
and the interest surrounds this and other theoretical ques-
tions, heightened by the physical realization of effectively
random-field Ising magnets. The Edwards-Anderson or
spin-glass order parameters Q is an important property of a

random magnet, but it seems to have received less attention
in the random field than in the random exchange problem.
It would be observable as a static local field in NMR or oth-
er local-probe spectroscopies and is related to the
"Lorentzian-squared" term in the neutron structure factor
as noted below. In their original work6 Imry and Ma
showed that Q diverges at Tp in d =4 or less dimensions to
lowest order in h (the root-mean-square amplitude of the
random field), although they pointed out that higher-order
terms might change the result. A spherical model calcula-
tion has shown Q to be finite at Tp in two and three dimen-
sions. (Tp is the critical temperature of the "pure" system
with h =0.)

In this Rapid Communication I calculated Q in a manner
similar to the spherical model and by considering a series
expansion in h . In both cases it is assumed that multispin
correlation functions can be factored into products of two-

spin correlation functions, which are taken from the known
solutions in zero field. The result, Q = Ch~d +~)i('

where g is the critical exponent for decay of the critical
correlation function, is consistent with scaling predictions
and shows Q 0 as h 0 at Tp for both three and two

dimensions, the latter in disagreement with the spherical
model because of the importance of q in two dimensions.
When the method is applied to a uniform field the correct
critical-isotherm exponent 5 is obtained and the numerical
coefficient is good to about 10%; so this provides a certain
amount of confidence in the numerical value of C as well as
the functional dependence. Further, the result for Q is ex-
act to order h, which is a special simplification of the
random-field problem.

The Hamiltonian is written as usual as

—~g p, s /HIS( z $Jifs;Si
fI

where M; is the field at site i, s; is the Ising spin which can
have the values +1 only, and the interaction J„"=J for
nearest neighbors and zero otherwise. The required pro-
cedure is first to compute a thermal average, denoted by

( ), for a given quenched configuration of the H; and then
do an average, denoted by [ ], over the configurations
[H;H, ]=H 5,&. . The dual average is often accomplished by
the replica method, but we do not find that necessary here.
An exact relation for the partition function Z of a given
configuration is

» t

Z = Zp exp gh;s;
I

(2)

where Zo is the partition function of the zero-field system,
( ) p indicates thermal average in zero field, and
h;= g p, sH; /2ksT. Equation (2) forms the basis for an ex-
pansion of (s;) = rilnz/Bh; in powers of the field, the first
term of which is the familiar

(s;) = gh, (s,s, ) p,

which is the normal expression for susceptibility in terms of
static correlations. The spin-glass order parameter
Q = [(s;) ] then becomes to lowest order

Q = h' g(s, s,),'= h'X-' QX2,

where X~= (sqs ~) with s~ the Fourier component at wave
vector q. For a modified Ornstein-Zericke form
X~~ (q + K ) ' " ', where K is the inverse correlation
length which approaches zero at To, this diverges for d ~ 4,
as noted by Imry and Ma.

Consider, however, succeeding terms in the expansion.
The term in h is obtained from the product of (3) with the
h term in»i lnz/rih;. This latter term contains

hlhkhi ( S/Sjsksl) p

and cannot be handled exactly for j & k & I without
knowledge of the four-spin correlation function. However,
the configuration average requires that at least two of the
indices in the four-spin function must be equal, whereby it
reduces to at most a two-spin function since s, = 1. Thus
the coefficient of h can be obtained exactly for random
fields, ~hereas it cannot be for uniform fields. Higher-
order terms cannot, however, be so reduced. To the order
of h it is only necessary to handle the four-spin function
which I decouple at and above To as

(Sisisksi) p= (S;SJ)p(sks[) p+ (S,Sk) p(SJSI) p+ ($&S[)p(SJSk) p
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TABLE I. Numerical results at Tp (critical temperature of pure system) for simple-cubic (sc) and square
(sq) lattices.

Quantity sc sq

Spin-galss order parameter 0
Amplitude of structure factor, ' A

Inverse correlation length, Ea
Uniform susceptibility, Xp /Xg
(Xc= Curie-law susceptibility)

0.45/7

4A

1.428
2A

1.90h ~i7

49.0h
0.34h@
70h

'Depends only on dimensionality, not lattice specific. h= iH; ] gps/2ksTp.

for unequal indices. The result is

Q =N ' X(h'X' —2h'X,'+3h'X' —4h'X«+ )

=N ' gh'X'/(I+h'X, )', (5)

where I have kept only those terms which are most diver-
gent at Tp (it is assumed throughout that h « 1 so that
higher orders in h are negligible unless multiplied by poten-
tially divergent terms), and have assumed the series contin-
ues indefinitely in the manner shown in order to obtain the
second equality. Once again, the first two terms are exact.
Similar arguments have been applied to the bulk suscepti-
bility in the random-field problem which show that it can be
obtained exactly only to order h .

Decoupling the multispin correlation function is
equivalent to assuming the probability distribution of the
Fourier-transformed spin variables consists of independent
Gaussians. Hence, evaluation of ( ) p in Eq. (2) may be ac-
complished in this approximation by direct integration, as in
the spherical model, and also, as in the spherical model, in-
troducing a multiplier X to satisfy the sum rule

g«s, s,= N, while treating the q*s as otherwise indepen-
dent. The result

(s«) = h, x« /(1+ XX«)

where the multiplier A. is obtained from

gX,'(X/(I+ XX,) —h, h, /(I+ XX,)') = 0 (7)

where the function f decays sufficiently rapid to guarantee
convergence for q 0. This alone leads to the conclusion

g Ch (d —2+»))/(1 —»)/2) (8)

is the same as for the spherical model, except that the
known (s«s «) is used rather than that obtained by a com-
pletely self-consistent spherical model calculation. For ran-
dom fields one can replace h~h ~ by its configuration aver-
age h'. If XX«« 1, the solution of Eq. (7) is simply
X=h', which leads back to Eq. (5). The solution at Tp,
where the relation XX~ (( 1 breaks down for q 0, is
h. = (I2/It)h, where

I = t x' 'd (' '»/(1-+x--('--»)"
0

and we have assumed X~~ q
+" at Tp. Thus we expect

X~ h to hold for all T ~ Tp.
A more general statement of Eq. (5) and the above argu-

ment is to assert the scaling relation

Q = h' QX,2f (h2X, ),

at Tp for p~~ q +", which follows from other scaling argu-
ments and which is the same as the spherical model result
if q = 0. The small q —0.03 is unimportant for d = 3
whereby Q~ h, but it is crucial for d = 2, where the exact

leads to Qx h2/7. Hence the spin-glass order parame-

ter goes to zero as h goes to zero even in two dimensions.
The constant of proportionality C may be computed in
terms of the integrals Ii and I~ and the amplitude D in

X« = D/(qa ) " at Tp (a = nearest-neighbor distance)
which is given by Fisher and Burford. ' %e take q=0 for
d = 3 and q = ~ for d = 2, and consider the simple-cubic

and square lattices. For convenience all numerical results
are contained in Table I rather than in the text.

One can also deduce a critical isotherm for the pure sys-
tem in a uniform field from Eqs. (6) and (7). For
h« = hp5«p and Xp oo at Tp the solution to Eq. (7) at Tp is
x=E 'hp(4 2'«/(~+2 "), and insertion of this into Eq. (6) for
q =0, Xp ~ gives (s) =Eh'/ with

5= (d+2 —2))/(d —2+2))
in agreement with scaling laws. " The coefficient E is the
same as calculated in the spherical model" for d = 3, while I
find it to be E=1.12 for the square lattice compared with
the series result" E=1.01. It seems reasonable to expect
similar 10% accuracy for C in numerical estimates of the
spin-glass order parameter.

The square of Eq. (6) leads to a "Lorentzian-squared"
term in the neutron scattering structure factor. ' If this is
written as"

[(s,)'] =A/(1+ (q'/K')' ) ')'
it follows that the peak amplitude at Tp is A = (I)/I2) /h
and the inverse correlation length is Ka = ((I2/
I))h'D)'/" "'. The field dependence of K is as given by
Aharony and Pytte. ' The uniform susceptibility at Tp from
Eqs. (6) and (7) is Xp= Xc(I2/I))/h', where Xc is the
Curie-law susceptibility for a pure, noninteracting system at
Tp. pp also has the same random-field dependence as found
in Ref. 16.

In conclusion numerical values have been obtained for
the spin-glass order parameter Q and the related part of the
neutron structure factor in the random-field Ising model at
the critical point Tp of the zero-field system. The expres-
sion for Q is exact to fourth order in the random field.

I am indebted to G. Grinstein for making me aware of
several of the scaling relations mentioned above and provid-
ing a scaling derivation of Eq. (8). This work was per-
formed at Sandia National Laboratories supported by the
U.S. Department of Energy under Contract No. DE-ACO4-
76-DP00789.
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