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Photoexcitations in poly(thiophene): Photoinduced infrared absorption
and photoinduced electron-spin resonance
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Infrared absorption and electron-spin resonance are used to study the photoexcitations of
poly(thiophene). The results indicate photoproduction of both charge- and spin-carrying species.

The intrinsic properties of the nonlinear soliton excita-
tions in trans-(CH)„have been identified and successfully
investigated through photogeneration studies. ' ' In these
experiments, after the initial creation of an electron-hole
pair by absorption of a photon at tro & Es (Es is the energy
gap), the lattice rapidly ( —10 '3 s) distorts around the
charge carriers leading to a photogenerated soliton-anti-
soliton pair. Both the lattice distortion within the spatially
extended charged solitons and the associated electronic
structure of these photogenerated charged species were
probed by detecting the small changes in infrared absorption
that occur during photoexcitation. ' Similarly the reversed
spin-charge relation predicted for solitons was verified
through electron-spin resonance (ESR) measurements dur-
ing photoexcitation. Excitation-profile measurements
demonstrated that solitons could be photogenerated by pho-
tons with ttco ( Es either by a direct absorption process (as-
sisted by quantum fluctuations in the ground state) or by
the initial creation of localized electronic excitations through
absorption by defect states in the energy gap. Since the
characteristic signatures of the charged species observed in
photoexcited and doped trans-(CH)„were found to be in
one-to-one correspondence, a principal conclusion of these
studies was that in both cases the charge was stored in spin-
less charged solitons.

The coupling of electronic excitations to nonlinear confor-
mational changes is an intrinsic and important feature of
conducting polymers. In the presence of a degenerate
ground state, this coupling leads to the novel soliton excita-
tions studied extensively in trans-(CH)„. Generalization of
these concepts and application to the larger class of (nonde-
generate ground-state) conjugated polymers has been an ob-
vious goal of the field. Polymers such as poly(thiophene)
[Fig. 1(a)] are, therefore, of current interest since the two
structures sketched in Fig. 1(b) are not energetically
equivalent. As a result polarons and bipolarons are expect-
ed to be the dominant charged species. '

In this paper we report the first observation of photoin-
duced absorption and photoinduced ESR in poly
(thiophene). The observation of relatively sharp photoin-
duced mid-ir peaks (at 1020, 1120, 1200, and 1320 cm ')
demonstrates that localized structural distortions are indeed
formed, consistent with photogeneration of polarons or bi-
polarons. The observation of photoinduced spins implies
photoproduction of polarons. %e find in addition a broad
photoinduced absorption peaked at 3600 cm ' (0.45 eV)
which we attribute to the lowest-energy electronic excitation
of the photogenerated polarons.

The poly(thiophene) used in these experiments was syn-
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FIG. 1. (a) Chemical structure diagram for poly(thiophene). (b)
Two inequivalent structures for the thiophene heterocycle in

poly(thiophene). (c) Energy level diagram and allowed transitions
for a "hole" polaron.

thesized by Kobayashi by condensation polymerization of
2,5-diiodothiophene. ' The resulting polymer is chemically
pure with an estimated molecular weight of about 46
thiophene units (approximately 180 carbon atoms along the
backbone), and it is crystalline. Initial physical studies'2 in-
dicate that the polymer is a semiconductor with band gap of
about 2 eV. The relatively clean transmission for hem & Eg
and the small number of unpaired spins in the m. -electron
system ( —65 ppm per carbon) are consistent with a rela-
tively high-purity material. Samples were prepared by mix-
ing the polythiophene powder with KBr (at a dilute concen-
tration of about 0.3 wt. 0/0) and subsequently pressing the di-
lute mixture into a red semitransparent pellet. The photoin-
duced absorption experiments were carried out by Schaffer
using an IBM Instruments (Bruker) IR/98 vacuum
Fourier-transform interferometer modified to allow an
external beam of an Ar+ laser (tee =2.41 eV) to be incident
on the sample simultaneously with the infrared beam. The
spin resonance measurements were made by Moraes with an
IBM Instruments (Bruker) E-200D ESR spectrometer
equipped with an optical access cavity. In this case, the
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Fourier transform infrared technique. In the case of charge
storage in bipolarons, the expected transitons would be
analogous to tee, and tcu3 in Fig. 1(c). The strong transition
between localized levels is absent for bipolarons since the
levels are all either empty or doubly occupied. In our ear-
lier work'5 using in situ absorption during electrochemical
doping of poly(thiophene) we conclude that in the doped
polymer charge (2~e~) was stored in bipolaron states. This
conclusion was based on the observation of only two transi-
tions implying that the two levels are not occupied. If there
were electrons in the lower level (as would be the case for a
polaron) then a third absorption would be evident arising as
a transition between the two localized levels. " This was not
observed. '

Our tentative conclusion is that in the doped polymer
charge is stored in charged bipolarons, whereas at least
some of the charged photoexcitations are polarons. In the
case of photoexcitation, the neutral, spin singlet, biopolaron
(if formed) would have a short lifetime and weak ir activi-
ty, ' and thus would not contribute to the photoinduced
properties. Comparison of the excitation profiles, tempera-
ture dependences, and intensity dependences are required to
definitively establish that the charge and spin (observed in
Figs. 2 and 3) are associated with the same photoexcitation;
and magnetic measurements on doped poly(thiophene) are

required in order to determine the spin-charge relation for
the doped species. Experiments have been initiated to ex-
tend the photoinduced spectral range into the far ir (beyond
the cutoff of the KBr pellet) using reflection techniques on
high-quality polythiophene films electrochemically polymer-
ized from dithiophene monomer. '

In conclusion, from initial measurements of photoinduced
infrared absorption and electron-spin resonance, we have
demonstrated the photoproduction of charge and spin-
carrying excitations in poly(thiophene). These data are to
be contrasted with the results obtained from earlier experi-
ments on trans (CH)„-where the same techniques indicat-
ed' that the charge photoexcitations are spinless solitons.
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