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Shiba-Rusinov theory of magnetic impurities in isotropic superconductors beyond the s-wave scattering
is generalized by using the Eliashberg formalism. The analytical expressions for the transition temperature

T, and the specific-heat jump AC are given using the square-well model for the electron-phonon interac-

tion. Taken as a function of the impurity concentration, the quantities T, /T, o and 4C/ACO depend on the

microscopic parameters A. , p, , and ~D of the host material. However, this dependence is absent if one
plots. the above properties versus the normalized impurity concentration u/n«or if hC/AC(( vs T, /T, (( is

studied. (T«and ACO are values of T, and AC, respectively, in the absence of impurities; A. is the

electron-phonon interaction parameter, p, the Coulomb pseudopotential, and cuD the Debye cutoff fre-

quency; o. is the spin-flip scattering rate; o.„is the value of o. for which T becomes zero. )

I. INTRODUCTION

About 15 years ago Shiba' and Rusinov independently
gave a theory of a low concentration of magnetic impurities
in a superconductor. In this theory the electron-impurity
scattering is calculated exactly for a single-impurity problem
assuming a classical spin. The well-known Abrikosov-
Gor'kovs (AG) theory is a limiting case of the above model.
Several properties of the superconducting alloy in the
Shiba-Rusinov (SR) model have been calculated by Nagi
and collaborators. The consequences of the SR model
beyond the s-wave scattering have been considered by
Ginsberg. The positions of the impurity bound states for
the s-, p-, and d-wave scattering for several alloys were cal-
culated by Kunz and Ginsberg by using band theory. The
experimental work of Ginsberg and collaborators has con-
firmed the applicability of the SR model results to the case
of transition-metal impurities in superconductors.

The theoretical work described so far is based on the
Bardeen-Cooper-Schrieffer9 (BCS) formalism of the theory
of superconductivity and as such the properties do not
depend on the microscopic parameters A. , ~D, and p,

' of the
host material (A. : electron-phonon interaction parameter;
coD. Debye cutoff frequency; p, '. Coulomb pseudopoten-
tial). The case of AG impurities in superconductors using
Eliashbergtc formalism" (EF) was considered by Allen, '2

who calculated the transition temperature by using the
square-well model (or the l1.

99 model) for the electron-
phonon interaction. Detailed numerical study using n F(0()
of lead was done by Schachinger, Daams, and Carbotte"
[a F(0(): electron-phonon spectral density]. The T, and
some tunneling properties for the case of SR impurities
were considered by Schachinger. '" The quasiparticle density
of states for the SR model has been calculated by Schach-
inger and Carbotte. " The Kondo impurities in the strong-
coupling superconductors have been described by the
present authors. ' We have also recently investigated the
case of SR impurities in anisotropic superconductors using
EF.'

The purpose of the present paper is to generalize the
results of Ref. 6 by using the Eliashberg formalism. We will
calculate analytical expressions for T, and the specific-heat

jump at T, by using the X model.
The plan of the paper is as follows. In Sec. II we outline

our general formalism. The transition temperature and the
specific heat are discussed in Sec. III. Section IV gives a
summary.

II. FORMALISM

Using the Eliashberg formalism, the single-particle
Green's function for the conduction electrons of a strong-
coupling superconductor containing paramagnetic impurities
within the Shiba-Rusinov approximation is given by
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In the above equations e-„ is the single-particle energy, o-;

and p, (i = 1, 2, 3), respectively, are Pauli matrices operating
on the ordinary spin states and the electron-hole spin states,
0(„=tr(2n+ I) T (T is temperature and n is an integer);
U„=0(„/5„, e( is the normalized position of a bound state
within the BCS gap for the Ith partial wave, and
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where I/T2((1/Tt() is the spin-flip (non-spin-flip) scattering
rate from the magnetic impurities. Further, h. (n —m ) is
the electron-phonon interaction parameter.

In the square-well model (or the Xee model) of the
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electron-phonon interaction one takes

) (n —m) =) o(~D —I~. l)8(~D —l~ml) .

Then Eqs. (2.2) and (2.3) give

(2.5)

In writing Eq. (3.1) we have used
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where N = (p)D/2vrT, p) —~', P(z) is the digamma func-
tion'8 and ln y = 0.577. . . (Euler's constant).

Putting 5 =0 in Eq. (3.1) we obtain the T, equation
CUD
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III. TRANSITION TEMPERATURE
AND SPECIFIC-HEAT JUMP

Using Eqs. (2.6) and (2.7) and following a standard pro-
cedure, the order parameter 5 for temperature near the
transition temperature T, is given by

'

T,pl
ln

' = Bp(c, T) + —B)(c,T)
T 4mT

(3.1)

with

where c is impurity concentration and N (0) one spin densi-
ty of states for the conduction electrons in the normal state
of pure host metal.
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The critical value of n needed to make T, =O as obtained
from Eq. (3.9) is

Acr (1+ h. )
2y

(3.12)

Defining p = n/n„, we can write

where Bp(c, T, ) has been evaluated by taking the upper lim-
it on the summation to be infinity. Comparing Eq. (3.9)
with Eq. (14) of Ref. 6, we note that the pair breaking
parameter has been reduced by a factor of 1/(1+ h. ).

For a low impurity concentration, Eq. (3.9) gives
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Equation (3.9) can be used to plot T, /T, p versus the im-
purity concentration n/T, p This curv. e will depend on the
parameter )).. However, Eq. (3.13) indicates that a plot of
T, /T, p vs p will be independent of X.

The specific-heat jump at T, is obtained by following the
procedure used in Refs. 4 and 6 as in the ) e~ model the
electron-phonon interaction parameter is independent of
temperature. We get

AC = C, —C„

8rrN(0)T(1+X)ng()) 1 gn~())
B)(c,T, ) 27rT, 2 2' T,

(3.14)

Denoting the value of AC in the absence of impurities as
b Cp and evaluating B)(c,T, ) by taking the upper limit on
the summation to be infinity, we get

with
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Equation (3.15) agrees'9 with Eq. (28) of Ref. 6 except that now the pair breaking parameter has been reduced by the
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one can calculate it from Eqs. (3.10) and (3.17). We obtain

(3.19)

We note that c' is independent of X.
The detailed dependence of AC/ACo on the impurity con-

centration u/T, o can be obtained from Eqs. (3.15) and
(3.9). This curve will depend on the parameter A. . Howev-
er, in view of Eq. (3.13) the AC/ECo vs p curve will be in-
dependent of X. Similarly, a plot of 4C/ACo vs T, /T, o
does not depend on X. In Fig. 1, we show the normalized
specific-heat jump versus the normalized transition tempera-
ture. Curve I corresponds to eo = 1.0, e ~

= 0.53, and
e2= 0.94. For curve II, co= 0.25, ~i = 0.50, and &2= 1.00.
These sets of ~I are suggested by the tunneling experiment
of Terris and Ginsberg on Zn-Mn. The circles are the ex-
perimental points of Smith ' for Zn-Mn. In passing we may
mention that the curve II is closer to the experimental data.

I.O 0.8 0.6 0.2 0.0 IV. SUMMARY

Tc

CO

FIG. 1. Normalized specific-heat jump at T, vs the normalized
transition temperature. For curve I: E'p=1.0, ~i =0.53, F2=0.94.
Curve II corresponds to E'p=0.25, ~] =0.50, 62= 1.00. These sets of
eI are suggested by the tunneling experiment of Terris and Ginsberg
(Ref. 20) on Zn-Mn. The circles are the experimental points of
Smith (Ref. 21) for Zn-Mn.

factor 1/(1 + X ) .
The initial depression of b, C/ECo in the limit of c 0

can be written by using Eqs. (3.15) and (3.10) and we ob-
tain

Using the Eliashberg formalism and the A. model we
have given some theoretical results for the effect of magnet-
ic impurities on isotropic superconductors according to the
Shiba-Rusinov theory beyond the s-wave scattering. Our
results are generalization of Ref. 6.

The transition temperature and the specific-heat jump are
discussed in Sec. III. The initial depression in T, [Eq.
(3.10)], the critical value of the spin-flip scattering rate a„
[Eq. (3.12)], and the initial depression in AC [Eq. (3.17)]
depend on the microscopic parameters X, p, , and &AD of the
host material. Taken as a function of the impurity concen-
tration n/T„ the quantities T, /T, o and EC/ACo also
depend on the material parameters. However, this depen-
dence disappears if one plots the above properties versus
n/n, „or if AC/ACo vs T, /T o is studied.

(hC —ACo)/chCo
c =lcm

(T T o)/cT o
(3.18)

= 1 —128.(2) + (3 —S ) . (3.17)
b, C 2 T,o X(3) 2 T,o

One should note the dependence of Eq. (3.17) on the
parameter A. .

Defining the quantity
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