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Magnetic properties and chemical short-range order in Fe-Pd-based metallic glasses
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High-field magnetization and ac susceptibility measurements are reported on a series of
Fe„Pdso „Si&OB&0rapidly quenched alloys for 0» x» &0. X-ray diffraction data show that these alloys are

amorphous up to at least x =40 and that the x =60 and &0 samples are partially crystalline. The ac suscep-

tibility data can be interpreted in terms of ferromagnetic, spin-glass, and double transitions, and a qualita-

tive magnetic phase diagram of the system is obtained. The concentration dependence of the saturation

magnetization, as well as the magnetic phase diagram, exhibits sharp anomalies at about x=13. These

data suggest the presence of chemical short-range order for x & 13. X-ray photoelectron and M6ssbauer

results are consistent with this model.

I. INTRODUCTION

Magnetic properties of amorphous Fe„Pd80 „Si20 alloys
and similar compositions have been reported by a number
of authors. In most cases the Fe content was less than 25
at. '/o. Early magnetization data on a-Fe„Pdso „Si2o(x ~ 7)
were interpreted by a mechanism of spin polarization of the
Pd atoms by neighboring Fe atoms. ' Then Nagel, Fisher,
Tauc, and Bagley suggested that in a-PdCuSi alloys elec-
tron transfer from Si to Pd effectively fills the d holes of Pd
so that in a-FePdSi alloys the polarization of Pd atoms
would be unlikely. But the relatively large electronic heat
capacity and more recent photoemission measurements on
Pd-Si glasses indicated the existence of appreciable Pd d-
band states below the Fermi level (EF) so that some
amount of polarization of the Pd atoms by Fe moments is
expected.

For small Fe concentrations Mossbauer5 and ac suscepti-
bility data6 showed the existence of transitions with spin-
glass character. Dublon and co-workers studied magnetic
properties of the a -Fe„Pd82 „Si~8 system for x & 25 and
determined the magnetic phase diagram and critical ex-
ponents for this system.

We report here a study of the magnetic properties of rap-
idly quenched Fe„Pdso „Si~oByoalloys with 0» x»: 80. We
have found in many other systems that the addition of
about 10 at. '/0 boron facilitates the production of an amor-
phous phase. This was successful in part in this series since
the range of completely amorphous samples was extended
to Fe concentrations at least up to 40 at. '/0. Our interest has
been in the study of a system in which exchange fluctua-
tions become increasingly important as the moment concen-
tration decreases so that the possibility exists of double tran-
sitions (paramagnetic-ferromagnetic and ferromagnetic—
spin-glass). Also, we wished to investigate Pd spin polariza-
tion and chemical short-range order in transition-metal-
metalloid glasses.

II. EXPERIMENTAL METHODS

Amorphous Fe„Pd80 „SitoBto alloys (0~ x ~ 80) were
prepared by splat cooling arc-melted droplets. The foil-like
samples that were obtained, typically about 0.005 cm thick
and 2.5 cm in diameter, were studied with high-resolution

Mort.'o. x-ray diffraction measurements; a Si(Li) solid-state
detector was employed. For x» 40 the diffraction patterns
were liquidlike and thus the samples appeared to be com-
pletely amorphous. However, for x = 60 and x = 80 some
crystalline lines were present so that it appears that the cool-
ing rate achieved in our splat-cooling facility is not suffi-
ciently high to produce homogeneous glasses for these
high-Fe concentrations. Nevertheless, some magnetization
data will be reported for these two concentrations in the fol-
lowing, with the structure noted in the figure.

ac susceptibility measurements were performed with a bal-
anced pair of coils and with a driving field of about 1 Oe at
a frequency of 280 Hz. Standard phase-sensitive detection
techniques, a probe slowly dipped into a helium bath, and a
microprocessor-controlled data acquisition system were em-
ployed. Magnetization measurements at 4.2 K were made
in fields up to 80 kOe with a homemade vibrating sample
magnetometer. This system has been described elsewhere. '

X-ray photoemission data were taken with an ESCA
LAB-5 model spectrometer at the Academia Sinica Institute
of Physics in Beijing. Before taking the valence-band spec-
tra, with

Alamo.

radiation, the high-energy core-level spectra
were checked to make sure that no carbon and oxygen lines
were present.

III. RESULTS AND DISCUSSION

A. Magnetic phase diagram

Figure 1 shows the results of the ac susceptibility r~ea-
surements for all of the amorphous samples. Several in-

teresting features are evident. Some relatively easily under-
stood aspects are the sharp transition for x = 5, suggesting a
spin-glass transition, and the essentially flat response for
x=40 over the whole temperature range. This latter curve
indicates a ferromagnetic sample with T, ) 294 K, and a
demagnetization-limited ac susceptibility. For x=10 there
is a sharp peak at about 60 K suggesting a para-
ferromagnetic transition, and a relatively sharp downturn at
about 37.5 K. Given the apparent transition to a spin-glass
phase for x = 5 and the Sherrington-Kirkpatrick th' ory" for
systems with competing ferromagnetic and spin-gl~~s order,
it is reasonable to assume that the transition at 37.5 K is a
ferromagnetic —spin-glass transition, sometimes called a
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atoms. Of course, it implies nothing about the structure in
p, (Pd) seen near x=13. This structure, when coupled with
the anomalies seen at the same composition in the magnetic
phase diagram (Fig. 2), gives stronger evidence that CSRO
or perhaps even a phase separation into two glassy phases is
occurring in this system.

C. Photoemission and Mossbauer measurements
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The valence-band x-ray photoemission spectroscopy spec-
tra for x = 5, 10, 15, 20, and 25 were measured and a typi-
cal spectrum, for x=15, is shown in Fig. 5(a). The occu-
pied levels near EF are mainly Fe 3d and Pd 4d states. The
crosshatched area in Fig. 5(a) is the electron distribution
curve above EF due to the spectrometer resolution ( —1

eV). The ratio of the crosshatched area to the total area
under the valence-band spectrum should give a qualitative
representation, as a function of x, of the concentration
dependence of the d electron count near EF. This ratio is

plotted in Fig. 5(b), where a minimum is seen at x = 15. It
is not possible to infer anything about CSRO from these
measurements, but the change in slope at x=15 seen in

Fig. 5(b) again is consistent with a change in CSRO as dis-

cussed above in connection with structure seen in the mag-
netic phase diagram and magnetization at about this compo-
sition.

Some limited Mossbauer results' also support the idea of
significant CSRO or phase separation above x=13. The
spectrum for Fe2pPd6pSi]pB~p at both 77 and 4.2 K shows a
magnetic hyperfine split spectrum plus a doublet attributable
to a quadrupole interaction. The persistence of the quadru-
pole spectrum below the magnetic ordering temperature in-
dicates that some of the Fe atoms do not experience a mag-
netic hyperfine field, and are thus in a paramagnetic or very
weakly magnetic region.

In summary, our results on the amorphous
Fe„Pdsp „Si~pB~p system show that glassy alloys can be ob-
tained up to about x=40. A magnetic phase diagram has
been obtained including paramagnetic, ferromagnetic, and
spin-glass regions, and for a limited region of x double tran-

FIG. 5. (a) XPS spectrum of glassy Fet5Pd65SitpBtp. (b) Ratio of
crosshatched area in (a) to total valence-band spectrum area, as a
function of Fe concentration (see text).

sitions, paramagnetic-ferromagnetic and ferromagnetic-
spin-glass, exist as the temperature is lowered. The magnet-
ic phase diagram, composition dependence of the saturation
magnetization, photoemission, and Mossbauer results all

suggest a change in the chemical short-range order or a
phase separation for Fe concentrations above about 13 at. %.
The sharpness of the ferromagnetic transitions for the larger
Fe concentrations (x ~ 20) is considerably reduced from
that of the smaller Fe concentrations. This also is con-
sistent with the idea that the x~20 samples have a less
random structure than the x~13 samples. Since many of
the metallic glasses studied also contain three or four consti-
tuents, microscopic studies of the atomic arrangements in
the present and other such glasses will be important in ob-
taining a detailed understanding of their physical properties.
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