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Multiple scattering of second sound in superfluid He II-filled porous medium
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Observations on thc multiple scattcrlng of second sound ln flvc fused-glass-bead porous media satul'Rtcd

with superfluid helium are reported. Near the A. point where attenuation is small, the measured index of
refraction of second sound is in agreement with that of first sound in the same porous medium. Below 1.7
K, both the index of refraction and the attenuation of second sound increase as the temperature is

1owered. The measured temperature dependence can be described by the effects of viscous drag between

the normal fluid component and the walls of the porous medium.

The acoustics of fluid-filled porous solid media has been a
problem of theoretical and experimental interest over many
years. In a series of papers Biot' proposed a phenomenolog-
ical theory for the acoustics of the two-component system
by considering the motion of the fluid and solid separately.
Biot's theory predicts that at sufficiently high frequencies
there exist one shear and two (slow and fast) longitudinal
propagating waves. Plona2 recently observed the slow and
fast ~aves in water-saturated fused-glass beads. Johnson3
sho~ed that the fourth-sound propagation in a supcrfluid
HeII-filled porous medium is analogous to the slow wave
in the Siot theory and that thc measurement of index of re-
fraction of fourth sound4 in a superlcak is equivalent to a
measurement of the tortuosity parameter for the porous
medium in the Biot theory. The tortuosity parameter for a
number of fused-glass beads was determined by Johnson
et a(.5 from the measurement of the index of refraction of
first sound in superfluid HCII. It was found5 that the Biot
theory together with the measured tortuosity parameter and
other measured parameters was in good agreement with the
mcasuremcnts of Plona. 2 Morc recently the sound propaga-
tion in a liquid-helium-filled Vycor glass has been measured
by Beamish, Hikata, Tell, and Elbaum. 6 The purpose of our
paper is to present measurements of thc propagation of
second sound (temperature wave) in a HeII-filled porous
(but not a superleak) medium.

Neglecting prcssure changes and dissipativc effects in the
propagation of second sound, the equation of motion of the
norlTlal COIYlponcnt ls glvcn by

d~n ps ~y T
Pn

Here, V„ is the normal component velocity, p, the super-
fluid component density, p„ the normal component density,
S the entropy per unit mass, and T temperature. The con-
servation of entropy is expressed by

(2)

where p is the total fluid density. Equations (I) and (2)
may be combined to give a wave equation for second sound
whose speed of propagation in the absence of multiple
scattering is given by

C$ = (3)
p„C„

where C„ is the specific heat at constant volume. In the

limit of long wavelength and small fluid velocity, s the wave
equation for T bccoIncs

V2T=O (4)

Equation (4) must be supplemented by a boundary condi-
tion at the solid walls. Assuming that there is no heat
entering HeII at the walls of the porous medium, we have
the boundary condition that7

PSTV„I =0
Here V„q is the component of the normal fluid velocity per-
pendicular to the solid wall. Equations (I), (4), and (5) are
analogous to the corresponding equations of an ideal classi-
cal fluid motion in the long-wavelength limit in a rigid
porous medium. ~ In the presence of a porous medium the
sound propagation in the ideal classical fluid suffers a multi-
ple scattering and the measured speed of sound is reduced
from that in bulk. Analogously, the speed of second sound
in the presence of a porous medium C2' is reduced from
that ln bulk. Thc rcductlon ls characterized by an lndcx of
refraction n given by

In a glvcn poI'ous medium thc lndcx of I'cf1'action of second
sound is expected to be equal to that of first sound.

Thc porous material used in our experiment is made by
sintering closely packed glass beads ~hose dia.meter is in the
range —180-210 p, m at a temperature of about 700'C.s

The porosity (defined as tile ratio of volu111e 11ot occupied
by glass to total volume) obtained in this manner is about
350/o or less. The porosity can be decreased by increasing
the time interval of sinter. A 10-cm-diam disk of 1-2.5-cm
thickness is prepared. A cylindrical plug is machined out of
the disk and this plug constitutes our porous medium sam-
ple. The viscous penetration depth in the frequency and the
temperature range of interest is sufficiently small such that
both fll'st RIll second sound ln Hc II fllllng thcsc poI'ous
samples can bc observed. 5 In this paper we focus on the
measurements of second sound.

A sample was inserted into a cylindrical brass cavity
whose diameter and length werc adjusted for a snug fit.
The ends of the cavity were closed by second-sound capaci-
tive transducers utilizing Nuclepore filter (0.2 p, m pore di-
ameter and 10 p.m thick) membranes as active elements. '0

The cavity was immersed in a liquid-helium bath. The cavi-
ty was filled with helium through a small leak probably at
the end of the cavity when the bath temperature was re-
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duced below the lambda point T&. The cavity forms a
second-sound resonator. The speed of second sound in the
presence of the porous sample C2' was determined from the
measured resonant frequencies of the "length modes" from
the following relation:

2f L2=
m

(7)

20—

where L is the length of the cavity and f the mth length
mode resonant frequency. Second-sound resonances in a
frequency range 1-15 kHz and at temperatures above 1.2 K
and as close as 2 mK below T& could be observed. As
many as 20 length modes could be observed. The tempera-
ture of the bath was obtained from the measured vapor
pressure. To observe the propagation of first sound in the
same porous sample, it was necessary only to replace the
Nuclepore filter membrane with a Mylar sheet.

To test our overall measurement system, we observed
second sound in bulk HeII without inserting any porous
sample. g values of resonances greater than 200 were ob-
served at T=1.3 K. Our measurement of the speed of
second sound in bulk HeII in the absence of multiple
scattering by a porous medium is indicated by open circles
in Fig. 1. The data are in excellent agreement with those
(shown by a solid line) of Maynard. "

When a porous sample was inserted into the cavity, the
measured speed of second sound becomes less than the
bulk value. The results for four porous samples (nominal
diameter=0. 6 cm and length=3 cm) are shown in Fig. 1.
The values of C2' shown in Fig. 1 are taken as the average
of at least 10 modes at a stabilized temperature. The sym-
bols, crosses, diamonds, triangles, and squares refer to sam-
ples of porosities equal to 33%, 30%, 26%, and 16%, respec-
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FIG. 2. Measured ratios CgC&" (dots) and Ct/Ct (squares) as a
function of temperature for a sample of porosity 34.5%. The
second-sound data is obtained using m = 9 mode and the first-sound
data using m =2 mode.

tively. The greater the porosity, the greater the reduction in
the measured speed of second sound. The dashed lines in
Fig. 1 represent the temperature dependence of the bulk
second-sound speed divided by an index of refraction ad-
justed to fit each sample. The temperature dependence of
the measured speed of second sound in the porous samples
is very similar to that in bulk in the temperature range
shown in Fig. 1. However, more detailed measurement in
another sample shows that there is a discrepancy in the tem-
perature dependence particularly below 1.7 K. (See discus-
sion of Fig. 2.)

In Table I, we list the index of refraction measured by
both second sound and first sound in the same porous sam-
ple. There is a fair agreement on the measured index of re-
fraction by the two kinds of sounds. The quality factor of
second-sound resonances decreases as the porosity is de-
creased and the accuracy of measurement also decreases.
The discrepancy in the 16% sample may in part be caused
by the inaccuracy. Our results indicate that the boundary
condition given by Eq. (5) is valid at the HeII —glass inter-
face at T&1.7 K.

The temperature dependence of the speed of second
sound was measured in more detail in a separate sample
with a porosity equal to 34.5%. The length and the diame-
ter of this sample were 1.0 and 2.0 cm, respectively. The
temperature dependence of C2' in this sample was measured
by following the ninth mode resonance. The ratio CgCq'
for the ninth mode is shown by dots in Fig. 2. Between 1.7
K and T&, the temperature dependence of this ratio is not

TABLE I. Index of refraction of porous samples as measured by
first and second sound.

1.2 1.6
T(K)

1.8
I

2.0
Porosity (%)

Index of refraction
Second sound First sound

FIG. 1. Measured speed of second sound in bulk HeII (circles)
and in porous media saturated with HeII as a function of tempera-
ture. Media poroslties are 33% (crosses), 30% (diamonds), 25.7%
(triangles), and 16.3% (squares). The solid line is taken from May-
nard (Ref. 11).

33
30
26
16

1.31
1.38
1.58
1.90

1.32
1.36
1.47
1.73
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FIG. 3. Quality factor of third mode is 34.5% porosity sample as
a function of temperature.

large as it was already seen in Fig. 1. At temperatures
below 1.7 K the ratio becomes significantly larger. A similar
temperature dependence of the ratio was observed for other
modes between m =2 and 15. The measured ratio was not
dependent on the drive level which was varied by a factor of
20. The measured temperature dependence of the ratio was
not affected by (1) a small ( —10 p, m) gap around the per-
imeter of the sample, (2) a probably irreproducible acoustic
radiation leakage at the ends of the resonator when the cavi-
ty was opened several times to replace Nuclepore mem-
branes, and (3) the pore size of Nuclepore membrane.

The temperature dependence of the measured quality fac-
tor of the third mode is shown in Fig. 3. The Q value in-
creases from about 6 near 1.4 K to about 42 at 2.10 K. The
Q values for other modes behaved similarly in temperature
dependence. The measured Q values for modes between
m =2 and 7 at T=1.90 K are shown by circles in Fig. 4.
Owing to a decreased signal level, Q could not be measured
reliably at frequencies greater than 5 kHz. The error bars in
Figs. 3 and 4 indicate uncertainties in the base line of the
resonance curve.

As a comparison to the second-sound measurements, we
measured the speed of first sound in the same 34.5% poros-
ity sample as a function of temperature. The ratio of the
measured first-sound speed to the bulk first-sound speed
Ct/Ct" is shown as squares in Fig. 2. The ratio increases
only slightly ( —0.8%) between 1.2 K and T„. The ratios
from first-sound and second-sound measurements are close
to each other near T&. The first-sound measurement was
extended above T& into the normal liquid phase. The ob-
served Ct/Ct' in the normal phase is the same as that at T„.
The measured quality factor of a first-sound mode with
m = 2 was about 30 at T = 3.0 K.

We attempt below to describe the observed temperature
dependence of C2/C2' and the quality factor by considering
the effects of the viscous drag between the normal com-
ponent and the walls of the porous medium. The effects of
viscous drag may be included into the equation of motion
by adding a term proportional to velocity —RV to the
right-hand side of Eq. (1), where R represents a dynamic
flow resistance. ' In the limit of vanishing R, one obtains
the unattenuated second sound. In the opposite limit of
R ~, the second sound becomes a diffusive mode. In
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FIG. 4. Quality factor of modes 2-7 at T=1.90 K in 34.5%
porosity sample. The solid and dashed lines show theoretical fre-
quency dependence.

the present analysis we assume an expression for the flow
resistance appropriate for a straight cylindrical pore given
by13

&/2

R= CU—(1—i) (8)
p„co r

where q is the viscosity of the normal component and r the
radius of the pore. The real part of R contributes to the at-
tenuation of second sound. The imaginary part contributes
to the acceleration term in Eq. (1) and results in a reduced
speed of propagation. The linearized set of equations7 for
the conservation of mass, the motion of superfluid com-
ponent, Eq. (2) and modified Eq. (1) as described above
may be solved for normal modes by assuming a plane wave
solution —e' ~ "' where the wave vector k is a complex
quantity k = k, + ikI. In the limit of not too large R, the set
of equations gives first- and second-sound modes. For each
mode, the phase velocity and the attenuation coefficient
may be calculated. The phase velocity is given by
V„h(1, 2) =co/k, and the attenuation coefficient is given by
a=k&, where 1 and 2 refer to first- and second-sound
modes, respectively. For our analysis it is more convenient
to calculate the quality factor given by Q = k,/2k, .

To compare the above theory with our second-sound
results in Fig. 2 we evaluated the quantity 1.29[CD V~h(2) ]
as a function of temperature and the ratio is shown as a
solid line in Fig. 2. The index of refraction where viscous
effects are small is assumed to be the measured C2/C2' near
T& and is taken as 1.29. The value of r was adjusted to 22

p, m for a good fit. The fit is good over the temperature
range of measurement. The temperature dependence of the
calculated quality factor of third mode and r =22 p, m is
shown by a solid line in Fig. 3. There is qualitative agree-
ment between the theory and the experiment. A somewhat
better fit is obtained as shown by a dotted line if r is adjust-
ed to 19 p, m. The rise of Q as the temperature is raised to-
wards T& results from the smaller normal component veloci-
ty (hence, smaller dissipation) required to keep the center
of mass fixed.

Since the flow resistance R is frequency dependent, the
calculated V,h and Q are expected to be also frequency
dependent. The mode dependence of C2/C2' determined
from the measured resonant frequencies between m = 2 and
m=14 at T=1.90 K is shown in Fig. 5. The expected
mode dependence of C2/C2' from the theory (r = 22 p, m) is
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shown by a solid line. The measured mode dependence is
larger than expected. %e do not have an explanation for
the discrepancy. The dashed and solid lines in Fig. 4
represent the frequency dependence of 0 expected from the
above theory at T=1.90 K with r =19 p, and 17 p, m,
respectively. The theory appears to describe the frequency
dependence qualitatively.

To compare the theory with the first-sound results in Fig.
2, we plotted the ratio 1.32[CI/V~h(1)] as a dotted line.
The value of r was 17 p, m. The theory is consistent with
the observed increase of C~/Ct". The qua!ity factor of the
first-sound modes has not been measured systematically and
will be a subject of further study.

An estimate based on the volume to surface area ratio for
the 34.5'lo porosity sample gives a value —30 p, m for the
pore radius. This value is fairly close to r used in fitting the
theory to our data.

FIG. 5. Mode dependence of C2/C2 in 34.5'/o porosity sample at

T = 1.90 K. The line represents theory for r = 22 IM, m.
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