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Random-field Ising model on a Bethe lattice
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The ground state of the random-field Ising ferromagnet on a Bethe lattice is found. With de-

creasing random-field strength an infinite series of spin-flip transitions precedes the onset of fer-
romagnetism. The T=o critical behavior is not mean-field-like. At finite temperatures a series of
Griffiths singularities precedes the phase transition. As T—+0, the Griffiths singularities terminate
at the spin-flip transitions. The T&0 critical behavior is argued to be mean-field-like.

I. INTRQDUCTION

Disorder ln IDagIlct1c systcIDs 1s caused both by tllcrIDRI
fluctuations and quenched impurities. Impurities can give
risc to IandoIDncss 1Q thc cxchangc 1ntcIact10Q Rs well Rs

to a random magnetic field. If the randomness in the ex-
change interaction is not too large it only reduces the
transition temperature for the onset of long-range magnet-
ic order. ' A random magnetic field though has a more
pronounced effect. The field couples directly to the order
parameter and it can completely destroy long-range or-
der. Among theorists, this is believed to happen for the
two-dimensional (d =2) random-field Ising model
(RFIM), but not for the three-dimensional case.3 The
RFIM is realized in experiment by applying a uniform
field to a randomly diluted antiferromagnet. Among ex-
perimentalists there is disagreement on the interpretation
of the data in d =3. Long-time relaxation and hysteresis,
as observed in Mg„Fei „C12, may be important. One of
the ways the hysteresis could come about is by having a
set of degenerate ground states separated by finite energy
barriers. The zero-temperature (T =0) entropy So would
be finite in that case.

The simplest mean-field theory of the RFIM assumes
that the thermal expectation (S(R)) of a spin at site R is
independent of R. It predicts a phase transition from a
paramagnet (PM) into a ferromagnet (FM) for a suffi-
ciently small random field strength h. For random fields
with a discrete distribution (+Ii) the transition is first or-
der for low temperatures and second order for higher tem-
peratures with a tricritical point in between. The T =O
entropy So and susceptibility Xo are zero. The RFIM
with infinite-range interaction has the same properties.

However, the d = I RFIM can be solved at T =0, and
partially for T&0. It does have a finite So. As a func-
tion of Ii there is a series of spin-flip transitions at T =0,
although, of course, no PM-to-FM transition occurs.
Such transitions can be explained using a cluster expan-
sion RIld aic obscrvcd in experiment. AnothcI' question
about mean-field theory is that it predicts that the free en-
ergy is analytic in T and H outside the phase-transition
region. Griffiths' has shown that a diluted Ising fer-
romagnet has essential singularities in the free energy in a
range of temperatures above the critical temperature. It

has been argued that such singularities also occuI in the
RFIM.

The main problem with mean-field theory is not that it
ignores therma/ Auctuations, but that it does not allow

(S(R)) to vary with position. In other words, (S(R))
should be treated as a random variable with its own distri-
bution. A measure of the importance of these quenched
fluctuations is the width of the distribution:

Q—=[(S(R)) ) „, the Edwards-Anderson order parame-
ter. '" Note that Q is finite both in the PM and the FM
phase. [ ]q„ in the definition of Q denotes a quenched
average.

The quenched fluctuations have been considered using
domain-wall arguments ' and field-theoretic methods'
based on a Ginzburg-Landau analog of the RFIM. Both
methods were used, with varying results, to find the lower
critical dimension of the RFIM, but they are less suitable
to study low-temperature properties such as the T =0 en-

tropy and susceptibility (however, see J. Cardy' ). Recent-
ly, Parisi' argued that Griffiths singularities lead to diffi-
culties at low temperatures in the present field-theoretic
results.

In th1s papcI' wc w111 d1scuss the RFIM on R Bcthc lat-
tice (Fig. I) with a discrete random-field distribution
(+h). We will. not use domain-wall arguments or field-
theoretic methods, but instead we will use a generalized
version of the solution method ' of the d = I RFIM.
The solution method only applies to lattices without "cir-
cuits, " which is the main reason for using the Bethe lat, -

tice. The method will allow us to find the ground state
and some of the finite-temperature properties which can
be used as a test case for more approximate methods such
as domain-wall arguments or cluster calculations. As we
shall see, both make valid predictions for the Bethe-lattice
RFIM.

The pure Ising model (Ii =0) on a Bethe lattice under-
goes a PM-to-FM transition at T=T, with mean-field
critical behavior' (for interior spins) so that, as in the
case of previous calculations, ' the thermal fluctuations
do not play a role. The quenched fluctuations, however,
do contribute: For Ii &0, we find a self-consistent integral

equation for the distribution of (S(R)). Solving this
equation at T=0 allows us to discuss the ground-state
properties and the results are quite different from mean-
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FIG. l. Bethe lattice with connectivity @=2. The site
marked X =4 is a fourth-generation site. Sites closer to the sur-
face and connected to X =4, such as E =1, 2, and 3, together
form a fourth-generation branch. There are three fourth-
generation branches connected to the central site.

field theory: The T =0 entropy So is finite for
1&h/J&3 (J is the exchange constant). An infinite
series of spin-fiip transitions occurs at h/J =1+2/M
(M = 1,2, . . . ). At these values of h, So is exceptionally
large. The ground state is ferromagnetic for h/J ~1, in

agreement with a domain-wall argument. The critical
behavior at h /J = 1 is not mean-field-like: The suscepti-
bility diverges as 1/(h/J —1) . At finite temperatures, a
series of Griffiths singularities precedes the PM-to-FM
transition. At T =0, the singular lines terminate at
h/J =1+2/M (see Fig. 2). There is no tricritical point.
The T+0 critical behavior is mean-field-hke for small H
and T= T, . A T =0 cluster-expansion calculation'
shows also an infinite series of spin-flip transitions. For
the Bethe lattice a cluster calculation finds critical values
h/J =1+2/M, in agreement with our results. This suc-
cess of the cluster expansion is interesting. For the d =2
RFIM, the critical values are' h/J =2+2/M, which
would imply a phase transition at h/J=2, although
domain-wall calculations ' argue against long-range mag-
netic order for d =2.

A disadvantage of the Bethe lattice is that a majority of
spins reside at or near the surface. Only the interior spins
can have a finite magnetization. The bulk magnetization
is always zero. ' In the following we will only discuss the
properties of the interior spins; the surface spins are fixed.

An important problem is the appropriate choice of the
random-field distribution. Within mean-field theory, the
tricritical point is absent for a Gaussian distribution. The
solution method discussed in this paper unfortunately
does not yield results for a Gaussian distribution. The
distribution appropriate for experiment is not known.

The paper is organized as follows. In Sec. II we will re-
view the recursion-relation method. In Sec. III this
method will be applied to find the ground state, and in
Sec. IV it will be applied to find some of the finite-

I
3k 2

FIG. 2. Phase diagram of the RFIM on a Bethe lattice. The
solid curve is a lower bound for the onset of ferromagnetism.
Dashed lines are Griffiths singularities terminating at the T =0
spin-flip transitions h/J =1+2/M, indicated by crosses. h is
the random-field strength, J is the exchange constant, and T is
the temperature.

temperature properties, including the Griffiths singulari-
ties. Section IV also contains a short conclusion.

II. RECURSION-RELATION METHOD

We start with the Harniltonian A of the RFIM,

S(R)S(R+5)+ g h(R)S(R), (1)

fRj

where IRI runs over a Bethe lattice with connectivity
K =2 (Fig. 1) and 5 runs over the three nearest neighbors

of a given site. The random field h(R) takes on the
values +h with equal probability and the exchange con-
stant is set to 1.

To find the free energy, we develop, in this section, the
recursion-relation formalism' used previously to solve
the d =1 RFIM (a Bethe lattice with E =1) and the pure
Ising model on a Bethe lattice. ' A related method was
used in numerical studies' of similar problems.

The principal idea is to find the dependence of the par-
tition function on the system size X and to derive a recur-
sion relation with respect to E. First, we give a number
of definitions concerning the Bethe lattice: An nth-
generation site is a site which is n layers away from the
surface. It is directly connected to two (n —1)th-
generation sites. All sites which are less than n layers
from the surface and are connected to one nth-generation
site constitute an nth-generation branch. The central site
of the lattice (Fig. 1) is connected to three Xth-generation
branches. X will be called the system size. Now, if we fix
the spin at a nth-generation site R to be either up or down

(+), then we can express the partition function Z„-(R) of
the associated nth-generation branch in terms of the parti-
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tion function of two (n —1)th-generation branches,

Z„+-(R)=e'-t'"'R' Q [Z„+,(R+S„)e'tt-
k =1,2

+Z„:) (R+ 5k )e+~], (2)

where p= 1 /T and R+ 5& and R+ 52 are the two

(n —l)th-generation sites connected to R. In the limit of
large n, Z„—diverge exponentially but the ratio Z„ /Z„
remains finite. From Eq. (2} we can find a recursion rela-

tion for the free energy F„(R} of an nth-generation
branch terminating at R,

F„(R)= —T ln[Z„+(R)+Z„(R)]

—= ——,
' T ln[Z„+(R)Z„(R)]

(F„&(R+5k ) ——,
' T in[2 cosh(2p)+2 cosh[2px„&(R+ 5k )]I ),

k=1,2
(3c)

where

x„(R)= —, T ln[Z„+(R)/Z„(R)] .

Equation (3c) was derived for the pure Ising model in Ref.
20. In going from (3a) to (3b) we used the fact that
Z„+/Z„ is finite although Z„+ diverges. From Eq. 3(c)
one can identify a free energy per spin f(R},

f(R)= ——in[2 cosh(2P)+2 cosh[2Px„(R)]I,
2

in the sense that the total free energy of the branch is

F„(R)= g f(R'),
I R'I

where IR'I runs over the nth-generation branch. The
random variable x„(R), which determines f(R), obeys a
stochastic recursion relation,

x„(R)=h„(R)+ g g(x„ i(R+5k)),
k =1,2

where

g(x)= —ln[(e ~"+"'+1)/(e ~"+e ~)] .T
2

Since
~

g(x)
~

&1, we see that
~

x„(R)
~
&h+2, so that

Z„ /Z„ indeed remains finite. For h =0, Eq. (6) has a
fixed point x „,

x„=2g(x„).

If the slope 2g'(0) &1, then x =0. For 2g'(0}&1 there
are two stable solutions +x„associated with ferromag-
netic order. The resulting free energy is identical to that
of the Bethe-Peierls approximation. ' ' The critical value
2g'(0)=1 corresponds to a PM-FM transition tempera-
ture T, =2/ln(3).

So far, we have only performed a thermal average. To
do the quenched average over all possible configurations
of h (R), we associate a distribution W„(x) with the ran-
dom variable x„,

W„(x)b, =Prob(x &x„&x +b, ) .

Now, x„(R) depends on x„&(R+5k) through the sto-
chastic recursion relation (6). Because there are no cross
links between the two branches with k = 1 and 2, the ran-

dom variables x„&(R+5k) are independent so that x„ is
the sum of three independent random variables,

W„+)(x)= f dh P(h) f dx) W„(x)) f dx2W„(x2)5(x —h —g(x() —g(x2)), (10)

where P(h) is the random-field distribution.
Equation (10) is the central result of this section. This functional recursion relation drives us to a fixed point W„(x),

obeying a self-consistent integral equation,
+ OO + OO

W (x)= —,
' f dx) J dx2W (x()W (x2)[5(x —h H —g(x)) —g(x—2))+5(x+h H —g(x)) —g(x—q))], (11)

for a discrete distribution h (R)=+h and where we added
a small uniform field H. This integral equation is the
random-field analog of the usual mean-field self-
consistency equation [such as Eq. (8)] for nonrandom
problems. It must be solved under the constraints

I W (x}dx =1 and W (x))0 for all x. For the
d =1 RFIM one finds a similar recursion relation,
only linear. For a Bethe lattice of connectivity K, there

will be a convolution of IC distributions W„(x) on the
right-hand side of Eq. (11).

Once we know W (x), we can find the mean energy
per spin f, for interior spins,

+ aof= ——J W (x)in[2 cosh(2p)+2 cosh(2px)]dx,

(12)
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while the magnetization and susceptibility follow from the
field dependence of f. To find the Edwards-Anderson or-
der parameter Q we compute the magnetization (Sp) of
the spin at the central site. (Sp} depends on the random
field hp at the origin and on the partition function of the
three Xth-generation branches connected to the origin,

(a)

3

(Sp}=tanh P hp+ g g(x~(Rk)} (13)

where Rk refers to the three Nth-generation sites connect-
ed to the origin. Notice that [(Sp ) ]q„ is zero if the distri-
bution W&(x) is even in x since g(x) is odd in x. From
Eq. (13) we can compute Q =[(Sp) ]q„once Wz(x) is
known. Equation (13) gives physical meaning to the ran-

dom variable x~. g(xz(Rk)) is the effective field at the
origin induced by site Rk.

III. GROUND-STATE PROPERTIES

&h =p~, 3f =1,2, 3, . . . (14)

where p~ is the bond perimeter of a fully ramified cluster
containing N sites. A fully ramified cluster is a cluster of
N spins with the longest possible perimeter. For a Bethe
lattice, pz N+. 2 since a f——ully ramified cluster is just a
straight line of neighboring sites [Fig. 3(b)]. The critical
field strength for spin-flip transitions is thus

The ground state of the RFIM is believed ' to be fer-
romagnetic, for weak random-field strength, if the dimen-
sion is larger than two. Even at T =0 though, there are
still finite-sized minority regions with spins pointing in a
direction opposite to the magnetization. The interfacial
energy of a finite domain of size X in an infinite Bethe
lattice is of order 2, while the gain in energy due to the
random field is of order h 2 since there are 2 spins in
the domain [Fig. 3(c)]. Minimizing the total energy with
respect to N gives N-ln(h). This would imply that the
ground state is ferromagnetic and there should be no
domains of minority spins for h & 1. On the other hand,
for h & 3, every spin must follow its local random field so
there is no magnetic order at all. At h =3, spins at sites
surrounded by three neighboring sites, with random fields
opposite to their own [Figs. 3(a) and 3(b)], are frustrated
in the sense that (S)=0. For h &3 there must be some
short-range magnetic order. In general, spin-flip transi-
tions of this kind are expected when'

il li li II

(c)

l !(

FIG. 3. (a) Random-field configuration for a spin-flip transi-
tion at h/J=3. For h/J &3 every spin follows the local
random-field. For h/J =3 the central spin is frustrated and
represents a paramagnetic site with a moment of 1. For
h /J &..3, the central spin follows its three neighbors. (b)
Random-field configuration for a spin-flip transition at
h /J =2. The frustrated cluster at h /J =2 now consists of two
parallel spins and is a paramagnetic site with a moment of 2.
The frustrated cluster, indicated by a double solid line, is a fully
ramified cluster of two sites. (c) Domain-wall argument for the
RFIM on a Bethe lattice. A domain of size N =3, indicated by
a dashed line, has its spins reversed. The interfacial energy is of
order J2, while the volume energy is of order h(2 )'

h =1+2/N .

In this section we will use the recursion-relation method
of Sec. II to verify these intuitive results and discuss the
phase transition expected at h =1. First we compute
W (x) as a function of h. The stochastic recursion rela-
tion

x„(R)=h„(R)+H+ g g(x„&(R+5k)}
k =1,2

simplifies in the T—+0 limit since

1, x&1
g(x)= .x, —1&x &1

—1, x( —1

(16)

for T~O.
As long as h & 3, it follows from Eq. (16) that

! x„!& 1, so that x„can only assume the values
+h+1+1 (for H =0). This shows that W (x) is a sum
of 5 functions. To find W (x) we start with
W~(x)=5(x —xp), with xp arbitrary, and use W~ as a
starting distribution for the recursion relation (10}. For
h & 3, we need only two iterates to find 8'„with result
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W„(x)=—,
' g 5(x +e,h +e,+e, ), h )3 .

+1,
e2 ——+1,
e3 ——+1

From Eq. (16), it is clear that this cannot be anymore a
solution if a 5 function occurs in the interval [—1,1].

I

This happens when h —1=2. For 2 & h (3 we see, from
Eq. (6), that W„(x) is series of 5 functions now located at

+ h, +h+2, +h+2(h —2), +h+(h —2)+1 .
Inserting this into the fixed-point equation for W„(x),
Eq. (11),gives the weights of the 5 functions,

W„(x)=—,
' g [p~5(x+e,h +e2+e3)+2pq 5(x+e~h ~e2+e3(2 —h))+q 5(x+a,h+e2(2 —h)+eq(2 —h))], 2 & h (3

and for h & 1, there are two obvious solutions,

W„(x)=—,
' g 5(x+2—eh), h (1. (21)

The limit of W„(x) for h ~1 is found in Appendix A,
1/e

W"(x)—=& g 5(x —1+no), 0(x (1
n=1 +

(22a)

where p = —1+@2 and q = —,
' —p. The second 5 func-

tion occurs in the [—1,1] interval when 2(h —1) «2. For
h &2, W is the sum of an even longer series of 5 func-
tions, and a 5 function of this series acquires an argument
in the [—1,1] interval when 3(h —l)(2. For smaller
values of h, the calculation becomes laborious, but, in gen-

eral, when

N(h —1)=2, N =1,2, 3, . . .

we add another series of 5 functions to W„(x). Equation
(19) agrees with the cluster-calculation result. The neces-

sary number of iterations to find W„(x) diverges when h

approaches 1. Right at h =1, the solution of Eq. (11) fol-
lows by inspection [see Eq. (6)],

W„(x)= g [—', 5(x —e)+ —,
' 5(x —3e)], h =1

I

first term only is a good approximation. The uniform
susceptibility 7 is computed in Appendix B. The result is

for h ~3;

f= —3, Xo——(1/T) „', , So-=—,ln2, M =0, Q = —', ,

(24b)

for h =3; and

f= —3p —(1—p )" &0= 2T(4p + 'p +

So ~pq ln2, M =0, Q = 1 ——,p'(1 —p )',
for 2(h &3; where p= —1+F2 and q= —,—p. Note
that the entropy So at h =3 is much larger than for
2& h (3. So is shown as a function of h in Fig. 4. We
found that a cluster-calculation predicts the positions of
the spin-fhp transitions correctly. However, it also claims
that So is zero between the critical values, which we find
not to be the case. The Curie-like temperature depen-
dence of the susceptibility indicates that the low-lying ex-
citations of the system are due to small clusters of aligned

(x)-=—,W(2 —x), 1 &x (2
W (x)= —,W(x —2), 2(x (3

(22b)

(22c)

where e=h —1, 3=0.14 and a=1.7, while W"(x)
= W"( —x). For h (1, the solution (21) is not unique.
There is an inf'inite series of solutions, all with zero mag-
netization and with a higher free energy. They are un

stable under application of a uniform field and will be ig-
nored in the following.

Having found W (x), we can compute f. We first
note that

0.2—

O.l—

So——lim—
T~O BT

1+a i (j= limln2 f dx W„(x)+ f dx W„(x) o.o0

CC

+ f dx W (x)x. (23)

For the case of d =1, it can be shown ' that keeping the

FIG. 4. Zero-temperature entropy per spin So as a function

of the random-field strength h (J= l). For h ~ 3 and h ~ 1,
So ——0. For h ~ l, the ground state is fully aligned. In comput-

ing So„only the first term of Eq. (23) was included.
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&o—=~2, + T(h —1)

Sp =0.47 ln2,

Af =0,
Q =As+24(h —1)

(25b)

(25c)

(25d)

(25e)

where A I
—A5 are constants and a=1.7. For the ordered

phase (h = 1),

f= —2, Xo——0, So ——0, M=+1, Q=l . (26)

spins having two equivalent orientations ("super-
paramagnetism").

Next we turn to the critical behavior, for h ~1+,
f=A—1(h —1)——', ,

The result that M =+ 1 for h & 1 agrees with the
domain-wall argument. Mean-field theory, for Gaussian
randomness, predicts X-I/(h —1},and thus the critical
behavior is not mean-field-like. Furthermore, the suscep-
tibility is not Curie-like, and thus the "superparamagnet"
description fails near h =1. Equations (25a) and (25b)
must, however, be considered with caution: f is discon
tinuous at h = 1. The bulk free energy, computed numeri-
cally from Eq. (3), is continuous. This problem is due to
the diverging correlation length. For h &1, we cannot
consider the interior spins separately from the surface,
and our definition off becomes questionable. Summariz-
ing, we have found that both the domain-wall argument
and the cluster calculation are valid for the RFIM. The
critical behavior near h =1 is not mean-field-like, and
since the T=0 susceptibility diverges at h =1, we can
rule out a tricritical point.

IV. FINITE- TEMPERATURE PROPERTIES

For T&0, W (x) is not anymore a finite series of 5 functions and it is not possible to give explicit expressions for the
fixed-point distribution. In this section we first derive some general properties of W„(x) and then apply the results to
compute the free energy f.

We begin in the same way as in Sec. III: The initial condition is Wl(x) =5(x —xp), with xo arbitrary, and then use
Wl as a starting distribution for the recursion relation (10),

W, (x}=5(x—x, ),
W1(x)= 7~5(x —h —2g (xp ))+T~5(x +h —2g (xp ) )

(27)
W3(x}=—,'5(x —h —2g( —h +2g(xo)})+—,'5(x —h —2g(h + 2g(xp)})+ —,5(x —h —g(h +2g(xp)) —g( —h +2g(xo)))

+ &5(x+h —g(h+2g(xo)) —g( —h+2g(xo)))+ s 5(x+h —2g( —h+2g(xo)})+V~5(x+h 2g(h+2g(xo))) ~

W4(x) = 5(x —h —2g ( —h +2g(h +2g (xo)}))+ 5(x —h +g (h +g(h +2g (xo))+g( —h +2g(xo)))

+g( —h+g(h +2g(xp))+g( —h+2g(xp))))

+ —,'5(x +h +g(h +g(h +2g((xo))+g( —h +2g(xo)))+g( —h +g(h +2g(xp))+g( —h +2g(xo))))

+», 5(x +h —2g (h +2g( —h +2g(xp)))) .

x„'=h +g (x„' 1)+g(x„,),
x„=—h+g(x„', )+g(x„,) .

(29a)

(29b)

This can be shown, using induction, by considering the
two maxima at the nth iteration, both with weight A„,

Only the two largest and two of smallest terms of Wq
are given. In general, W„ is a sum of Z„5 functions
where

2
Zn+1 Zn +Zn

and thus Z„-2 for n~ao. Since
~
g(x)

i
(1, it fol-

lows that W„(x) has a bounded support so that the mean
density of 5 functions is of order 2 . From Eq. (27} we
see that the weights of the 5 functions are maximal for
the two 5 functions with arguments x —x„' and x —x„
where

and so An=1 j2 . In Appendix C we will show that
W (x) is a differentiable function, at least for small h.OQ

~ 1This implies that, for large n, the 5 functions near xn and
x„have weights comparable to An. Since the 5-function
de11slty ls 2 and A» =1/2, we co11clllde tllat W~ (x)
has two maxima at the fixed points of x„' and x„,

x „=h +g(x '„)+g(x„),
= —h+g(x'„)+g(x'„) .

(30a)

(30b)

W„(x)=A„[5(x—x„')+5(x —x„)]+
where the ellipsis represents lower-weight 5 functions, and
using Eq. (10) to compute W„+l. This also gives a recur-
sion relation for the weights An,

2~n+i=~n
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cosh(2P} —2 exp( —2P) & cosh(2Ph), (30c)

then [(So)]q„ is finite. The line terminates at h =1 in

the limit T~O, in agreement with the T =0 results. At
T =0 and h =1, x' =1 and x = —1, which is con-
sistent with Eq. (20).

The fixed-point equations for x ' and x „resemble that
of the pure Ising model [Eq. (8)], a,nd we could ask wheth-

er there is some nonrandom system, with a given configu-

ration h(R), obeying the recursion relations (29). This is

the case, and a typical h (R) is shown in Fig. 5(a). For an
2."I' —1

Xth-generation branch there are 2 possible configura-

tions of h(R) obeying Eqs. (29), out of a total of 2' .
This explains the maxima of 8" at x and x . Howev-

er, as we saw in Sec. III, contributions to 8' away from
the maxima are important in understanding the T=0
spin-Aip transitions. For this reason we now consider

some of the least likely contributions to @': the first

jk

ijkj

As long as 2g'(h) ~1, there is only one solution to Eqs.
(30) (x'„=—x „=h). However, if this condition is

violated then there are two stable solutions and one un-

stable. For the stable solutions, x &—x and so
8' (x) is asymmetric in x. Now recall that a symmetric
distribution would imply that [(So) ]q„=0. We conclude
that we have found a lower bound for the onset of fer-
Iomagnetlsm: If

x„+=h +2g (x„1),
x„-= —h+2g(x„+, ),

(31a}

(31b)

with fixed points x and x . The weights of the 5 func-

tions B„are 1/I,'2 ) . Again for large h, x+ = —x and

~

2g'(x+)J (1. Below the line
~

2g'(x „+)
~

=1, however,
x+&—x„. The line

~

2g'(x+)
~

=1 terminates at h =3
for T~O (see Fig. 2), and this would imply that [(So)]q„
is already finite for h ~ 3. From Sec. III we know that is
not the case. The reason is that, for large n, the contrihu-
tlo11 to Wjj(x) of 5 functions IlcRI x~ RIld x~ Is PI'oPor-

tional to the product of the 6-function density and the

weights B„which would vanish as 1/2 for large n. The

associated field configuration h(R) is shown in Fig. 5.
There are only two equivalent realizations.

This docs 110't IllcRI1 tllat, thc fI'cc cllcIgy f 1s RllRlytlc Rt

2g'(x+ ) = 1. As n ~ oo, x„+ approaches x + as

x„+-=x + +C cxp( n /g)—,

where C is a constant depending on the initial value xo
and

/=1/
i
ln[2g'(x+„)]

i

g' diverges as 2g'(x+„) approaches 1. If the number of
iterations n is larger than g, we may replace x„+ and x„
by x+ and x„ in Eqs. (27}. However, even if only the
last g iterations in the arguments of the 5 functions in

Eqs. (27) are the same as for x„+ and x„[Eqs. (31)], then

we may still replace the arguments of the 6 functions by
x+ and x . The 6 functions with the largest possible

weights for which this remains valid are

and the last 5 functions in the series for W„[Eqs. (27)].
Their arguments, x —x„+ and x —x„,obey the recursion
relations

W„(x)-
&

[5(x —x „)+5(x—x „)]+.1

22" p2&
(33)

PIC}'. 5. (a) Two random-fie1d configurations where every

Xth-generation site is connected to two (X —1)th-generation

sites with opposite random fields. The two configurations

shown are related by mirror reflection around the center line
2% —1

and have the same free energy. There are 2 equivalent

states generated by mirror reflections around the 2 sites of an

Xth-generation branch. (1) A random-field configuration with

only two equivalent realizations. The second realization has all

random fields reversed.

In the limit n~op, one must multiply 8'„by the 5-

function density 2 . This shows that 8'„(x) is actually

of order 1/2 for x near x+ and x . We can now dis-

cuss the analytical properties of f. The maxima of
W (x} contribute an amount hf1 to f which has mean-

field critical behavior at 2g'(h) = 1,

hf1 ——T I in[2 cosh(2p)+ 2 cosh(2px )]

+ in[2 cosh(2P)+2 cosh(2/X „)]], (34)

while a typical contribution bf2 of the "tail" of 8'„(x}is

bf2 ——
I In[2 cosh(2P) ~ 2 cosh(2PX +„)]

2pk

+ in[2 cosh(2g)+2 cosh(2PX )]J, (35)

and thus bf2 has an essential singularity in h when g
diverges. We have thus found the expected Griffiths

singularities. For every configuration h (R) that under-

goes a phase transition at h(T), f will be singular at
h (T). If there is only a finite number of equivalent con-
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f(h) =f(0)+C((T)h'+C, (T)h ~+ (36)

where C~(T) and Cz(T) are analytic in Tnear T, . Equa-
tion (36) indicates that f(h) does not have a power-law
singularity in h at T„and thus we expect mean-field crit-
ical behavior. In summary, we have found the ground
state of the RFIM on a Bethe lattice and some of its

figurations for h (r ), then it will be an essential singulari-
ty. All the lines of essential singularities that we con-
sidered terminated at h =1+2/M in the T~O limit (Fig.
2). The Griffiths singularities may be considered as the
finite-temperature remnants of the T =0 spin-flip transi-
tions.

Finally in the limits h —+0 and T—+T„we can expand
the recursion relation in powers of h and find a power
series for W„(x) and similarly for f,

finite-temperature properties. Both domain-wall argu-
ments and cluster calculations were seen to be valid. Grif-
fiths singularities are the finite-temperature analogs of the
T =0 spin-flip transitions and there is no tricritical point.

The broken-symmetry phase is at T =0 fully aligned,
either with all spins up or all spins down, and so at least
for the special case of the Bethe lattice one does not need
to consider different order parameters, such as Q, in addi-
tion to the magnetization. Nevertheless, Q shows non-
trivial critical behavior at T =0,
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APPENDIX A: SOLVING THE T =0 FIXED-POINT EQUATION

In this appendix we will solve the T =0 fixed-point equation in the limit h —+1+,
+ oo + o0

W„(x)=—, f dx, W„(x, ) f dx2W„(x2)[5(x —h —g(xi) —g(xz))+5(x+h —g(x, ) —g(x2))],

with

(A 1)

1, x)1
g(x)= x, —1(x (1

—1, x( —1.
(A2)

I,et e=h —1. For e =0, we know the solution,

W„(x)= g [—', 5(x r)+ —,'—5(x —3r)] . (A3)

(A5)

We expect, from Eq (A3), .that W„(x)=W„(—x) for @~0, and that there are maxima at x =+1 and x =+3. We
divide the interval [0,(3 + e)] into the regions I, II, and III, where region I is [0,1], II is [1,2], and III is [2,(3 + e)]. Simi-
larly, W (x) equals W' (x) in I, W'„'(x) in II, and W'„' (x) in III. The fixed-point equation (Al) breaks up into

W'„(x)= —,p 5(x —1+@)+p[W'„(x—e)+ W'„(x+@)]+f dx& W'„(x&)W'„(x —1 —e—x, )

+ f dxl W„(xl)W'„(x+1+@—x&), (A4)

W'„'(x)=p 5(x —1 —e)+pW'„(2+@—x)+ —, f dx& W'„(xl)W'„(x —1 —e—xi),
W"'(x)= —,p 5(x —3 —e)+pW'„(x —2 —e)+ —,

' f dx&W'„(xi)W' (x —1 —e —xi), (A6)

where p= W (x)dx. If, for a given p, we have
solved Eq. (A4), then we can find W ' and W~ t. In addi-
tion, W (x) is a normalized distribution,

f W (x)dx =1, (A7)

W'„(x)= g W„'5(x —I+en)+ WO5(x —1) .
n=l

Next, we make the ansatz

(A9)

and so

f W' (x)dx+ f W'„'(x)dx+ f W'„"(x)dx= —,
'

(A8)

We now restrict ourselves to the special case a=1/X with
X being a large positive integer. The support of W"(x)
is, in that case, the set of integer multiples of e,

W„=A /n (A10)

which was motivated by numerical results, and insert Eqs.
(A10) and (A9) into Eq. (A4). The ansatz solves Eq. (A4)
for e~O if

1 1

p =
2
—

2 8'p .

From the definition of p and Eq. (A10),
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p= —,
' —A g

n=l n

T +~ 3x S' xH ~ 0

Xln[2cosh(2P)+2cosh(2Px)] . (82)

where g(a) is the Riemann g function. We can now find
8' and 8', and use the normalization condition Eq.
(AS), giving

If W„(x,O) is a series of 5 functions,

W„(x,O) = g W 5(x —x ), (83)

W (x)= —,
' Wi{x —2),

W"(x)= —,
' W'(2 —x),

22 g(a)+ (1+p)Wo =0.5,
and, finally, from the 5-function term in Eq. (A4),

From Eqs. (Al 1), (A12), and (A16) one finds

p = [—1+&1+/(a)]/g(a),
and from Eqs. (Al 1), (A12), and (A15), one finds

p'g(tr)+ [1+p]p'g(tr) =-0.5,

(A14)

(A15)

(A16}

(A17)

then it follows from the recursion relation (10), with a
field H added, that for T~O

W"(x,H)= g g W (n)5(x —x nH—) .
m n=0

Inserting Eq. (84) into Eq. (82) gives, in the low-
temperature limit,

00 oo

Xo= g W, (n)n + g W (n)n2
n=l n =1

with the solution a=1.7. . . , in reasonable agreement with
numerical results. Collecting Eqs. (A10), (A13), (A14),
and a=1.7 produces Eq. (22) of Sec. III.

APPENDIX B: MAGNETIZATION
AND SUSCEPTIBILITY

where x~ = 1 and x = —1. For h g~1, we use the re-
0

—Nto

cursion relation (10) with H finite and W„(x,O) as an ini-
tial condition. For Ii &3, one finds after only one itera-
tion,

The magnetization M and susceptibility X follow from
the dependence of the free energy f on a uniform field H„

T +oeI=— x 8' xH

W„(x,H) = —,
' g 5(x +eih +@2+e3+H), (86)

Xln[2 cosh(2P)+2 cosh(2Px)], (81)
with H small. Since W (n)=0, we have X=0 for Ii &3.
At h =3, we need two iterations,

(x,H) = „',5(x +5—3H)+, '„5(x +5—2H)+, '„5(x +5 H)+ „', 5(x+—3 2H)+ „', 5(x +3 —H)—
+ i28 5(x + 1 H) + i28 5(x 1 H) + ipg 5(x 1 2H) + i 28 5(x 1 3H) + ipse 5(x 3 H)

+ +~~g 5(x 3 2H) + t28 5(x 5 H} (87)

Xe = ( 1/T)( ~28 )

For 2 & Ii & 3, the recursion relation does not terminate (for H&0), but corrections due to higher iterations become rap-
idly smaller. After three iterations the relevant 5 functions (near +1) are

W„(x,H)= —,'p (1—q) 5(x+1 2H)+p q(1 —q}5{x+1——3H)

+ —,'p q25(x +1 4H)+pq(1 —q)5(x——1 2H)+pq 5(x —1 ——3H),

where p = —1+@2 and q = —,
' —p [see Eq. (18)]. From Eqs. (89) and (85) we find a power series of Xe in terms of p

[Eq. 24(c)].
As we approach h = 1, we again need many iterations, as for the H =0 case. We define
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W'„(x)—= W (x,H)
BH

(810)

IIW'„'(x)—:
z W„(x,H)

H=O
(811)

Differentiating the fixed-point equation [Eq. (11)] with respect to H gives a Fredholm equation of the second kind for
W'„(x),

W'„(x)= W„(x)+ f dx
& I dxz W„(x& ) W'„(xz )[5(x +h —g (x

& ) —g (xz ) ) +5(x —h —g (x ~ ) —g (xz) )] . (812)

W" (x)—=2'W„(x)+2 W„(x),
Bx

(814)

where A' and A are constants. The use of the expres-
sion for W (x) found in Appendix A in Eq. (814) gives
the susceptibility quoted in Eq. (25b).

APPENDIX C: DIFFERENTIABILITY OF W„(x)

In discussing the finite-temperature properties we used
the fact that W„(x) is a smooth function. From the
T=0 solution in Sec. III, we know that this need not be
the case. In this appendix we show that for small h and
for T near T, , W (x) is indeed differentiable.

For h =0, the recursion relation for the pure system
has a fixed point x „(T)which is zero for T & T, . For h

small but finite we expand g(x) in powers of x. To
lowest order, Eq. (6) becomes

x„+,(R)=h (R)+g'(0)[x„(R+5, )+x„(R+5,)], (Cl)

where g'(0) is the temperature-dependent slope of g(x) at
x =0. We solve Eq. (Cl) by iteration,

The Neumann series ' can be summed for h ~1+,

W'„(x)=-3 W„(x) .o ~ (813)

with A a constant. By twice differentiating the fixed-
point equation with respect to H, we obtain in a similar
way for h —+1+,

x] ——+h,
xz ——+h +g'(0)[+h+h],

(C2)

(C3)

x = g e(k)rk,
1G =0

where e(k) are again independent random variables with
values 1, then the distribution of x, W(x), is differenti-
able in x if

rk( g rr
y=k+1

(C7)

for all k. Conditions (C7) translate, for our case, into
g'~ —,'. The h =0 phase transition occurs when g'= —,,
and so in a finite-temperature range above T, , W„(x) is
indeed differentiable. A similar argument, but with
x &0, applies for T & T, . For g' & —„', W (x) is not
differentiable. A sinular situation occurs for the d =1
RFIM and is discussed in more detail by Aeppli and
Bruinsma (Ref. 9).

x3 ——+h +g'(0)[+h+h]+[g'(0)] [+h+h+h], (C4)

00 2k

x =h g [g'(0)]" g e(k, l) (C5)
k=0

where e(k, l) are independent random variables assuming
the values +1 with equal probability. Now, there is a
theorem, due to Salem, that states that if
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