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Static properties of infinite-range anisotropic spin Hamiltonians
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The thermodynamic properties of systems described by means of infinite-range anisotropic spin
Hamiltonians depending on the total spin and its z component are exactly evaluated. XY-type,
Ising-type, and intermediate-type states can be exhibited at different temperature ranges. A certain
family of Hamiltonians containing quadratic and quartic terms is studied in detail.

I. INTRODUCTION

A general treatment of isotropic infinite-range spin
Hamiltonians was recently proposed by the present au-
thors.! This formalism was applied to the treatment of
quadratic magnetostriction,” singlet ground-state fer-
romagnetism,” and re-entrant ferromagnetism.* The
equivalence of infinite-range and mean-field theories’~’
enabled the generalization of this formalism, allowing the
application to a very broad class of many-body Hamiltoni-
ans,® which contains the spin systems as a special case.

The anisotropic Heisenberg Hamiltonian®’ was recently
considered by Lee and co-workers.!'°~!? They studied the
static and dynamic properties of the infinite-range Hamil-
tonian

H=-—N(JS?2-282). §)

Here N is the number of spins and §2=82+824+52,
where § =SAwtal /N. It was revealed that for this Hamil-
tonian the only possible values of (S,) were O and
S =limy_, ,({5%))!/2, which means that either (S2) or
((§248 2)) vanishes. In order to investigate the possi-
bility of observing situations in which (S, ) obtains inter-
mediate values, which correspond to the magnetization
being tilted relative to the main crystallographic axis, we
propose to investigate more general anisotropic infinite-
range spin Hamiltonians.

II. GENERAL FORMULATION

For the isotropic infinite-range spin Hamiltonian
#=NH(§?) whose eigenvalues, in the thermodynamic
limit, are NH (S?), the availability of the degeneracy func-
tion”!3 enables the evaluation of the maximum term in
the canonical partition function, resulting in the equation
(2)

oH
S =0’B,7 —BU —g

where o is the elementary spin and B, is the Brillouin
function.

Considering a tetragonal lattice in which the two direc-
tions perpendicular to the main axis are equivalent, the
spin Hamiltonian we introduce will be of the form
#=NH(S 2,§’,). The commutativity of S2 and §z en-
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ables the specification of the energies in terms of the cor-
responding quantum numbers, S,S,. The degeneracy of a
state specified by S,S, is given, in the thermodynamic
limit, by the same degeneracy function used in the isotro-
pic case,

Q(N,S)~QN,S,S,)~exp[ — N (uS +1nC)] ,

where

C =sinh(u/2)/sinh[u(o+3)] 3)
and

S =0B,(ou) .

We now evaluate the values of S,S, corresponding to the
maximum term of the canonical partition function

Z = EEZS,SZZ EQ(N,S)ECXP[—BNH(S,SZ)] .
S S, N S,
4)

The maximum with respect to S, corresponds to the
minimum of H (S,S,) with respect to S,. This minimum
occurs either within the range —S < S, <.S, and is then
given by dH /3S,=0, or on the boundary, | S,|=S. In
either case S, =S,(S). After substitution of this relation
in Eq. (4) we evaluate the maximum term with respect to
S, obtaining

dH
S=OB‘, __BUE ’ (5)
where
dH _3H _3H 3S;
ds  3s ' as, as ’

The approach developed by Lee and co-workers'®~!? for
the Hamiltonian (1) with o=1 can be viewed as a more
rigorous derivation of a special case of this result. The
three possible types of solutions are as follows.

(a) The XY solution. The minimum with respect to S;
occurs at S, =0. In this case 35, /3S=0.

(b) The intermediate solution. The minimum occurs
within the range 0 < | S; | <S. In this case dH /3S, =0.

(c) The Ising solution. The minimum occurs at S,=S.
In this case 8S,/3S=1.
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The designation XY and Ising is due to Dekeyser and
Lee.!° In both cases (a) and (b)

dH oH

el Y7 6

dS as’ ©
whereas in case (c¢)

dH _3H  3H -

ds 35 ' 3S; |s,-s

In order to clarify this procedure it may be helpful to
note that what is really happening is that S, and S are
coupled through the restriction |S,| <S. The two vari-
ables S and 0,=S, /S vary over the mutually independent
ranges 0<S <Sp. and —1<o0,<1. When the Hamil-

tonian is expressed in terms of these variables
H(S,0,)=H(S,So,) we have
dH dH OH K dH
S=0By |=Boys | "as ~as T as, o

and o, is determined by minimization of H (S,0,), result-
ing in the expressions (6) or (7) for the appropriate cases.

For the Hamiltonian considered by Lee and co-
workers,'°=12 Eq. (1), dH/dS,=2AS,, so that the
minimum with respect to S, can only occur at S,=0
(A>0) or S,=S (A<0), corresponds to the XY- and
Ising-type solutions, respectively. In the former case
dH /dS = —2JS, whereas in the latter dH/dS
= —2(J —A)S. For these two cases Eq. (5) becomes the
generalization to arbitrary o of Eqgs. (16¢) and (23), respec-
tively, of Ref. 10. In order to obtain the intermediate
solution, corresponding to O0< |S,| <S, ie., S,2>0,
S2+S; >0, we must consider a more general Hamiltoni-
an, containing higher powers of the spin operators. In the
following section we consider a Hamiltonian containing
quartic terms in the spin.

III. A QUARTIC ANISOTROPIC SPIN HAMILTONIAN

We shall now introduce, in addition to S2, the two
quartic terms (S,f+Sy2)2 and S7}. In terms of S and S,
we obtain

H =aS?/2+bS?/2+c(S*—82)2/4+dS}/4 . 8)

We shall only be interested in choices of the Hamiltonian
parameters (a,b,c,d) resulting in intermediate-type solu-
tions (0 < | S, | <S) at least over some temperature range.
For large S,, the dominant term is (c +d)S,, whereas
the behavior near S,=0 is determined by
38°H /357 | 5, _o=b —cS?. The behavior of the Hamiltoni-

an as a function of S, can be of one of the four types
presented in Fig. 1. Only behavior of type II can exhibit
the intermediate solution.

The minimum is obtained for S2=(cS*—b)/(c +d),
provided that this value is not larger than S?2, which re-
sults in the condition dS?+b >0. The four restrictions
¢c+d >0, b—cS?<0, dS?+b >0, and S? <0? result in a
division of the space of the parameters b,c,d into the
three relevant regions presented in Fig. 2.
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FIG. 1. Types of behavior of the Hamiltonian, Eq. (8), with
respect to S,.

The expressions for dH /dS for each one of the three
types of solution are as follows.

(a) S;=0: dH/dS =aS +cS*,

(b) S; intermediate: dH /dS =[a +bc/(c +d)]S
+cd/(c +d)S?,

(c) S,=S: dH/dS =(a +b)S +dS> .

For a Hamiltonian of the form H =C,8%/2+C,S*/4,
i.e., dH/dS =CS +C,S 3 the condition for a monotonic
dependence of S on the temperature (second-order transi-
tion) is!

C,/Cy <3[(20+1)*+11/{20[0(c+1)]*}=¢,, C;<O0.
A sufficient condition for all the transitions among the

different types of solutions to be of second order is

d

-b 2 b
d<S<C

2 -
;d0 <b<O Sz>max(%.—%)

-do2<b<co?

b_s2.-b
?<S<d

O<b<co?

FIG. 2. Regions of parameter space exhibiting intermediate-
type solutions.
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TABLE 1. Behavior of the solutions in the asymptotic re-
gimes.

c+d>0 S,=0 intermediate AEERY

S—0 b>0 b=0 b <0
S—o b—co*>0 b—co*<0 b—co?<0
b+do?>0 b+do*<0

c/a <y, cd/[alc+d)+bcl<,, b/la+b)<t,

9)
a <0, a+bc/(c+d)<0, a+b<0.

All these conditions can be satisfied for a sufficiently
large value of |a |. In order to restrict the number of
cases we consider numerically, we shall only present quan-
titative results corresponding to parameter choices satisfy-
ing these conditions.

Some further results which can be obtained analytically
involve the behavior close to the highest critical tempera-
ture and at very low temperatures. As S—O0 the inter-
mediate solution is only possible if b=0. Otherwise
3°H /3S} | s,~0,5>0=b, which means that S, =0 if b>0
and S,=S if b<0. As S—a, if b —co?>0 then S,=0.
For b —co? <0, the intermediate solution will be obtained
if b+do?>0, and S,=S otherwise. These results are
summarized in Table I.

The possible sequences of transitions that can be ob-
tained upon lowering the temperature (starting from the
highest critical temperature) can be specified by the values
obtained by S, [0, intermediate (I), or S], as follows:
0;0,1,5;0,1;1;S,1,0;S,1;S.

IV. NUMERICAL EXAMPLES

For the simplest case, o= 7, the equation to be solved
is as follows:
/ 2t

which can also be written in the form

S = +tanh , 7=kT

dH
ds

dH
r=— |55 /1n[(1+25)/<1..25)] .

The following parameter choices were made.

(i) a=—1, b=, ¢=0.5, d =—0.25. Checking the
various conditions derived in the preceding section we
find that we have three critical temperatures correspond-
ing to second-order transitions according to the sequence
0,1,S. The second and third transitions occur for §=0.25
and S=Vv2/4, respectively. The numerical results are
shown in Fig. 3(a).

(i) a=—1, b=—+5, ¢ =—0.25, d=0.5. This choice
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FIG. 3. Magnetization (S) and its orientation relative to the
z axis (cos§=S,/S). (@) a=—1, b=, ¢=0.5, d =—025;
0,1,S sequence. (b) a=—1, b=—, ¢c=—025 d=0.5;
S,1,0 sequence. (c) a=—1, b=0, ¢ =d =1; I sequence. (d)
a=—1,b =%, ¢ =d =1; 0, I sequence.

of parameters corresponds to the sequence S,/,0 and is
presented in Fig. 3(b).

(ii) a =—1, b=0, ¢ =d =1. In this case S, obtains
the intermediate value S/V2 over the whole range of
temperatures; see Fi% 3(c).

(iv) @ = —1, b =, ¢ =d =1. This case corresponds to
the sequence 0, I; see Fig. 3(d).

V. CONCLUSIONS

The formalism for the treatment of the infinite-range
anisotropic spin Hamiltonian with axial symmetry was
presented. It constitutes a rather straightforward exten-
sion of the isotropic case. Three types of solutions are ob-
tained: an XY-type solution for which the magnetization
lies in the XY plane, an intermediate-type solution, for
which the magnetization is tilted relative to the z axis,
and an Ising-type solution, for which the magnetization is
parallel to the z axis. Some analytical and numerical re-
sults were presented for a family of Hamiltonians contain-
ing quadratic and quartic terms.
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