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Thermodynamic scaling theory for impurities in metals
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A perturbative scaling theory for calculating static thermodynamic properties of arbitrary /ocal

impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The
basic features are developments of the ideas of Anderson and %'ilson, but the precise formulation is

new and is capable of taking into account band-edge effects which cannot be neglected in certain

problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order
in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are

derived up to third order. The strategy of using such perturbative scaling equations is delineated

and the renormalization-group aspects are discussed. The method is illustrated by applying it to the

single-impurity Kondo problem whose static properties are well understood.

I. INTRODUCTION

A variety of many-body problems of current interest in-

volves conduction electrons of a metal interacting with /o-

calized "impurity" degrees of freedom that can be
represented by a finite number of discrete "impurity"
states. Examples of such problems are the following: a
small number of magnetic impurities in a nonmagnetic
metal, ' the x-ray absorption and emission problems where
a core hole interacts with the conduction electrons in a
metal, the interaction of conduction electrons with the
tunneling states in a metallic glass, and the interaction
between conduction electrons and atoms chemisorbed on
metallic surfaces.

The Hamiltonians that are normally used to model the
above problems have the following structure, which will

be called the "generalized impurity Hamiltonian, "
A =A o+ k+ f [P (e,p)c,„+H.c.]

6',p

+ C+~ ~~ ~ ~ ~~~+
6,)M E,P

Here A 0 represents the conduction band of the metal, c,„
is the creation operator for a conduction electron of ener-

gy e (measured from the Fermi level) with p labeling all

its other attributes such as spin, angular momentum, etc.,
and +, 7, and W are operators in the space of impurity
states. If the impurity states and the operators
X, and P' are nontrivial, successive scatterings of con-
duction electrons from the impurity become correlated,
leading to a coupling of the various conduction-electron
energy scales in the problem. This renders the calculation
of the properties nontrivial, and exact results are known

only in rather special cases. In particular, perturbation
theory in +, &, and W is plagued by the divergence dif-
ficulties typified by the logarithmic divergences encoun-
tered in the Kondo problem.

In an attempt to handle these divergences, Anderson, in

a pioneering paper in 1970, "formulated a perturbative
scaling method for the Kondo problem, which, however,

provided only a qualitative solution. A quantitative solu-

tion was obtained by Vhlson, who, in addition to develop-

ing the general conceptual framework of the
renormalization-group (RG) formalism for critical phe-
nomena and quantum field theory, devised a powerful,
nonperturbative, numerical RG technique for the Kondo
problem. In this paper we present a new, thermodynamic
formulation of perturbative scaling that attempts to gen-

eralize, and render more precise, Anderson's method in
the light of the insights provided by Wilson's work, so
that it is applicable to a broad class of problems involving

impurities in metals.
The basic scheme of the scaling method presented in

this paper is as follows: Let Do be the band edge or the
cutoff of the conduction-electron spectrum in A o. One
"eliminates" the higher (i.e., near the cutoff) energy scales
in the problem so as to reduce the cutoff from Do to D,
but at the same time one changes the Hamiltonian from
A o+~t to A o+A t(D) so as to preserve the low-

temperature properties of the problem. Specifically,
divide the eigenstates of A o into a set [ ~ p ) ] that con-
tains no electrons or holes of energy D &@&Do and a
complementary set I ~ q ) j that contains at least
one electron or hole of energy D & a&Do Clearly Eo(.q),
the energy of the state

~
q), is larger than D. Now con-

sider the evaluation of Tr exp[ —P(A o +A t)] by pertur-
bation theory in A I, and systematically neglect terms of

—PEp(q)
order e ', since typically one is interested in tem-

peratures T ~&D &Do. Then one can show that the
remaining terms in the perturbation correspond to
evaluating TrexpI —P[~o+A ~(D)]], where the trace is
now taken only over the states I ~ p ) }. In this paper the
recursion relation between A I and A I(D) is developed up
to third order in A I.

The above procedure, which essentially permits one to
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define a renormalization-group transformation (RGT),
can be applied to the generalized impurity Hamiltonian
defined by (1.1). The new Hamiltonian A p+A z(D) with

cutoff D can also be represented in the form (1.1), but is
different from the old Hamiltonian A p+A r with cutoff
Dp in two ways: (1) It has altered "values" kii, P ii, and
P'D of the couplings k, F, and P'. (2) It has new forms
of local coupling between the impurity and the conduction
electrons, corresponding to two-electron scattering, three-
electron scattering, etc.; but these new couplings can be
shown to be irrelevant in the RG sense, and hence can be
neglected for many purposes. One can therefore represent
the recursion relation between A r(D) and A i in terms of
recursion relations between O'D, &D, and AD and

and W, and explicit algebraic expressions for
these recursions are worked out up to third order in
k, 1, and P'.

The scaling method and the above "generalized" recur-
sion relations can be of great value in studying various
impurity-type problems. Setting up and solving such re-
cursion relations for the coupling constants in any specific
problem enables one to improve upon naive perturbation
theory considerably and is equivalent to summing up
specific infinite subsets of terms in perturbation theory. "
We illustrate this using the familiar single-impurity Kon-
do problem, where the impurity is a spin- —,

'
degree of free-

dom S and A r ———(Jp/2) S s (0), where s p represents
the conduction-electron spin density at the impurity site.
In particular, it is shown that the dominant interaction in

~~(D) is of the form —(JD/2)S. s(0), and that by
neglecting terms of the order of ( T/D) and (D/Dp), J(D)
satisfies the recursion relation

(1.2)

in agreement with earlier results. " There are many sub-

tle aspects associated with the use of scaling methods in
general, and with the derivation of recursion relations
such as (1.2) in particular. These are also discussed in the
context of the Kondo problem for pedagogical reasons.

It is worthwhile stressing the following important
feature of our scaling method. It is a thermodynamic
scaling theory: The main approximation is the neglect of
terms of order e ' ', and we are able to keep track of
coupling terms that determine the energy dependence of

and W, whose contribution to the thermodynamics is
of order ( T/Dp), whereas earlier scaling theories neglect-
ed these terms. Such terms can be shown to constitute ir-
relevant operators in the RG sense, but they can be cru-
cially important in some problems where they are accom-
panied by large coefficients. For example, consider the
two-impurity Kondo problem with a model Hamiltonian
in which two impurity spins S~ and S2, separated by a dis-
tance R, each interact with the conduction electrons via
the Kondo coupling. One can show that the recursion
procedure developed in this paper generates an interaction
of the form I(R)Si.S2, where I(R) is the Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction. ' However,
the correct oscillatory dependence of I(R) on R can be
reproduced only if the above-mentioned irrelevant opera-

tors determining the energy dependence of (RD/VF) are
kept track of properly. The reason is that in the two-
impurity Kondo problem the irrelevant operators are ac-
companied by large coefficients of the order of (RD/VF),
and must be included at least in the initial stages of the re-
cursions. This can be done in our formulation of the scal-
ing procedure, in contrast to previous methods. '

The basic strategy of the scaling method would be to
carry out the scaling until D=10T (since the main ap-
proximation of neglecting terms of order e ~ is still
good at D=10T), and to calculate properties with the fi-
nal Hamiltonian thereby obtained, to be denoted A,ff(T).
The usefulness of this idea stems from the expectation'
that the sequence of scaled Hamiltonians, i.e., the trajecto-
ry of P,rr( T) as a function of decreasing T in the space of
generalized impurity Hamiltonians, will often be in the
form of a crossover from the vicinity of one fixed point of
the RGT to that of another. In other words, the full
range of T &Dp breaks up into various regimes in each of
which A,rf(T) is close to some fixed point, whence the
relevant and marginal deviations of A,ri(T) from the
fixed point constitute small parameters in the problem.
Perturbation theory in these small parameters is necessari-
ly divergence free as the effective cutoff in A,rr(T) is 10T
by construction. The important point is that one can
trace the trajectory of A,fr(T) within each such "regime
of a fixed point"' quite well using the perturbative scal-
ing techniques, in terms of some undetermined parame-
ters. Of course, in order to relate these parameters to the
initial coupling constants in the model Hamiltonian in
any given problem, one must be able to calculate the tra-
jectory of A,rf(T) through its crossover from one fixed
point to another. While this can occasionally be done
reasonably well using the perturbative scaling methods, in
general' it needs the use of nonperturbative, numerical
RG techniques of the type developed by Wilson. But even
in such cases it often will be necessary to use our pertur-
bative recursion relations in the preliminary stages of scal-
ing, and thereby obtain the input Hamiltonians to be fed
into the numerical RGT: This is especially true if ir-
relevant operators with large coefficients are present in
the initial model Hamiltonian, as typified by the two-
impurity Kondo problem.

The rest of this paper is organized as follows: The gen-
eralized impurity Hamiltonian is defined and illustrated
with examples in Sec. II. Section III is devoted to the for-
mal development of our scaling method, where the recur-
sion relations between A q(D) and A z(Dp) are obtained.
These results are applied to the generalized impurity
Hamiltonian in Sec. IV, and their renormalization-group
aspects are brought out in Sec. V. Section VI is devoted
to the illustration of the usefulness of the scaling methods
using the single-impurity Kondo problem as an example.
Section VII contains some concluding remarks. The Ap-
pendixes contain various technical details.

II. THE GENERALIZED IMPURITY
PROBLEM

For simplicity it will be assumed in this paper that the
conduction band of the metal is isotropic with some densi-
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ty of states po(e) between +Do about the Fermi level. It is
then convenient to label the conduction-electron creation
operators using the energy representation as c,&, where,
depending on the problem, p stands for other discrete or
continuous labels of the electron. For example, p=(k, a)
where k is the direction of the wave vector of the electron
and a is its spin, or Jtr, =(m,a) where I, is the z com-
ponent of the angular momentum of the electron, and so
on. [Actually, by letting the density of states po(e) depend
upon an appropriately defined p, more general band struc-
tures might be represented. ] In this representation the
conduction-band Hamiltonian takes the form

J,
A(E, lx;E, lx ) =K05~~ — S cT~~aa

J) (S"0" +Sacr" ), (2.4c)

whereas the presence of a local magnetic field acting on
the impurity alone could be accommodated by adding
—gprtHS, to k.

B. Nondegenerate (s-a&ave) Anderson model (Ref. 17)

Here the impurity is represented by an orbital degree of
freedom with four states, and one has &=0 and

~o 6C ~pC~p, (2.1) O' =Ed+ nd~+ Und+lld (2.5a)

where stands for g„fdepo(e), the electron opera-
K,IJi

tors obey the anticommutation relations

I c,„,c,„]=5„„5(e e')/po—(e), (2.2)

and g„and 5&z have appropriate discrete and continuum

meanings depending upon the context. With the use of
this same representation, the generalized impurity Hamil-
tonian introduced in Sec. I can be written as

0+cP I —A 0+cP 1[+A If+A I3+
(2.3a)

(2.3b)

(2.3c)

(2.3d)

where k, P, and W are operators in the finite-
dimensional space of the impurity states, and where +
and P' commute but F' anticommutes with c,z and c,&.

Clearly, P'I~ represents intra-impurity energy-splitting
terms, A lq, one-electron mixing terms, and A I3, one-

electron scattering terms. It is worthwhile illustrating the
use of (2.3) with some examples.

Mr =JOS s(0)

Jo
~

~, C ea ~aa'Ce'a'
6,a 6,a

(2.4a)

In this case p need stand only for the spin label, and it is
easy to see that (2.4a) is of the form (2.3) with k and P
zero and

JoP'(e, a;e', a') = — S o
2

(2.4b)

To include potential scattering and permit anisotropic ex-

change interaction one would merely have to write

A. Single-impurity isotropic Kondo problem

~ 1Here a spin- —, impurity S interacts only with the s-

wave conduction electron localized around it via the
Hamiltonian

P (e,n)= Vdc~ (2.5b)

If one wants to consider more realistic models of magnetic
impurities in metals, such as the degenerate Anderson or
Hirst models, ' one can extend p to include angular
momentum or crystal-field channel labels, and + to in-

clude intra-impurity Coulomb energies, Hund's-rule cou-

plings, I.S term, crystal-field and spin-orbit splittings, etc.

C. The two-impurity Kondo problem

Here one has two spins SI and S2 situated at
(0,0, +R/2), each interacting with the conduction elec-
trons via the isotropic Kondo exchange scattering, i.e.,

Jo t R R~=A 0— f —cr P ~
— St

R R
o ~~'g~' ' S2

P'(e g a e' g' a')= — (e ' ' 'S +e' ' 'S ) cr
2

with

Q =(k,g —k, g') . (2.6b)

Note that the energy dependence of W is quite crucial in
this case and has all the information that one needs here
in a two-impurity problem.

D. X-ray absorption and emission problems
in metals (Ref. 19)

In the simplest of the models representing this process
one neglects the finite lifetime of the core hole, dynamical
screening processes, etc., and models the core hole by a

(2.6a)

where the g (+R/2)'s represent the conduction-electron
annihilation operators localized at the impurity sites. For
concreteness assume that the conduction-electron wave

functions are plane waves labeled by k—:(k„k). In this
case it is enough to let p, = (g, u), where a is the spin index

and g=cos8, with 0 the polar angle of k relative to the
axis passing through the impurity positions; and one has
+ and P zero and
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deep two-state (occupied and unoccupied) level interacting
with spinless s-wave conduction electrons. In this case
the label m is unnecessary and d is the creation operator
for filling the core hole. A screened contact potential in-
teraction between the core hole and the conduction elec-
trons is represented by W( e, e') =Gddt and by the energy
of the core state of the form of k=edd d. The Hamil-
tonian is easily modified, but still keeping it within the
framework of the generalized impurity problem, to in-

clude various complications, such as realistic band struc-
tures, momentum-dependent interactions between the core

hole and the conduction electrons, coupling to other
angular-momentum channels, etc.

For later use it is convenient to normal order the Ham-
iltonian (2.3); i.e., to remember that the negative-energy
electron states are occupied in the ground state and that
the low-lying excited states correspond to the presence of
a few holes, and hence to represent (2.3) in terms of
positive-energy electron and hole operators. Letting
b,&=c,& represent the creation operator for a hole of
energy e and a,& =c,& the creation operator for an elec-
tron of energy e, one gets

~0=f e(a,qaep+bepb, ~),
E)P

I—ck I 1 +A I2+A I3

I [m'(e, p)a,„+m( e,p)b—,'„]+H.c. ]
EP

A r3= f f [aqua~~ W(e,p;6,p )+bqpaqp&( —e,p;6,p )
6)p 6 )JLC

+a qpbq p W(e, p; —e ~p ) —b~pbq p W( —e,p i
—6,p)]

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

Do
In this case stands or „depo +e, depend-
ing on whether electron or hole degrees of freedom are be-
ing considered. In writing (2.7) all constant (ground-
state energy) terms have been ignored, and the term

~ ~

P'( —e,p; —e,p) that comes from normal ordering
(2.fd) is considered to be included in k. Hereafter, when-
ever any reference to the generalized impurity Hamiltoni-
an is made, the normal-ordered form (2.7) will be meant.

III. THE THERMODYNAMIC SCALING
METHOD —FORMAL DEVELOPMENT

In this paper we will discuss only the calculation of
static properties. Then without loss of generality one can
focus on the calculation of the partition function

Z:—T P~= T ~[~0+~r (3.1)

This is sufficient since any static property involves the
calculation of Tr( Ae ~ ), where A is some operator, and
this can be obtained from Tre ~' +" ' where A +hA
can itself be considered to be another generalized impurity
Hamiltonian.

As emphasized in the Introduction this can be a diffi-
cult many-body problem in the case of impurities with
nontrivial k, P, and W. In particular, even perturba-
tive calculations are plagued by divergence difficulties.
These divergences arise from the fact that for nontrivial

and W successive scatterings of conduction electrons
by the impurity get correlated, leading to a coupling of
the various conduction-electron energy scales in the prob-
lem. To see this, note that because of the Boltzmann fac-
tor e ~ in Z, levels of Pi with energy much greater
than k&T above the ground state do not contribute, and
energy levels which are split on a much finer scale than

k~T get smeared over. Hence, roughly speaking, it is the
difference between the energy-level structure of A and of
A 0 on the scale of ke T that determines Z/Zo. In pertur-
bative calculations of this structure states containing elec-
tron or hole excitations of energy Do & e »kjt T can come
in only as virtual states, but can thereby give rise to loga-
rithmic divergences via energy integrals such as

fDo de Do—ln
k~T kgT

(3.2)

since such integrals become large for Do»AT. Thus
the divergences are due to the presence of coupled
conduction-electron and hole excitations of energy be-
tween ktt T, the energy scale of interest, and Do, the cutoff
energy scale. They are similar to the divergences encoun-
tered in critical phenomena and quantum field theory.

The scaling or the renormalization-group transforma-
tion (ROT) is a recursive procedure to "eliminate" or "in-
tegrate out" the higher (i.e., near the cutoff) energy scales
in the problem so as to reduce the cutoff from Do to a
new value D&DO, but in such a way as to preserve the
structure of the energy-level splitting of the Hamiltonian
on the scale of kt) T. Our prescription to define this recur-
sive procedure is as follows: Consider evaluating Z given
by (3.1) treating A r in perturbation theory. The various
terms that result involve [see Eqs. (3.3a)—(3.3d)] sums
over eigenstates of A 0 as intermediate states, weighted by
appropriate Boltzmann factors. Now divide the set of
eigenstates of A 0 into a set [ ~ p ) I, which contains no
electron or hole excitations of energy D &e&DO, and a
complementary set j ~ q ) I (the two sets together span the
Hilbert space), which contains at least one electron
or hole of energy D & e &Do. Since E& & D and
k&T «D, one can systematically neglect terms in the
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perturbation series of the order of e & while making er-
rors only of order e . It is shown below that, order by
order in perturbation theory, one can find a Hamiltonian
A I(D) such that the remaining terms in the perturbation

series are equal to Trze '+ ', where the trace—P[~ +~ (D)]

symbolized by Trz is taken only over the set I I p & I. The
relation between A I(D) and A I up to third order in A I
is given by

MI(D) =A I"(D)+A I '(D)+&j"(D)+

A I '(D)=PA IP,

W~ '(D) = ——,
' g P,A I I q & & q I

A IPb
a, b, q

W,"(D)=-,'(WP)+ WP'),

with

1 —e
—I3{E —E )

Eq —Ea

1 —e
P{E E )

+ E —Eb

(3.3b)

(3.3c)

—P(E —E )

Pa~I
I q i & & q t I

~I
I q2 & & qz I

~rPb
a, b, q&, q2 E,—E,

—P{E —E )

1 —e+-
E —E

q&

X
1 —e

—P(E —E ) —p(E —Eb )

1 —e+
Eb

(3.3d)

and
—P(E —E )

+5")= g (P.~l

lp&&pl�ier

lq&&ql~IPb+H c )

a, b,p, q

1 —e
p(E —Eb )

+
Eb

1 —e
—P{E —E~ )

X
1 —e

—P{E —E )

Here the notation used signifies that the states
I q&,

Iqi& Iq2& belo ng to the set I lq&I and
I

~& Ib& Ip&
belong to the set t lp&I, while E~, E~, are the ener-

gy eigenvalues of A p in these states, and P„Pb, and P
are the projection operators for the subspaces spanned by

I
a &, I

b &, and the entire set I I p & I, respectively. The re-

cursion relations (3.3a)—(3.3d) are the central results of
this section. ' Before proceeding to their derivation, it is
worthwhile commenting on several important features of
these relations.

A. Weak temperature dependence

The recursive procedure discussed above transforms the—p{A o+A I)
old problem of evaluating Tr e ' over states with
cutoff Do into the new problem of evaluating—p[A o+A I(D)]
Trze over states with cutoff D (Dp. The
new Hamiltonian A p+A I(D) depends both on D and on
the temperature kz T (strictly speaking D /D p and

AT/Dp), although, as will be seen later, the temperature
dependence is weak and can be ignored for many purposes
(and hence has been suppressed in the notation). Since the
recursions have been derived for a finite reduction in the
cutoff, it is trivial to convert them into differential recur-
sions for an infinitesimal change in the cutoff by letting
D ~DO —M).

8 Nonsingularity

Although the expressions (3.3c) and (3.3d) involve ener-

gy denominators that vanish, the complete expressions are
nonsingular and well behaved. The presence of the
temperature-dependent terms in (3.3c) and (3.3d) is crucial
in ensuring this and is related to the point made earlier,
namely, that energy levels split on a scale much smaller
than k&T are smeared over, so that k&T provides a lower
cutoff for energy splittings.

C. Semigroup property

There is some degree of arbitrariness in the choice of
A I(D), since only the partition function has been re-

quired to be preserved (up to terms of order e ~ ) by the
transformation. Apart from considerations of hermiticity
and symmetry, the specific choice given by (3.3a)—(3.3d)
has been made such that it ensures the semigroup proper-
ty of the RGT. Namely, if D' &Do, then the Hamiltonian
obtained by a direct transformation reducing the cutoff
from Dp to D' must be the same (up to terms of order
e and e ) as the Hamiltonian obtained from two
successive transformations reducing the cutoff first from
Dp to D, and then from D to D'. That the choice
(3.3a)—(3.3d) satisfies this requirement is proven in Ap-
pendix 8, but it must be noted that this requirement still
does not uniquely fix the recursions.
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D. Ground-state energy terms

Ideally, one might have wished the recursion relations
to have the property that if A ~A z+b, where b, is a
constant, then A z' (D)~ i +6, while A i (D),
A z '(D), etc., are unaffected. We have not been able to
find a way to meet this requirement. In particular,
A z '(D) given by (3.3d) does pick up extra terms, al-
though these terms do not make any contribution to the
partition function. It is convenient to avoid such terms by
ensuring that at every stage of the iteration (3.3) does not
contain any constant terms, i.e., ground-state energy terms
are always included as part of A 0 and not of P z.

Next we present the proofs of the various results stated

z z(0)+z(&)+z(2)+. . .

z'"=pe
J

z"'= —pg (j I
A

I j)

(3Aa)

(3.4b)

(3.4c)

and the nth-order term (for n & 1) is given by

above. For convenience of exposition, only the basic out-
line will be presented in the text, and the algebra and the
technical details will be relegated to the Appendixes.

Consider the perturbation expansion for the partition
function (3.1). One can write this as

n —PE.
~ lj & &j. l~ lj & 2 ~ II

JI' 'Jn m=1 kQm J~ Jk

(3.4d)

A proof of this result is presented in Appendix A. In the above expressions
I j), I j, ), . denote the eigenstates of 4 0

and Ei, Ez, denote their energies. Note that the entire expression within the large parentheses in (3.4d) is an analyt-J1'
ic function of all the energies Ei„.

Next one makes the division of the eigenstates of A 0 into the sets I I p ) J and I I q ) I discussed earlier. The subspaces
spanned by these sets as well as their projection operators will be denoted P and Q. To any order the term in which all
the intermediate states belong to Q is of order e z and can be neglected. The remaining terins up to third order are,
using obvious notation,

"'—=X
p

Z'"—= —Pg (p I
mz

I
p)e

(3.5a)

(3.5b)

z"'—= —
~ 2 (p, I

mz lp, )(p, lmz lp, )
P1~PP

PE PE—e

+2& &p l~z le&&e I~z lp&
pe

—PE —PE

(3.5c)

PE

&pi l~z lp2&&p2 l~i lpi&&p3 I~i lpl & E E E E + ' ' '

P1~P2~P3

—P&p, PE

+3 X ~(I~ zls» &&pil~ zl p2&&p21~ zl~ & +(pi p2)(E E )(E E )

PE
e1—PE

e ~ —e+3 g &p l~s Ili &&ei l~z IQ2&&e2 l~z lp& E E E E +(tii-w2)
P~C1 ~92 e~ e~ e2

Now consider the question of whether one can find
A z(D) such that TrzexpI —P[A o+A z(D)]) agrees or-
der by order in perturbation theory with the terms in (3.5)
(up to terms of order e z ). Breaking up A z(D) into its
various orders as in (3.3a), one can write

Trpexpf P[A 0+% z(D))]-
=TrexpI P[~0+~i (D)+~—i (D)+ ' '

H

(3.6)
=z'"= —pg &p I

mt Ip)e (3.7)

I

Now one can expand the right-hand side using the pertur-
bation expansion (3.4), and compare order by order with
(3.5) to obtain various conditions on PC z"'(D) The.
zeroth-order terms evidently agree. Comparing the first-
order terms yields the condition

Pg &p I
~i"

I p &e-
p
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Clearly (3.3b) is the obvious (but nonunique) choice for
A t '(D). This choice is convenient, as it automatically
generates those terms in the perturbation series where alI
the sums over the states are restricted to the subspace I',
such as the first term in (3.5c) and the first term in (3.5d).
Consequently, the conditions on P t '(D) and A t '(D) are
determined by the terms containing at least one set of in-

termediate states belonging to Q, and are exhibited in Ap-
pendix B. There it is also shown that the results (3.3b) for
A t '(D) and (3.3d) for A t '(D) represent one possible
choice satisfying these conditions. Again, there is no
reason to expect any difficulties of principle in carrying
out this procedure to higher orders in perturbation theory.
The requirement that the recursion relations satisfy the
semigroup property is an important one. The proof that
choice (3.3) does meet this requirement is also part of Ap-
pendix B.

IV. THERMODYNAMIC SCALING THEORY
APPLIED TO THE GENERALIZED IMPURITY

HAMILTONIAN: RECURSION RELATIONS

In this section the formal scaling procedure developed
in the preceding section is applied to the generalized im-

purity Hamiltonian with k, W,P' being treated perturba-
tively. The essential result is that A I(D) can also be writ-
ten in the form (2.7) with k~, 7 n, P'n replacing
k, P,W; recursions relating the two are derived.

To proceed, divide the electron and hole creation oper-
ators a,z,b,& into the following two sets:

(ap„,b~„) for 0 &p (D

(aqua«bq„) for D (q &Do ~

Because of the definitions of the subspace P as containing
no electrons or holes of energy D & E &Do, one clearly has

aqpP =bq~P =Paqp =Pbqp =0 (4.2)

Hence one has the following results for operators such as
PA tP, QA tQ, PP tQ, etc. The expressions correspond-
ing to PA tP and QA tQ are essentially the same as in
(2.7) except that for PA tP the energy integrals in (2.71)
and (2.7e) are restricted to P, i.e., to 0&e&D Furth. er-

more,

(4.3b)

(4.4)

~ —e-p(~+q)—p,p;q, v q, v; —p,p + —q, v,'p, p p,p; —q, v
P)P (p +q)

PmsiQ =0

P~12Q = f P[~ (q p)aq„+bq, ~( qp)]Q—,
q)p

PA t3Q= f f P[az„aq~(p, p;q«v)+bz„aq~( p,p;q, v)+—bq~z„W( q, v p, p)—bz„b&~( ——p,p; —q, v)]Q

+ f, „ f, „P[b„„,a„„,~( qi, pi;q2—«p2)]Q.

The operators QA tP are Hermitian conjugates of the above expressions.
One can now use the above results in the recursions (3.3) and carry out the sums over the intermediate states and ob-

tain explicit expressions for A t(D). Since the first-order result PA IP is of the form (2.7) with the energy integrals in

(2.7c) and (2.7d) being restricted to P, one has, for the first-order contributions to 4'n, P z, Wn,

P g) (E«p)= P (E'«p) «Wg) (E«p;t «p ) =W(E«p«E«p ) . '

The second-order result for A I '(D) can also be shown to be of the form of (2.7b)—(2.7e) with the conduction electrons
being restricted to P and with the operators ka, P t),Wn, replaced by their second-order contributions,

+g'= —f [~ (q,p)~(q, p)+~( —q,p)~ ( —q,p)]
q)p

I —e
—p(q&+q2)

—9»&]~92»2 9'2»2~ —9'&»i
q2 ~z Vi+9'2

—p(q —e)

Wt) (e',p)= —
~ f W(e,p;q, v)P (q, v) +

q)v g

(4.5a)

—F" ( —q, v)W(e, p; —q, v)
—p(q +~) 1 —e-pq

+
q

(4.51)

P'g'(e, p;e', p') = ——,
' fq)v

—p(q —e)
P'(e,p;q, v)W(q, v, e',p')

—p(q —E')

+

e
—p«+~')

y e
—«q+~)—W( —q«v«E «p )P (t«p« —q«v), +q+e' /+6

(4.5c)
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D0
where it must be reemphasized that stands or q po +q as appropriate.

The algebra that leads to the above results is perhaps tedious, but is sufficiently straightforward if one notes the
following basic points: {i) For a given choice of terms drawn from PMqQ and QA IP the energy denominators are
fixed, and the sum over

~
q){q

~

in (3.3c) can bere laced by the identity operator. (ii) The aq's and bq's in PA IQ can
be "matched" and "contracted" with the aq's and bq's in QA IP, respectively; otherwise, they can be anticommuted and
moved until aq, bq are next to (to the left of) P and aq's and bq's are next to (to the right of ) P and this gives zero in view
of (4.2). As an illustrative example, consider one of the terms arising from A I2 treated in second order given by

——,
' f f f, f, , P[bq ~a&»W( q', v—';p', p')][W{p,p; q, v—)az&bqv]P

+q] 1 ~~~ +q
X +u+a' p +g

Anticommuting the bq's and bq's, one has

P(b ~ „„b„)P=P[ „„(55 b„b —„)]P,

(4.6)

(4.7)

where the second term (with bq~P) on the right-hand side can be dropped in view of (4.2). Normal ordering the
remainder gives

5qq'5~(5m'5~~ Papq—ai, „).

It is easy to see that the first term above makes a contribution to O'D ' given by

(4.8a)

TABLE I. Third-order contributions of the type PA IQA IQPi IP [i.e., arising from the first term in (3.3d)j to WD(e, p;e', p') and

+D in the case when P =0. Each of the operator terms listed is to be multiplied by the corresponding energy denominator term
h i '(E„Eb',Eq, Eq ) [cf. (Bl la)], which can be calculated using the energy differences listed and then integrated over repeated labels

q2
D0 D

such as (q, v), (pl, pl), (ql, pl), etc. , with = dq p0(+q) and = dp p0(kp) as appropriate.
q D p 0

Operator Eq —E,
Energy differences

E —Ebq2

Contribution to WD'(e, p;e', p')
P 1 qPl ~q»)~(&qPi& qP )~(q»i —P1qP1)

—P'(e, p;q, v)W( —p 1,pl,'e', p')W(q, v,' —p 1,pl )
—P'( —pl, pl, q, v)P'(e, p; —p 1,p 1 )W(q, v; e',p')
W( —q, v,'P 1,P 1 )W(e,P,'e', P')W(P1, P1, —q, v)
—W( —q, v;p 1,p 1 )P'(p 1,pl, e',p')P'(e, p; —q, v)
—P'( —q, v, e',p')P'(e, p;p 1,pl )W(p 1,pl', —q, v)

q +pl

q +pl
pl+q
pl +q
e'+q

q +pl
q +pl

q

pl +9
6'+ q

pl +q

IE' —E'

—Pl —6
6+P 1

IE' —6'

P 1
—6'

E—Pl

q Pl q2 P2)~(& P & P )~(q2 P2 ql Pl)
—P'( —ql, Pl, q2, P2)P'(q2, P2', 6',P )W(6' P; —ql, P1)
—P'( —q 1,P1', e', P')P'(e, P;q2, P2)W(q2, P2, —q 1,P1)
—P (E',P q 1,P1)P ( —q2, P2'6, P')P'(q 1,P1,' —q2, P2)
—~(—ql Pl q2 P2)~(~,P', —ql, P1)~(q2 P2 ~ P )

~(&qPu q 1

&Pl�

)~(q 1 qP1& q2&P2 )~(q2 &P2q & sP )

~( ql Pl ~ P )~( q2 P2 'ql P1)~(~ P q2 P2)

q2+ql
q2+ql
6 +ql

q2+ql
ql —e

E' +ql

q2+ql
@+q1
q2+ql
ql +q2
q2 —E'

e+q2

I

E' —q2

q2 E

E'+ q 1

—q2+ql

P'(e, p;q, v) kP'(q, v,'e', p')
—W( —q, v;e', p') O'W(e, p; —q, v)

q —e
'+q

q —e'

6+q

P'( —q, v;p„p, )W(p„p„.p„p2)W(p„p„—q, v)
—~(—pl, pl;q, v)~( —p2 p2 pl pl)~(q, v; —p2 p2)

pl +q
q +pl

p2+q
+P2

Pl —P2—P2+Pl

~(—p,p,'ql, »)~(ql vl q2 v2)~(q2»2 —p,p)
ql»1 p p)~(p p q2»2)~(q2»2 ql vl)

—~(—ql, vl;p, p)~( —q2 v2 ql vl)~(p p 'q2 v2)
~(—ql, »,q2, v2)~(q2 v2 p p)~(p v ql »)

ql +p
p +ql
p +ql
q2+ql

q2+p
q2+ql
p+q2
p +ql

p —q2—q2+ql
q2 —p

W( —p, p', q, v) kW(q, v; —p,p)
~(—q, v,'p, p)%'W(p, p; —q, v)
~(—ql Pl q2 P2)+~(q2, P2; —ql Pl)

q+p
p+q

q2+q1

q+p
p+q
q2+ql
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—p(p +q)—q, v;p, p p,p,' —q, v
p~I q, v p+q

(4.8b)

(4.9b)

which is one of the terms in (4.5a). The second term in (4.8a) gives rise to the contribution to Wg' corresponding to the
second term of (4.5c). Similarly, the other terms of (4.5) can be obtained.

The third-order contribution A I(D) can similarly be obtained with the use of the above procedure. For the purposes
of this paper it is sufficient to present the results only for the case when P =0. As these are too lengthy to be exhibited
as equations we have listed them in Tables I and II. It must be noted that in addition to terms considered above the fol-
lowing additional terms arise:

A I4(D) = I, , [ce~ce'p' M2 g)(6,p;E,p )+H.c.], (4.9a)
6,p E',p

mls(D) = [ce&C& p ce+ P 3, D(eip&E]yp et& 2&p 2)+H. c.]
g,P El,P] EP, IJ,2

]" 1~1 2

~Is(D) = . c pece~ ce~ ce~ P g D(Et,pt,'Ez, p29E3$p3$Eg, p4) .
E1,P1 6+4 1 1 2 3 4

(4.9c)

It will be shown in the next section that for impurity problems P 3 and W4 constitute irrelevant variables in the RG
sense and can hence be ignored (unless they are present, accompanied by large coefficients, in the initial Hamiltonian it-
self) ~2 is a marginal variable, but (unless present initially) it is generated by the recursions only when y- is present
and the latter turns out to be a relevant variable. Thus, compared to P the effects of P q are seldom worth considering.
Hence, the most important aspect of the thermodynamics of the generalized impurity Hamiltonian can be discussed just
in terms of k, P, and W.

The scaling procedure that has been discussed so far gives rise to a continuous trajectory (as a function of decreasing
cutoff D) of generalized impurity Hamiltonians, characterized by O'D, P ~, and P'z, all of which describe the same
low-temperature physics as the starting model Hamiltonian with cutoff Do Invoki. ng the semigroup property of the
scaling transformation discussed in the last section, one can obtain differential recursion relations for the variation of k,
P, and W with D. For this purpose one has to start with the Hamiltonian with cutoff D, characterized by kz, etc. ,
and scale D down to D 5D to obta—in kD s~, etc. In Eqs. (4.5) one can hence replace J by 5Dpo(+D) as appropriate,

TABLE II. Third-order contributions of the type PA rPPt'IQA IP [i.e., arising from the second term in {3.3d)] to P' o{ep,; ep')
and ko in the case when P"=0. Each of the operator terms listed is to be combined with its Hermitian conjugate term [in case of
P'D, this is obtained by taking the adjoint of the operator term and interchanging (e,p) with (e,p )]. Then it is to be multiplied by the
corresponding energy denominator term h2 '(E„Eb,E~,Ee) [cf. (Bl lb)], which can be calculated using the energy differences listed

D0 D
and then integrated over repeated labels such as (q, v), (pl, pl), (ql, pl), etc., with = dqp0(+q) and = dpp0(+p) as ap-

q D p 0
propriate.

Operator

Contribution to AD'(e, p,'e', p')
P'(e, p;e', p')W( —q, v;pl, pl )W(pl, pl, —q, v}
W(e, P; e',P'}W( —P 1,P l,.q, v)W(q, v, —P 1,P 1 )

W(e, p;p 1,pl )P'(p 1,pl, q, v)W(q, v, e',p')
P'( —p 1,pl, e',p')W( —q, v; —p 1,p 1 )W(e,p; —q, v)

(&~PiP 1 &Pl }~( q&» & &P }~(P1 sP 1 i q& V)

( —P l,P1,g', P')W(e, P;q, v)W(q, v,' —P 1,P 1 }

Ep —E,

P 1
—E'

6 +Pl
Pl —6

+P 1

Energy differences
Eb

pl +q
q +pl
q —E'

e+q
pl+q
q +pl

Ep —Eq

—q —pl
—pl —q

—q +pl
—q —e'

6—q

~(~,p, ~',p')~( —ql, »;q2 v2)~(q2»2 ql vl }
%W(e,p;q, v)W(q, v; e', p'}
—kW( —q, v~E, p )W(E,p; —q, v)

q2+ql
q —e'

6+q

—ql —q2

Contribution to 20"
W( —P 1,P1,'P2, P2)W(P2, P2, q, v)W(q, v; —P 1,P1)
—~(—pl, pl, p2, p2)~( —q, v; —pl, pl)~(p2 p2 —q, v)

P2+P 1

P2+P1
q +pl
p2+q

p2 —q
—q +pl

2P'( —p,p, q, v)W(q, v; —p,p)
k P'( —q, v,p,p)W(p, p; —q, v)

q+p
p+q

q+p
p+q

—p —q

ql ~Plaq2&P2)~(q2sP2~ q 1 ~Pl) q2+ql q2+ql —ql -q2
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and replace q by D. It is then easy to verify that to second order the differential recursion relations are

d+D 1

„D
= f [~D(D&P)~a(D&P)Po(D)+ ~a( D—&P)~D( »—P }Po( D—}l

+ D —p,p, D,v D D, v,' —p,p po D + D —D,p;p, p D p,p,' —D,v po —D
1

P~P +p
(4.10a)

dPD(e, p) 1 1 —e
—f(D—e)

WD(e, p;D, v) W~(D, v)po(D) —+
V D D —e

—P D( D, v)—P'D(e, p; D,v)p—o( D)—1 1

D D+e (4.10b)

d&D(6&p;E &p )
—P(D —e) 1

—P(D —e')

Wg) (e,p, ;D,v)WD (D,v; e',p')po(D)
V D —e D —e'

1 1—WD( D, v; e',—p')Wg)(E, p„D,v)po—( D)—
D+@ D+@' (4.10c)

where terms of order e ~ have been dropped unless
necessary to ensure nonsingularity. Note that the term
with the double integral over q in (4.5a) drops out of the
differential recursion relations since it is of order (5D) .
The third-order contributions to the right-hand sides of
(4.10) can be written down straightforwardly from Tables
I and II by similar manipulations. We will therefore not
record them separately.

V. RENORMALIZATION GROUP ASPECTS

c„„=[po(e)D]'i2c,„, e=xD, —1&x &1,
and similarly for c„„,a», etc. Clearly, from (2.2) one has

I c»,c„„]=5„„6(x—x') .

(5.1)

(5.2)

It is easy to verify that, in terms of these conduction-
electron variables, A o(D), A I2(D), and A I3(D) become

o(D):D f xc~l&&c» (5.3a)
x,jLC

A I2(D)=D f
' I/2

po(Dx)

D

X [P D(Dx,p)c»+H. c.], (5.3b)

The scaling transformation discussed in the previous
sections can be used to define a renormalization-group
transformation (RGT) in the space of generalized impuri-

ty Hamiltonians. There is a technical difference between
the scaling transformation and the RGT, as the latter is
defined so as to be independent of the scale of the cutoff,
while in (4.10) D appears explicitly.

The most convenient way to define the RGT is to rede-
fine the conduction-electron degrees of freedom in terms
of dimensionless energy variables, and to rescale the cut-
off D after each stage of thinning the degrees of freedom
so that the dimensionless cutoff at each stage of the recur-
sion is unity. This is easily accomplished by defining, for
each value of the cutoff D, new conduction-electron
operators

A I3(D) =D f f [po(Dx)po(Dx')]'i c„&c„&
X,P x,p

(5.3c)X P'D(Dx, p;Dx ',p'),

].

where now stands for dx. Now define the follow-
X —1

ing dimensionless quantities:

A (D) =A o(D)+A I(D)

[~o(D)+r —(»]/D
4D—= 4/D,
~D (x&p ):[po(Dx ) /D] WD (Dx,p ),

(5.4a)

(5.4b)

(5.4c)

A (Do)
Tr exp

kgT
A (Do}=Tr exp

kg T/Do

A (D)=-Tr exp
kg T/D

(5.5)

depends only on the dimensionless variables (kgT/Do),
D, y'Do, and WD, , or equivalently, via the scaling

transformation, upon (k&T/D), 4'z, 1 D, and P~.
The scaling transformation that was discussed earlier,

and the rescaling in (5.4), defines a transformation con-
necting A D to A D, and this is indeed a renormalization-

+D(x,p;x', p, ') = [po(Dx)p, (Dx')]' '
X&D(Dx,p;Dx', p, ') . (5.4d)

Then it is evident that A D is a generalized impurity
Hamiltonian with (dimensionless) cutoff 1, and can be ex-
pressed in terms of the dimensionless conduction-electron
variables exactly in the form (2.3) or (when normal or-
dered) (2.7} with the dimensionless couplings O'D, P D,
and PD replacing O', F", and P'. The above transforma-
tion also makes evident that the thermodynamics of the
Hamiltonian determined by
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GA D

d ill(D() D)
(5.6)

where the transformation A' is now independent of D.
This follows from the fact that the procedure for obtain-
ing A D si) from 5 D can be carried out entirely in terms

I

group transformation. In particular, the differential RGT
that relates Sn sD to MD has the form

of the dimensionless variables: Namely, by eliminating
the dimensionless conduction electron and hole degrees of
freedom between (1 5D—/D) and 1 and by rescaling the
dimensionless cutoff back to 1, in exact analogy to what
was done earlier. Either by such a procedure or by mak-
ing use of (5.4) and the recursion relations (4.5) it is easy
to derive the recursion relations for 4D, P D, and Wo
explicitly. Up to second order these recursions read as
follows [compare (4.5) and (4.10)]:

d ki)
d ln(Dp/D)

=+D —f [mD(l, i )mD(l, i.)+mo( —1,p)P D( —1,p)]

1
D &&p&1&& D 1p&j &pp + D —lp&)&~p D &~p,

' —1~v (5.7a)

d 7"g)(x,p) F'i)
d ln(D() /D) 2

pD(1 —x)
—x 7 D(x,p) —,

' f— WD(x, (M;1,v)P D(l, v) +1
Bx V 1 —x

1—P"D( —l, v)WD(x, p; —l, v) 1+ (5.7b)

ding)(x, p;x, (M ) Q ()

d ln(Dp/D) Bx Bx'

—ft~(1 —x)

g) x,p, 1 v g) 1,v;x ~p
V 1 —x

—QD(1 —x')
1 —e+

1 —x

1 1—PD ( —1,v;x', ((4')P'D (x,(M;
—1,v) +1+x 1+x' (5.7c)

where PD stands for the inverse scaled temperature:

Pg) =PD =(PDp)(DIDp) . (5.8)

One important difference between these RGT recur-
sions and the scaling equations (4.10) is the presence of
the first-order terms on the right-hand side; these have
arisen entirely out of the rescaling transformation (5.4). It
must be emphasized that the above RG recursion relations
(5.7) give only a specific perturbative realization of A', but
9F itself (in the sense of the scheme of eliminating the
high-energy conduction electrons and holes and rescaling)
has meaning in an abstract, nonperturbative sense. For
example, the numerical RG method developed by %il-
son is essentially a nonperturbative realization of 9P and
is hence much more powerful. Yet another realization
could be obtained by carrying out the elimination of the
conduction-electron degrees of freedom by treating O'D
not as a perturbation, but exactly as part of A p.

In fact, the particular realization of A' embodied in
Eqs. (5.7) constitute nothing but the perturbative RG re-
cursions relations around what might be called the "free-
impurity fixed point" of A'. The reason is that if 4'i),
F'D, and PD were zero, A p would just be Sp(D), which
is characterized by a one-electron density of states pp(Dx)
and if, furthermore, pp(e) is a constant pp, then A p(D) is
independent of D and is a fixed point of A'. Physically,
this free impurity fixed point corresponds to the situation
in which all the states of the impurity are degenerate, and

X
~g)(x,p) = y ~g),.„((M) n!

(5.9a)

P g)(x, (M~x ~(M )= g Pg).x x (p, (((,), . (5.9b), x" (x')"
n! (n')!

Clearly, from the linear terms in (5.7b) and (5.7c) P"D.„
has eigenvalue ( —,

' n) and P—z.„„has eigenvalue
—(n +n') In the sam. e way, one can also verify that the
dimensionless couplings P 3 o and &4D obtained by re-

I

are decoupled from the conduction electrons. Now O'D,
F'D, and PD constitute deviations of SD from this fixed
point, and indeed the recursion relations (5.7) are the non-
linear RG equations for these deviations, and are valid
only when these dimensionless couplings are small (com-
pared to unity).

Examination of the linear terms in the RG reeursions
(5.7) shows that ko and the energy-independent part of
P D constitute relevant deviations, the energy-independent
parts of P'o constitute marginal deviations, and the
energy-dependent parts of F'D and 2'D constitute ir-
relevant deviations around the free-impurity fixed point.
This can be seen by Taylor expanding F"D(x,(((, ) and
PD(x, (M;x', p') in powers of x and x', which is justified
as P D and P'D must both be smooth functions of the en-
ergy variables in order that they describe the interaction
of conduction electrons with localized impurity states.
Then one has
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scahng A, s(D) and M&6(D) defined in Eq. (4.9) constitute
irrelevant deviations, and that the energy-independent
part of Mq D constitutes a marginal deviation.

Next we discuss the question of how the scaling pro-
cedure relates to the calculation of the thermodynamic
properties of A at a temperature T (typically
kg T ((Dp ). The basic strategy is that one carries out the
scaling until D is reduced to 10T during the entirety of
which the approximation of neglecting terms of order
exp( D/T—) is justified. Suppose that during this entire

process +D, P D, and Ao continue to remain small so
that the higher-order terms which should in principle be
present in the recursions (5.7) can be neglected. Then one
can integrate these recursion "elations until D =10T, and
thereby obtain the final scaled Hamiltonian, to be denoted
cFl ff( T), and calculate the thermodynamics from
Trexp[ —ION, tt(T)] [cf. Eq. (5.5)]. The point is such
that a calculation can be done perturbatively in terms of

ff(T), P,tt(T), and P', tt( T), and will result in good ex-
pansions, i.e., expansions free of divergences, since the ef-
fective ratio of the cutoff to the temperature in A,tt(T) is
fixed to be 10 by definition. In fact, such a procedure can
be shown to be equivalent to summing up specific infinite
subsets of terms in perturbation theory. This will be illus-
trated in the next section with the use of a specific exam-
ple.

Of course, in general, O'D, P D, and WD do not remain
small once D/Dp becomes sufficiently small, since O'D

and 1 D.p are relevant and 5 z.p p can be marginally un-

stable. In this case perturbative RG equations such as
(5.7) break down when any of the dimensionless couplings
become of order unity. Hocpeuer, this does not render per
turbative scaling useless because A has a nonperturbative
meaning, and so do Jc D and A,tt( T). Indeed, the numeri-
cal RG methods developed by Wilson permit one to fol-
low the trajectory of A, tt(T) with decreasing T even
when any of the effective couplings become large. The
understanding of the general character of the trajectory of
A,tt(T) gained by the application of these methods to
many problems suggests the following method of using
perturbatiue scaling repeatedly to trace pieces of the traj'ec

tory ofA,tt( T).
The method depends on the fact that typically, ' the

trajectories of A,tt(T), or equivalently of A (D), are in the
form of flows from the neighborhood of one fixed point
of A' to that of another, and that the crossover of
A (D) away from a fixed point takes place when one of
the relevant or marginally unstable deviations around the
fixed point becomes of order unity. What is more signifi-
cant is that the fixed points often correspond to some new
effective impurity degree of freedom with all its states de-

generate and decoupled from the conduction electrons.

I

VI. ILLUSTRATION OF THE USE
OF THE THERMODYNAMIC SCALING

TECHNIQUES: THE SINGLE-IMPURITY KONDO
PROBLEM

In this section we apply the methods discussed so far to
the single-impurity (isotropic) Kondo problem. This is a
well-studied and reasonably well-understood problem, so
our purpose is partly to check that our methods reproduce
known results and partly to bring out some of the subtle
aspects associated with the use of these scaling methods.

As discussed in Sec. II, in case of the single-impurity
Kondo problem p stands for the spin label only, and in
the model Hamiltonian one has

Jpk=1 =0, W( ae; ',ea)= — S cr«,aa (6.1)

where S represents the impurity spin. For concreteness, it
will be assumed hereafter that the density of states pp(e) is
a constant, pp. It is then just a question of straightfor-
ward, albeit tedious, spin algebra to work out kD and

(P D ——0 for all D) using the relations (4.5) and
Tables I and II.

Consider the second-order results. One has

Hence, when D (or T) is in the regime of such a fixed
point, i.e., such that PP(D) [or A,tt(T)] is in the neighbor-
hood of this fixed point, A (D) can once again be
represented as a new generalized impurity Hamiltonian
with new dimensionless couplings. Furthermore, new RG
recursion relations can be written down with the use of
(5.7); solving these relations permits one to trace the tra-
jectory of A (D) as long as it stays in the vicinity of that
fixed point. In other words, the entire range of T (or D)
can be broken up into various regimes in each of which
A, tt( T) is in the neighborhood of some fixed point of the
RG transformation A. Also in each of these regimes, the
physics of the problem can often be understood in simple
perturbative terms, albeit these terms are of undetermined
"phenomenological" parameters that specify the various
dimensionless couplings in each regime. Of course, to
connect such phenomenological parameters to the cou-
pling constants of the initial model Hamiltonian one must
be able to follow the trajectory of A (D) through its cross-
over regimes. While this can be done with the use of the
perturbative sealing equations occasionally, in general it
requires the use of nonperturbative realizations of A'. For
a textbook illustration of the various ideas presented
above, their power and their limitations, the interested
reader is directed to our treatment of the two-impurity
Kondo problem. '

(2) (pp Jp)'
D

D0 —p(p +q)f dp f dq S~SJ[Tr(cr'o~)+Tr(crjo')]
0 D P+9

D0 D0 1
&1+&2]

+ f dq, f dq~ S'SJ[Tr(cr'oj)]
D D 0 i +9'z

(6.2a)
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Do
WD'(e, a;e', a'}=——,

'
po Jo dq S'S~ (o'o~)

D

—P(q —e)1 —e

q —E'

—P(q —e')

+
q —e'

Using

O.ioj $"+l &ijkok alld EijkgiSj= ilj

—(o'o')
—P(q +&')

~
—P(q +~)

+q+@' q+e (6.2b)

(6.3)
—P(DO —D)

performing the integrals, and dropping terms of order e ~ and e ', one obtains

O'D = —(paJO) S(S+1)(DO D) ln—2:—ED ',
P'D '(e,a;e', a') =KD '(e, e')5 ——,

'
JD '(e, e')S.o

where

(6.4)

(6.5a)

ICD '(e, e') =—po Jo2 S(S+1) Ei( P(D ——e))+ln
Do —~ D+e +(e~e')

8 D —e Do+@
r

(6.5b)

Po~0 Do —e Do+@
JD '(e, e') = — S(S+ 1) Ei( 13(D —e—))+ ln +(e~e )

4 D —e D+e (6.5c)

Note that the only temperature dependence of the couplings is generated via the exponential integral function Ei(x) and
is hence negligible unless

~

D —e
~

or
~

D —e
~

& kz T. Note that the form of the results (6.4) and (6.5) is consistent with
the symmetries, namely rotational invariance and particle-hole symmetry, present in the problem. In particular, kD can
only be a trivial constant and K(e,e') has no energy-independent component, i.e., there is no contact potential scattering.

One can similarly work out the algebra for the third-order results and verify that kD' is also a constant ED ', and that
WD' is also of the form (6.5a). For the purposes of this paper, it is enough to exhibit the result for the energy-
independent part of JD(e, e'), i.e., JD(0,0), to be denoted J(D). One has

r

J"'(D)= —,
'

po Jo ln [S(S+1)+1]—ln —(2I) —Ip)[S(S+1)—1]+I3[S(S+ 1)+1] (6.6)

where

Do dq&n
D q

Do+q
(6.7a)

Do dq D+qI2 = 1n
q q

(6.7b)

Do dq Do dq D e-~'& —'—1 e~' —1
I3 —= I4(q) = de +e-@

D q D q 0 E'
(6.7c)

Note that the result (6.6) has contributions corning from both the sets (Tables I and II) of third-order terms. It is quite
clear that JD ' and JD ' have logarithmic terms involving ln(DO/D), and since the thermodynamic properties of ~ at
temperature T are supposed to have good expansions in powers of JD for D of the order of T, their expansions in powers
of Jo will have logarithmic terms involving ln(DO/T) as stated in Sec. III.

Next consider the recursion relations. The dimensionless couplings are given by [cf. (5.4)]

+D ——ED =
D

~D(x a'x a ) =po&D(Dx, a;Dx', a'),
and in view of (6.5a) one expects that

WD(x, a;x,a ) =AD(x, x ) —~ JD(x,x )S'0'~~

where

(6.8a)

(6.8b)

(6.9a)

+D(XiX ) pPD( x~DX )~ JD(X~x ) pO JD(DX~DX (6.9b)
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Substituting these forms into (5.7) and going through the same algebra as before now enables one to write down recursion
relations for ED, KD, and JD. They are given by

dED — ' dx
d ln(DQ/D) Q 1+x 2[KD( —x, 1 )KD(1, —x)+KD( —l,x)KD(x, —1)]

S(S+1)+ [JD( —x, 1)JD(1,—x)+JD( —l,x)JD (x, —1)] (6.10a)

dKD(x, x')
d ln(DQ/D)

ax +x', KD(x,x')
Bx Bx

S(S+1)—
KD(x, 1)KD( l,x')+

4
JD(x, l)Jg)(l, x')

—pD{ 1 —x)
1 —e

1 —x
+(x~x')

S(S+1)—
KD(x 1)KD( 1 x )+ JD(x 1)JD( lix ) (6.10b)

dJD(x,x')
d ln(DQ/D)

8, 8x +x', JD(x,x')
Bx Bx

—pa{1—x)

[JD(x, 1)JD( l,x')+2KD(x, 1 )JD(1,x')+2JD(x, 1)KD( l,x')]
1 —x

1 1
+[JD(x, —1)JD( —l,x') —2KD(x, —1)JD( —l,x') —2JD(x, —1)KD( —l,x')] +1+x 1+x'

(6.10c)

It must be emphasized that if one keeps track of the ener-

gy dependence of Jo(x,x') and KD(x,x'), these are recur-
sion relations for infinitely many variables, even though
all of them except for JD(0,0), to be denoted J(D), consti-
tute irrelevant variables about the local moment (LM)
fixed point (which corresponds to WD ——0, i e , to th. e. im-
purity spin being decoupled from the conduction elec-
trons). This is seen, as before, by expanding JD(x,x') and
KD(x,x') in a Taylor series as in (5.9). One thus has

lowing:
~3

= —J —
I 1+[S(S + 1)—1]ln2

—[S(S+1)+1]I4I, (6.12)

where I4 is just the inner integral, over e, in (6.7c)
evaluated at q =D (cf. Appendix C) and is given by [cf.
Eq. (C7b)]

oo oo (X)"I (Xi) 2

JD(x,x')= g g JD.„,„ (6.11a)
I4 e~ [Ei(PD)———ln(PD) —y]

+ [Ei(—PD) —ln(PD) —y], (6.13)

Ko(x,x')= g g KD.„„(x) ' (x') '

Converting the recursions (6.10) into recursions for
Jo.„,„,and KD.„„onenotes from the linear part of the

recursion relations that both JD.„,„and Ez.„„have
eigenvalues —( n ~ +n2). But KD ~ Q Q is not generated
by the recursion relation and hence Ja.o 0, which is the
same as J(D), is the only marginal variable and is the
dominant coupling constant in the problem, and all other
variables are irrelevant variables.

As a first approximation, therefore, one might think
that it is sufficient to consider the recursion relations for
J(D) alone and ignore all other coupling constants. It is
easy to derive these up to third order, indeed just by in-
spection of Eqs. (6.5e) and (6.6). The results are the fol-

dt
" =a,i'+a,i'+ yb, JG, + (6.14a)

dG; =—~s+c;J + . -.
dt

(6.14b)

where the ellipses stand for other terms unimportant for
the ensuing discussion and where for convenience D has
been parametrized as

where y is Euler's constant. This does not agree with re-
sult (1.2) and is indeed wrong because the approximation
ignoring all couplings other than J, even if they be ir-
relevant, is invalid.

In order to see this let G; label all the irrelevant vari-
ables and A,; their eigenvalues. Then the recursion rela-
tions will clearly be of the form
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0i.e. ,

D =D()e

ln(Do/D) =t .

(6.14c}

large t (small D/Dp) since A2(t) and A&(t) can become
large. From it two more bad expansions can be obtained;
one by differentiating (6.17a) to get dJ/dt in terms of Jp
and another by inverting (6.17a) to get Jo in terms of J:

G;(t)=c; I e ' dt'[J(t')]

-=e;[J(t)]' +O(J )

(6.15a)

(6.15b)

Indeed, the two terms in (6.12) correspond to the first two
terms of (6.14a). Now one must note that, although G;
decreases because of the negative eigenvalues of A,; as t in-

creases, they are constantly generated to order J via the
second term in (6.14b). Thus the G; affect dJ/dt to order
J via the third term of (6.14a). Hence, dJ/dt cannot be
obtained to third order correctly if all the irrelevant vari-
ables are neglected outright. The way to treat this prob-
lem is to solve the equations iteratively as suggested by
Wilson: Integrating (6.14b), one has [since
G, (t =0)=0]

dt
=A2(t)J0+A'3(t)J, +

Jo= J A, (—t)J'+ I2[A, (t)]'—A, (t) jJ'+
(6.18)

However, the important point is that the expansion ob-
tained by substituting (6.19) in (6.18), namely

dt
=A2(t)J +[A3(t) —2Ap(t)A2]J + (6.20)

is expected to be a good expansion, and to be the same as
(6.16) [provided that irrelevant variables have been
correctly handled in obtaining the expansion (6.17a)].
From (6.17b), Az ———1, and it is shown in Appendix C
that

[A,'(t) —2A, (t)A,']= ——,
'

[J(t)]'
(6.15c)

if one neglects terms of order (D/Dp) and ( T/D). Hence
one has

(6.15b) is obtained by noting that (6.15a) is dominated by t
of the order of t' and by Taylor expanding J(t') around
J(t) and using (6.14a); Eq. (6.15c) is justified because

Al
e ' =(D/Dp) ' can be neglected for D «Dp. Hence
one gets

dJ b;c;=aJ + a, +g J
dt i

(6.16)

J(t)=Jp+A2(t)J0+A3(t)J0+

where, neglecting terms of order (e ), one has

A2(t) = —ln(Dp/D) = t, —

A, (t)= —,
'

I t'[S(S+ 1)+1]—t

—[2I,(t) —I,(t)][S(S+1)—1]

+I,(t)[S(S+1)+1]j .

(6.17a)

(6.17b)

Here Ii(t), I2(t), and I3(t) are obtained by setting
D =Dpe ' in (6.7). Equation (6.17) is a bad expansion for

Thus, to obtain the correct third-order scaling equations
for J alone, the scaling procedure one adopts must
correctly handle the coupling of J to all the irrelevant
variables in second order. We demonstrate below that our
scaling procedure does this, not by directly using (6.16)
but by a simpler alternative procedure.

The demonstration is based on the idea of "good expan-
sions" discussed by Wilson, where he has shown on gen-
eral grounds that for a problem with a single marginal
variable, as is seen here, (dJ/dt) must have a good expan-
sion in terms of J and one can obtain such an expansion

by inverting the perturbation series for J [:—pp J(D)] in
terms of Jp [—pp Jp] as follows: With the use of (6.5c)
and (6.6) one can obtain an expansion for J in powers of
Jp in the form

dJ
dt

—cxJ+eJ+ . . ——J ——J+ (6.21)

in agreement with earlier results. Note that our formal-
ism permits the evaluation of the order ( T/D) corrections
to a3, the coefficient of the J term in (6.21); these
corrections may be significant for quantitative calcula-
tions. But they will be ignored for the purposes of the en-

suing discussions.
There are several important aspects connected with re-

cursion relations such as (6.21) that are worth reemphasiz-
ing, even if they have been discussed elsewhere in the
literature. First, one can integrate (6.21) to obtain

C&(J)—4(J0)=t, (6.22)

c&(J)=——
2 lnJ+O(J),

a2J &Z

which can be solved iteratively to get

Jo 1 +2Jpt+ 2 Jo ln(1 —azJot)
Q2

(6.23)

The result for J(t) is equivalent to summing specific in-
finite subsets of terms in the perturbation series expressing
J(t) in powers of Jp. Indeed, the general expression relat-
ing J(t) to Jp can be expected to have the form

J(t)=Jp+ g A (t)J0
Pl =2

co m

=Jo+ g gA „t "Jo .
m=2 n=1

(6.24)

Then, deriving the recursion relation (6.21) up to order J"
and integrating the result to obtain J(t) in terms of Jp is
equivalent to summing up the infinite subset of terms in
(6.23) that include all the coefficients up to A~ „ i for all
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Now consider calculating the perturbation series for F in
powers of J0. It will be of the form

F(t)=i, + g f (t)J0
m=2

(6.26a)

(6.26b)

The important point is that knowing f (t) in (6.26a) up to
m =r permits one to evaluate P in (6.25) up to m =r by
substituting the bad expansion for J0 in powers of Jgff up
to order r in (6.26a). And this is equivalent to summing
the infinite subset of terms in (6.26b) that include all coef-
ficients up to f~ „, resulting once again in a considerable
improvement of perturbation theory.

Third, as is well known, the above results imply scaling
laws and universality. From (6.22) it is clear that J,ff(T)
can be written

4'(J,ff( T) )= ln( Tz/T),

m. The labor involved in calculating a&, . . . , a is little
more than in doing perturbation theory up to rth order.
Hence it is clear that, as long as the dimensionless cou-
plings remain small, setting up and solving the perturba-
tive scaling relations permit one to improve upon naive
perturbation theory considerably without very much extra
labor.

Second, consider the calculation of physical thermo-
dynanuc quantities at a temperature T, such as the free
energy, or the magnetic susceptibility, etc., which will be
denoted by E. As emphasized in Sec. V, this is best done
in terms of A,ff(t) [obtained by evaluating A (D) at
D= 10T]—. By the arguments made earlier it is clear that
in the present problem A (D) has a good expansion in

powers of J,«(T) [obtained by evaluating J(D, T) at
D =10T] as long as T is in the local moment regime, i.e.,
J ff(t) is small. Hence one expects to obtain a good ex-

pansion for F in powers of J,ff. It is convenient to write
this in the following form:

F=40+Pi(J.ff+02J'ff+03J'ff+ ' ' )=(t'0+NiF .

(6.25)

~3—&2Jeff +(&3+2&2/2) Joff

+(~4+2+34'2+3~2((3)J ff + (6.28)

Now one can invert (6.25) to express J,ff in terms of F,
and substitute in (6.28) to obtain a recursion relation for
F.

~3 4
+2F ++3F + [~4 +3( 2++2(03 42) ]F

(6.29)

The first two coefficients are identical to the coefficients
in the recursion relation for J,ff(T). Hence an alternative
way to obtain them is by using the procedure adopted to
derive (6.21) with any thermodynamic property which has
an expansion in powers of i0 starting with the linear
term. Had this been done for F, one would have obtained
[compare (6.17a), (6.26a), and (6.20)]

dF ~3=f2F +If3 (t) —2fz(t)f 2 ]F + (6.30a)

Thus one must have

fz =~z f3 —2fz(t)fz =~3 (6.30b)

The second alternative way to derive u2 and o.3 is by
determining how one can compensate a small change in
the cutoff D0 by a suitable change in J0 so as to keep F
invariant. Suppose that as Dp~Dp+dDp, t~t +dt and
J0~J0+dJ0. From (6.26a) the condition is clearly that

enough to calculate all the thermodynamic properties.
Finally, we comment on the fact that the second- and

third-order coefficients a2 and a3 in the recursion relation
(6.21) can be obtained in two other ways: The first way is
to note that since F has a good expansion in powers of
J,ff(t) [t —=ln(D0/10T) below] one can obtain a good ex-
pansion for dF/dt using (6.25):

dF z dJ«
dt

=(1+2$2J„f+3$3J,«)—
ddt

where

T& —=(D0/10) exp[4(J0)] .

(6.27) dF= dJ0[1+2fz(t)J0+3f3(t)J0+ ]
~3

+«[f2JO+f 3JO+ ] (6.31a)

Thus J,ff(T), and hence all thermodynamic properties of
the system, can be expressed as a function only of T/Tff,
and their dependence on the initial coupling constant Jp,
etc., enter only through the scali.ng temperature T~, called
the Kondo temperature. Note further that the scaling law
continues to remain valid even when T gets small enough
that col ff( T) is no longer in the local moment regime and

i,ff(T) has no meaning. This has been verified in the case
when J0 is antiferromagnetic [whence

~
J,ff(T)

~

increases
as T decreases and becomes of order unity when T= Tff]—
by Wilson with the use of numerical ROT methods to
trace the entire trajectory of A,ff(T) In the ferrom. agnet-
ic case the effective coupling decreases as T decreases, and
in this case the perturbative scaling procedure itself is

whereupon

dip 2

dt
=fzJo+(f3 —2fzfz)J0+ ' (6.31b)

Comparing with (6.30a) and (6.30b) one notes that the first
two coefficients of this expansion also correctly give a2
and cx3.

It must be emphasized that the coefficients of the
fourth-order terms in the "recursion relations" (6.21),
(6.29), and (6.31b) will not, in general, be the same. The
fact that the second- and third-order coefficients are the
same depends entirely on the question of good expansion.
This has not always been stressed in the literature, except
by %'ilson.
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When the initial Hamiltonian is more complicated than
the Kondo Hamiltonian, in general there will be several
marginal variables, and perhaps relevant variables, in the
problem. Even in such cases, one expects that a discussion
similar in spirit to the one presented here, but different in
detail, will be possible in each of the regimes of the fixed
points.

VII. CONCLUDING REMARKS

We have found the thermodynamic scaling techniques
developed in this paper to be of considerable value in

analyzing two-impurity problems. In particular, we have
used the techniques to study the two-impurity Kondo
problem' and the two-impurity Anderson model (espe-
cially in the mixed-valence regime). These studies will be
discussed in detail elsewhere.

Furthermore, we envisage that the scaling techniques
will be useful for calculating other static properties, e.g. ,
spin correlations in the Kondo problem. The promise of
the method lies in the possibility of using it in conjunction
with nonperturbative RG techniques to study more realis-
tic models of magnetic impurities in nonmagnetic metals.
This will be especially true if one can learn to set up per-
turbative scaling equations with +, and perhaps with
some parts of Pi r, treated exactly as part of A o. Even
more attractive is the possibility of extending the scaling
method discussed in this paper to include dynamic proper-
ties. All these questions are being investigated.
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APPENDIX A: DERIVATION
OF THE PERTURBATION EXPANSION

FOR THE PARTITION FUNCTION Z

FIG. 1. Contour in the complex co plane for the integral in
Appendix A, Eq. (A2).

Z(o) y ~ j
J

(A lb)

{ji I
~r

I J2 &
' ' '

&Jn I
~r

I J ] )
J&~ ~ ~ ~ ~ J

p~ dco p
C 2&l

(A2)

where C is the contour in the complex co plane indicated
in Fig. 1. Therefore,

Z=Tre ~ = f e ~g,j j),c 2&1' . N —AJ
(A3)

where I ~
j) I is the complete set of eigenstates of A o.

Now one can obtain the perturbation expansion for Z by
using the operator identity

(A 1c)

where
~ j; ) is an eigenstate of A o with eigenvalue Er .

C

Consider the Laplace transform representation of e

In this appendix we present a proof that the perturba-
tion expansion for Z is given by (3.4), i.e.,

1

~ —(A o+~r)
1 1+ cP I + I ~ ~

co —Ap N —Ap

—p(~,+~,)Z=Tl e

z(p)+z(I)+z(2)+. . . (A la)

(A4)

in (A3). The first term in (A4) gives Z~o' as given by
(Alb). The nth-order term in (A4) gives, for Z'"',

(~) dco p ~ . 1 1 1

c 27Tl ~ co —A p co —A p co —A pJ

where A r occurs n times. Introducing n sets of intermediate states I ~ j; ) I appropriately into (A5), one gets

(A5)

(A6)
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Since
I j; & are eigenstates of A 0 with eigenvalues Ei, E, q. (A6) can be simplified to read

By symmetrizing (A7) with respect to all the
I j; &, one gets

co —E
Jn

(A7)

where 1/n compensates for the n equal terms that arise from the differentiation with respect to co. Now (A8) can be in-
tegrated by parts; the contributions from the ends of the contour C vanish and one is left with

(A9)

(A9) is trivially evaluated by distorting the contour C to pick up the contributions due to each of the poles at co =Ei and
l

the result is nothing but (A 1).

APPENDIX 8: DETAILS OF THE DERIVATION OF THE RECURSION RELATIONS (3.3c) AND (3.3d)

The conditions on A i '(D) and A i '(D) obtained by the procedure described in Sec. III are given by
—PE —PE

Pg &P —I~i"(» Iu&e '= ~X &Ji I~i I e&&e l~i IP&
p p~Q Ep —Eq

and

(Bl)

—&2 &P I
~i"(»

I P &e ' g i—&P—i I
~i"(D) IPz & &uz I

~i"(» IPi &

p pi~p2

+&Pi I~i"(» IPz&&Pz I~i"(» IPi&j

—PE —PE"—e

PE
q

g &~ I~. lpi&&ail~. Pz&&Pzl~. le& E E E E +(P& Pz)
p~ p2 0 pl q pi pz

—PE—PE

+ g &P l~i lei&&ei I~r lez&&ez l~t IP& +(ei==ez)
p 6'i 02

Equation (Bl) is obtained by comparing the second-order term in the expansion for (3.6) with Z'z' given by (3.5c) while
(B2) is obtained by comparing the third-order term of (3.6) with Z' ' given by (3.5d). In obtaining these the choice (3.3b)
that A i"(D)=PA iP has already been used to cancel some terms, as noted in Sec. III.

The simplest way to satisfy (Bl) is to choose

P(E E )

&s'
I
~i"(» IP &

= —2 &P I
~i

I & &« I ~i IP &

Eq —Ep

Note that this determines only the diagonal elements of A i '(D), the operator itself can be of the general form

A i '(D)= g(P, A i I q&&q
I

A iPb)h' '(E„Eb,'E )

as long as h ' '(E„Eb,'Eq ) is symmetric when E,~EI, and satisfies
—P(E —E )

h i(E~ Eg Eq)
Eq —E,

The expression (3.3c) for A i '(D) corresponds to the obvious choice

(B3)

(B4)

(B5)
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—P(E —E )

h' '(E„Eb,Eq)= ——
Qf

1 —e
P(E E )

+ (86)

—PE—PEP

&p I~i I qi&&qi
1
~1

I q2&&q~ I~i ls'& E E E E +(qi- -q2)
P pq~ qp

Note that the specific choice one makes for the off-diagonal part of 4 I '(D) influences the condition on the diagonal

part A I '(D) via Eq. (82).

1

By substituting the choices already made for A I"(D) and A I '(D) into (82) and simplifying, one gets

P(E E )

1 —e
X

(Ep Eq )——(pi

+ 1 e

p&~pg~q

—PEP, —PE"+e
(Eq E~ }—

(87)

Note that the choice for A I '(D) influences only the second term in (87). It does not seem to be possible to choose it in

such a way as to get rid of this term.
A simple way to ensure (87) is to choose

P(E E )

&p l~i"(D}Is &= 2 &s I~I lqi&&qi I~i lq2&&qz l~i Is &

'
+(q&-- =q~)

E~ Eq, Eq —Eq—

+ ~ X(&s l~i lp~&&pi 1~1 lq&&q 1~1 Ip&+ Hc }
p)&q

1 —e
P(E E )

(E E )
X

1

(Ep Ep,)— —(p (88}

But (88) still fixes only the diagonal elements. A I '(D) itself can be of the general form

~&"(D)= g (p.~, Iq, &&q, l~, Iq, &&q, lm, pb)hI"(E. ,E,;E, ,E, )

a, b, q&, q2

+2 2 ( ~ilp&&p l~l lq&&q I~II'b+ H c. )h2 (E Eb'Z& Eq)
a, b,p, q

and (88) is satisfied as long as one ensures that

P(E
(3)

qf' q2 (E E )(E E )
+(ql q2}

a q& q& q2

(89)

(810a)

h2 (Eg Eg Ep Eq)
P(E E )

1 —e
(E )

(a ~p) (8 lob)

and Provided hI (Ea~Eb, Eq,Eq ) is symmetric under the interchange of E, with Eb and Eq, with E . The specific ex-

pression (3.3d) for A I '(D) corresponds to the choice

P(E E )

(E Eb E E )a & q&~ q2 4
+(a~b) (q)- -q~), (8 1 la)

1 —e
P(E E

(Eq E,)—+ (a~b) —(a ~p)
P(E

h2 (Eg,Eb Ep Eq)
(Ep E,)— (8 1 lb)

Note that while (8 1 lb) satisfies (810b), (81 la) reproduces (810a) only up to terms of order exp( —D/'T), which is admis-
sible. The particular choice (811)has been guided by the important requirement that the recursion relation (84.) and (89)
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[or (3.3)] connecting M~(D) to A t must satisfy the semigroup property. We discuss t»»spect next.

Let D'&D &Dp. Then a direct scaling transformation reducing the band edge from Dp to D' leads to A z(D') given

by

P I"(D')=P'4 tP',
A t '(D')= g (P,'A I i

q'&&q'i% IPb)h' '(E„Es,Eq ),
a, b, q

~i"(D')= g (Po'~I
I q I & & q i I

~I I qz & & q2 I
~tPtl ) It P'(E

Ia, b, q&, q2

+ z g (Pa~r lp &&1'I ~r
I
q'&&q'I~IPb+ H c +z '(E Eb &p E'q }

a', b',p', q'

(812a)

(812b)

(812c)

where
~

a &,
~

b &, ~P'& belong to P' and
~ q ~ &,

~ q2 &,
~

q'& belong to Q' such that P' contains no electrons and holes of
energy between D' and Dp and Q' contains at least one electron or hole of energy between D' and Dp.

But A I(D ) can also be obtained by two successive applications of the scaling transformation: First by reducing the
cutoff from Dp to D so as to obtain A I(D) as given by (3.3), then by reducing the cutoff from D to D' to obtain A z(D')
in terms of A z(D). The requirement of the semigroup property is that the result must agree order by order with that ob-

tained by (812).
Let R denote the subspace of states with no electrons or holes of energy above D, but with at least one electron or hole

of energy between D' and D. Then A I(D') obtained by the two successive transformations can be obtained in terms of
A z(D) by replacing A I by A z(D) and I ~

q'& &,
~
qz &,

~

q'& j by I ~
r& &,

~
r2 &,

~

r & j ER. Collecting together the various
orders of A z(D') so obtained, one gets

A t (D') =P'A I '(D)P', (813a)

A I(D') =P'A I '(D)P'+ g P,'4 I"(D)
~

r & & r
~

A z"Pb h' '(E„Eb,'E„)
a, b, r

(813b)

A I '(D)=P'A z '(D)+ g [P,'A I '(D)
~

r&&r
~

A I '(D)Pb+P,'A I (D) r&&r ~A I '(D)Pb]h' '(E„Eb,E„)
a, b, r

[PgA I (D)
~
r$ &&I)

~

A I (D)
~
r2 &&r2

~

A I (D)Pb]h $ (E,Eb', E„,,Ep )

a, b, r), r2

g [P.'W, "(D) ~P'&&P'~W, "(D)
~

r&&r ~W"(D)P,'+ H. c.]Z2"(E.,E,;E, E„)
a, b,p', r

(813c)

Q+R=Q', i.e. , g+g=g . (814)

Hence it follows that (813b) agrees with (812b) for arbi-
trary choices of h' '.

Next consider the comparison of (813c) with (812c).
The easiest way to make the comparison is to substitute
for A z '(D) and A I '(D) from (89) and (84), respectively,
in (813c), and to replace g +g„by g, . Similarly re-

place g, by g —g„ in (812c), and then compare the
resulting expressions. It is then a matter of straightfor-
ward, albeit tedious algebra to show that they agree, pro-
vided that

The requirement of the semigroup property is equivalent
to the demand that the results obtained by substituting for
A I(D) in terms of A I in (813) must agree with (812).

It is evident that (813a) with 4 I"(D) being given by
(3.3b) is consistent with (812a) since P' is a subset of P.
In order to compare (813b) with (812b), one makes use of
the expression (84) for A I '(D) and notes that R is also a
subset of P and that

APPENDIX C: EVALUATION
OF THE COEFFICIENTS IN EQ- (6.21}

Recall that

a, =3,' (t) —2A, (t)3,',
where 3 3 ( t) and A 2 ( t) are given by (6.17). One has

(Cl)

(C2a}

I

hI '(E„Es,E„,Eq) = , hg (E„Eb,'E„—,Eq)

+h' '(Eg Es E )h' '(E~ Eb Eq)(815)

It is important to note that, since terms of order e
and e have been neglected in deriving the expres-
sions for A I(D) and A t(D'), one can only demand that

p(g E )(815} be satisfied up to terms of order e ' ', etc.
h' ', as given by (86), and h I

' and h 2 ', as given by (811),
are the simplest we have been able to find that meet the
above demands. Clearly, other possibilities are not ruled
out.
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A,'(t) = —,
'

I 2t[S(S+1)+1]—1

—[2I', (r) —I,'(r)][S(S+1)—1]

+I,'(r)[S(S+1)+1]], (C2b)

Hence, we obtain

I', (t)=t+ln(l+e '),
Iz(t) =1n(l+ e ') .

(C4a}

(C4b)

where I&(t), I2(t), and I3(t) are given by (6.7) with the
substitution D =D0e

First consider I& (t) and Iz(t). It is easy to verify that
by rescaling the integration variable q one can write

(C5a}

where

A careful evaluation of I3 is more tedious. Recall that

I.= ' "'I.q,

dq
1

1+q-qn
q

(C3)

D
Iz(q) = I de

(C5b)
dqI2(t)= f ln

1 q

1+q
q

Iq can be evaluated in terms of exponential integral func-
tions:

I4(q) =e &[Ei(pe) —ln(pe)]0+ [ln(p(q —e) )—Ei( p(q —&—) )]0

=e +[Ei(pD) —ln(pD) —y]+ [ln(p(q —D) )—Ei( —p(q —D) )—ln(pq)+ Ei( pq)], —

where y is Euler's constant. Hence one has

Do dq ~I4
I3 (t) = D=—I4(q =D) D-

BD D q BD
(q),

I,(q =D) =e & [Ei(pD) —ln(pD) —y]+[Ei(—pD) —ln(pD) —y],

(C6)

(C7b)

BI4
BD D

so that

e
—p(q —D)+'

q —D q —D
p~~ D~ q 1 —e

D(q D) D— (C7c)

Do dq ~I4.Df (q) = [Ei( P(DO —D) )——ln(P(DO —D) ) —y]
q BD

+ [»(pDo) —Ei( —pDo) —ln(pD)+Ei( —pD)] .

Putting all the results together, noting that for large x,

(C7d)

eZ
Ei(x) =

X

1+ + 0 ~ ~

X
(C&)

pDO p( Do —D)
and neglecting terms which are outright of order e ~, e ', ore, one gets (with D =Doe ')

I3 (r)—:e ~ Ei(PD)+ln 1—D

0

—e ~ ln(PD) . (C9)

Note that the first term is of order T/D, but the last term can be neglected. Substituting the results (C4) and (C9) into

(C2b), one has

A 3 (t)= —, [4t —1+[S(S+1)+1][e ~ Ei(pD)+ln(1 —e ')]—[S(S+1)—1][ln(1+e ')]],
so that, if one neglects terms of order T/D and D/Do, one indeed gets, as stated,

a, =(2t ——, ) —2t = ——, .1 1

(C10)
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