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The renormalization-group description of the anisotropic two-dimensional Ising model has been

investigated with the use of Monte Carlo renormalization-group methods. We have been able to
demonstrate the existence of a fixed line with universal critical exponents, in contrast to the

nonuniversality of the Baxter fixed line. The possibility of a model with any given anisotropy being

described by any point on the fixed line is demonstrated by explicit calculations.

I. INTRODUCTION

The Ising square lattice has been the object of intense

scrutiny for over half a century, and this activity has in-

cluded both efforts to provide analytic solutions as well as

to test various approximation methods. Exact solutions
have been obtained for the thermal properties and order
parameter for the general model'

A =J» g crtcrj +Jy g cr;0k'
(ij ) (ik)

where the first sum is over nearest-neighbor (NN) pairs in

the x direction and the second sum is over NN pairs in

the y direction. These solutions' show that the critical
exponents are identical for all finite, nonzero values of
R =J„/J». Real-space renormalization-group methods
have also been used to examine the fixed-point structure
of the isotropic (R =1) square lattice. It has recently
been conjectured, however, that spatial anisotropy is a
marginal operator and that the critical behavior for gen-
eral R should be described by a line of fixed points. 4 In
this paper we shall describe the results of a Monte Carlo
renormalization-group (MCRG) study of the anisotropic
(R &1) Ising square lattice.

We are able to present the first direct demonstration of
the existence of a fixed line describing the uniuersal criti-
cal behavior of rectangular Ising inodels. The evidence is
of two types. First, from MCRG analyses of both the iso-
tropic and anisotropic models, we can explicitly exhibit
the marginal operator arising from odd combinations of
exchange interactions in the x and y directions. Secondly,
the renormalized correlation functions from an anisotro-
pic simulation (R =0.3) show that the fixed point itself is
anisotropic and is therefore located at a different point on
the fixed line.

The situation must be clearly distinguished from that of
the Baxter model, in which the fixed line describes
nonuniversal behavior. In the Baxter case, models with
different coupling constants renormalize to different
points on the fixed line, corresponding to different critical
exponents. In the anisotropic Ising case, transformations

can be constructed to allow models with any given aniso-
tropy to converge to (and be described by) any point along
the fixed line, resulting in the same critical exponents for
any anisotropy. This can be accomplished by preliminary
anisotropic rescaling transformations that change the ra-
tio of the correlation lengths. The MCRG method en-

ables us to demonstrate this effect explicitly and we
present an analysis of an anisotropic model with R =3.0,
which converges to the isotropic fixed point after a 1&(2
rescaling transformation.

II. METHOD

We have used the Monte Carlo renormalization-group
method proposed by Swendsen. A standard Monte Carlo
method was used to simulate Ising models [see Eq. (1)] on

L&(M lattices with periodic boundary conditions. We
then used the same 2&&2 block-spin transformation ap-

plied to the generated configurations with ties decided by
a random number instead of a tie breaker. In addition,
"block shifting" was used to improve the accuracy of the
results. Using correlation functions determined from both
simulated and transformed lattices, we estimated the ele-

ments of the linearized transformation matrix Tait and

the eigenvalues of this matrix were subsequently deter-

mined. [The Hamiltonian is rewritten as a sum of terms
E S where the S are sums of products of spin opera-
tors and the X are the associated couplings (see Fig. 1)].
The analysis allowed for the generation of a number of
couplings (see Fig. 1) as a result of the RG transforma-

tion; the matrix was block diagonalized by examining the
symmetry characteristics of these oouplings, and even and

odd symmetry eigenvalues, y' and y, respectively, were
determined separately. It is important to remember that
couplings in the x and y directions are no longer required
to be equal by symmetry and must therefore be treated
separately. Data were obtained for R =0.3 and 0.1 with
—, &L/M &4. Data were taken only at the critical tem-

peratures as obtained from Ref. 1. Usually at least 10
Monte Carlo steps/spin (MCS/spin) were retained for
computing averages, and correlation functions were deter-
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TABLE I. MC simulation data for MCRG calculations for
the d =2 Ising model with R =1.0. Data for correlation func-
tions taken every 10 MCS/site.

Ke K',
K

Lattice size (1.)

10' MCS/site used
10' MCS/site discarded
Fraction of successful MCS
Approximation correlation
time in units of MCS/site

360
30
0.192

53

16

23
6
0.185

33

FIG. 1. Couplings used in the renormalization-group
analysis: (a) even-even symmetry couplings; (b) odd-odd symme-

try couplings (see Refs. 3 and 5).

mined every 10 MCS/spin.
Errors were deterinined by reanalyzing subsets of the

data and calculating the spread in the estimates for corre-
lation functions and eigenvalues. The error estimates are
shown in the tables in terms of a one-standard-deviation
uncertainty in the last digit.

In the interpretation of the data presented in the follow-
ing sections, it is important to note that T p is, in princi-
ple, an infinite matrix. Since we can only do numerical
calculations on finite parts of this matrix, corresponding
to a finite number of interactions in the eigenvectors, it is
important to report the trend as the number of interac-
tions is increased. The entries in each column for a given
level of renormalization do not represent independent esti-
mates of the eigenvalue exponents, but instead present a
sequence, which should converge to the true value at that
level of renormalization. The successive iterations of the
renormalization transformation should then give the criti-
cal exponents.

and Table II shows the accuracy to which this was
achieved. The usual magnetic eigenvalues were also cal-
culated, with results that were identical to those obtained
previously within the accuracy of the calculation.

The results of the new MCRG analysis differed qualita-
tively from previous work in that a new eigenvalue ex-
ponent appeared. It is located between the two previously
obtained leading eigenvalues of +1.0 and —1.0 and cor-
responds to eigenvectors in which couplings in the x and

y directions have opposite sign. This is the only new
eigenvalue to appear; the fourth-largest eigenvalue is lo-
cated, as for the isotropic analysis, close to the expected
value of —2 (with large error bars).

Quantitative results for the first three thermal eigen-
values are shown in Table III. The first and third eigen-
values are completely consistent with the first and second
eigenvalues obtained from the isotropic analysis. The new
eigenvalue is about 0.2 on the first iteration, but drops to
0.04(1) on the second iteration, which is known to be very
close to the fixed point. The third RG transformation has
a rather large statistical uncertainty, but again a very
small value of the second eigenvalue exponent. All re-
suits, both qualitative and quantitative, are completely
consistent with the existence of a marginal operator for
the anisotropy.

III. THE EXISTENCE OF A UNIVERSAL
FIXED LINE

A. Isotropic model: R =1.0

The isotropic, two-dimensional Ising model has previ-
ously been studied in detail using MCRG with isotropic
interactions for the analysis. ' This work had shown that
deviations from linearity in the region of the fixed point
were already negligibly small at the second iteration of the
RG transformation. Furthermore, the effects of the finite
lattice were also shown to be negligible if the renormal-
ized lattice is at least 8&&8, and the effect of reducing the
size of the normalized lattice to 4&4 only produced a 2%%uo

bias on the leading thermal eigenvalue exponent.
This led us to begin the study by simulating isotropic

Ising models on 16)& 16 and 32& 32 lattices and analyzing
the data using the anisotropic operators illustrated in Fig.
1. Data on the MC simulations are given in Table I. A
number of consistency checks were made based on data
available from previous work. For example, the correla-
tion functions in the x and y directions were monitored to
make sure that they retained the symmetry of the model

B. Anisotropic model: R =0.3

Again a 32X32 and a 16X16 lattice were simulated,
using the same MC algorithm and analysis subroutines as
for the isotropic case. Simulation data are given in Table
IV and the leading thermal eigenvalues are given in Table
V. Although the statistical uncertainty is somewhat
larger due to the long relaxation times in the anisotropic
system, the eigenvalues are completely consistent with
those obtained for the isotropic model.

However, the correlation functions reveal a different
condition. Table VI shows the effect of renormalization
on the nearest-neighbor correlations in the x and y direc-
tions. The anisotropy is clearly marked, indicating that
the fixed-point Hamiltonian is also anisotropic. This is
also clear evidence for a fixed line, since models with
differing anisotropy are shown to converge to different
fixed points.

IV. FINITE-SIZE AND SHAPE EFFECTS

Different size lattices with different shapes were stud-
ied for R =0.1. The results of an analysis of data ob-
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TABLE II. Correlations (see Fig. 1) as a function of iteration for R =1 and L =32. Error estimates
in the last digits are given in parentheses.

Iter.

0.7176(8)
0.7167(15)
0.7362(4)
0.7802(6)

0.7178(8)
0.7169(16)
0.737(4)
0.782(6)

(s, &

0.6138(13)
0.624(3)
0.661(5)
0.742(7)

0.6141(15)
0.625(3)
0.663(5)
0.746(9)

TABLE III. Estimates for the three largest thermal eigenvalues for R =1. Errors in the last digits are given in parentheses.

Iter.
No. of
interact.

1

2
3
4
5
6
7
8

9
10

1

2
3
4
5
6

8
9

10

0.846(7)
0.893{7)
0.952(9)
0.953(9)
0.951(9)
0.951(9)
0.946(10)
0.946(10)
0.946(10)
0.939(10)

0.874(12)
0.942(10)
1.003{11)
1.008(11)
1.003(15)
0.991(14)
0.995(13)
0.994(12)
0.993{13)
0.986(13)

L =16
9'2

—0.34(3)
—0.34(3)
—0.34(3)
—0.4(2)

0.11(2)
0.13(2)
0.19(4)
0.17(4)
0.17(4)

—0.54(4)
—0.54(4)
—0.54(4)
—0.19(4)
—0.07(2)
—0.00{4)

0.06(5)
0.06(5)
0.06(4)

—1.95(5)
—1.86(5}
—1.50(9)
—1.00(3)
—0.84(5)
—0.72(8)
—0.78(8)
—0.66(13)

—2.44(27)
—2.58(20)
—1.70(18)
—1.04(4)
—0.84{15)
—0.65(4)
—0.68(4)
—0.63(17)

0.859(5)
0.899(4)
0.958(4)
0.960(5)
0.962(4)
0.961(4)
0.960(6)
0.959(6)
0.960(6)
0.961(6)

0.900(8)
0.952(8)
1.002(5)
1.005(5)
1.002(3)
1.006(5)
1.003(6)
1.003(6)
1.002(6)
1.005(7)

L =32
3

—0.291(3)
—0.291(4)
—0.291{4)
—0.056(15)

0.143(24)
0.154(24)
0.192(14)
0.192{14)
0.192(14)

—0.548(27)
—0.548(27)
—0.547(26)
—0.223{10)
—0.036(13)

0.000(11)
0.036(2)
0.036(2)
0.037(6)

—2.13(6)
—2.09(6)
—1.56(7)
—1.06(7)
—0.92(6)
—0.86(4)
—0.99(7)
—1.13(16)

—2.32(5)
—2.65(9)
—1.59(9)
—1.09(5}
—0.95(4)
—0.87(5)
—0.94(9)
—1.26(12)

1

3
4
5

6
7
8
9

10

0.872(6)
0.935(6)
0.990(7)
0.991(9)
0.986(9)
0.977(6)
0.972(6)
0.970(7)
0.968(9)
0.968(8)

—0.53(3)
—0.53(3)
—0.53(2)
—0.31(3)
—0.18(5)
—0.10(3)
—0.01(7)
—0.01(7)
—0.01(7)

—2.37(11)
—2.53(15)
—1.71(17)
—1.19(19)
~ —0.93(8)
—0.74(8)
—0.74(8)
—0.73(10)

TABLE IV. MC simulation data for MCRCi calculations for the d =2 Ising model rvith R =0.3
Data for correlation functions taken every 20 MCS/site.

Lattice size (L,)

10 MCS/site used
10 MCS/site discarded
Fraction of successful MCS
Approximate correlation
time in units of MCS/site

32

786
14
0.156

120

420
10
0.152

64
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TABLE V. Estimates for the two largest thermal eigenvalues for R =0.3. Errors in the last digits
are given in parentheses.

Iter.
No. of

interact.

1

2
3
4
5
6
7
8

9
10

1.035(4)
0.899(4)
0.951(4)
0.954(5)
0.897(5)
0.911(4)
0.905(5)
0.912(5)
0.920(5)
0.922(4)

L =16

—0.60(5)
—O.S8(4)
—0.58(4)
—0.15(5)

0.10(6)
0.11(5)
0.17(4)
0.14(3)
0.15(2)

1.060(4)
0.918(6)
0.964(4)
0.966(5)
0.937(7)
0.925(7)
0.919(8)
0.923(8)
0.935(7)
0.932(9)

L =32

—0.67(2)
—0.65(2)
—0.66(2)
—0.62(7)
—0.00(6)
—0.08(6)
—0.11(5)
—0.10(5)
—0.10(4)

1

2
3
4
5

6
7
8

9
10

0.927(8)
0.926(4)
0.961(5)
0.962(5)
0.909(19)
0.937(16)
0.911(35)
0.919(36)
0.902{37)
0.899(51)

—0.74(4)
—0.71(5)
—0.74(6)
—0.27(12)
—0.15(11)
—0.06(12)
—0.01(11)
—0.04{11)
—0.04(12)

0.974(6)
0.957(4)
0.989(4)
0.991(4)
0.961(5)
0.977(5)
0.976(5)
0.983(5)
0.981(5)
0.980(5)

—0.79(5)
—0.77(4)
—0.75(4)
—0.32(5)
—0.11(2)
—0.11(2)
—0.02(2)
—0.03(3)
—0.03(3)

1

2
3
4
5

6
7
8
9

10

0.911(7)
0.924{5)
0.956(6)
0.957(6)
0.876(10)
0.916(13)
0.885(16)
0.892(19)
0.862(19)
0.863(18)

—0.68(3)
—0.67(3)
—0.68(3)
—0.09{9)
—0.02(7)

0.11(6)
0.15(6)
0.15(6)
0.16(6)

tained on L)&L lattices are shown in Table VII. (Im-
provement of these data would require very long runs.
For R=0. 1 ferromagnetic chains tend to form in the
strong-coupling direction and the subsequent slow relaxa-
tion gives poorer statistics. ) These results show that the
eigenvalue estimates after one iteration are not only
strongly dependent upon the number of couplings includ-
ed in the analysis but also show very pronounced finite-
size effects. Even with a 32 X 32 lattice the results are not

good; after three iterations y i is still about 10% too low
and finite-size effects begin to appear. yz is also not well
behaved. y& is much better behaved and quickly ap-
proaches the exact value for L =32, although here also
finite-size effects become noticeable quite quickly. Stan-
dard Monte Carlo calculations have shown that finite-size
rounding in anisotropic simple-cubic models can be re-
duced by changing sample shape, so we also simulated
L&M lattices. The results shown in Table VIII do

TABLE VI. Correlations (see Fig. 1) as a function of iteration for R =0.3. Error estimates in the
last digits are given in parentheses.

Iter.

0.676(3}
0.675(4)
0.691(8)

L =16

0.807{1)
0.766(3)
0.787(3)

(si)
0.678(1)
0.662(2)
0.675(4}
0.698(7)

L =32
(s, )

0.802{1)
0.752(1)
0.758(2}
0.788(4)
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TABLE VII. Eigenvalue estimates for L &I- lattices with R =0.1. Data were obtained for 3&(10 MCS after 10 MCS were dis-
carded. Asterisks indicate complex estimates.

Iter.
No. of

interact.

1

2
3
4
5
6
7
8

9
10

1.003
0.740
0.769
0.776

16

1.107
0.827
0.856
0.865

0.772
0.769

32

1.162
0.876
0.905
0.909
0.707
0.648
0.629
0.612
0.832
0.829

—1.62
—1.62
—1.58

Jz
16

—1.10
—1.09
—1.14

0.07
0.06

32

—1.34
—1.35
—1.41

0.18
0.284
0.29
0.42
0.12
0.12

1.913
1.914
1.915
1.921

0

16

1.933
1.931
1.931
1.936

32

1.937
1.933
1.933
1.937

1

2
3
4
5
6
7
8

9
10

0.866
0.866
0.885
0.884
0.703
0.752
0.721
0.719
0.683
0.677

0.975
0.943
0.960
0.962
0.861
0.899
0.892
0.899
0.897
0.895

—1.53
—1.54
—1.76
—0.22

0.22
—0.10
—0.08
—0.06
—0.05

—1.17
—1 ~ 16
—1 ~ 10
—0.13
—0.13
—0.10
—0.04
—0.09
—0.08

1.859
1.859
1.861
1.860

1.879
1.879
1.879
1.879

1

2
3
4
5
6
7
8
9

10

0.858
0.870
0.895
0.895
0.697
0.750
0.723
0.723
0.655
0.653

—1.32
—1.30
—1.35
—0.12
—0.14
—0.06
—0.05

0.05
0.05

1.855
1.855
1.856
1.855

indeed show a substantial improvement in the conver-
gence when rectangular lattices, with increased length in
the strong-coupling direction, are used. In contrast, if the
lattice is elongated in the weak-coupling direction the
finite-size effects are enhanced. For the 16)&64 lattice y i

and y i approach the exact result fairly smoothly. In addi-
tion, the results for y2 remain close to zero although no-
ticeable statistical uncertainty remains. As shown in
Table IX, however, the correlation functions remain an-

isotropic with increasing iteration.

V. ANISOTROPIC TRANSFORMATIONS
AND THE FIXED LINE

Since the concept of a fixed line is normally associated
with nonuniversal behavior of the sort seen in the Baxter
model, ' it is important to demonstrate the mechanism by

which universality is maintained in the present case. The
essential feature is the existence of rescaling transforma-
tions, which enable the critical behavior of any anisotro-
pic Ising model to be described by any point along the
fixed line.

Let us consider an isotropic model at or near criticality,
with equal correlation lengths in the x and y directions.
Now we make a 1 &2 black-spin transformation in which
the two sites in each block are one lattice constant apart in
the y direction. The correlation length of the transformed
system will be unchanged in the x direction, but one-half
as large in the y direction. If we now proceed with 2X2
(isotropic) block-spin transformations as described above,
our original isotropic system will be described by an an-
isotropic fixed point.

Naturally, we can also take an anisotropic system and
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TABLE VIII. Eigenvalue estimates for L XM lattices with R =0.1. Data were obtained for 3 X 10' MCS after 10 MCS were dis-
carded. Asterisks indicate complex estimates.

Iter.
No. of

interact.

1

3
4
5
6
7
8
9

10

16X8

1.044
0.804
0.841
0.847

8X 16

1.132
0.822
0.849
0.850

16X32

1.179
0.873
0.902
0.904
0.655
0.557

0.790
0.785

16X64

1.206
0.920
0.949
0.950
0.831
0.775
0.765
0.749
0.856
0.844

16X8

1.911
1.912
1,915
1.921

8X16

1.933
1.930
1.931
1.934

16X32

1.937
1.935
1.936
1.939

16X64

1.937
1.933
1.934
1.937

1

2
3

5
6
7
8

9
10

1.017
0.973
0.990
0.991
0.819
0.861
0.817
0.787
0.834
0.819

1.118
1.048
1.063
1.064
0.998
0.987
0.978
0.963
0.977
0.970

1.879
1.879
1.879
1.879

1.882
1.882
1.882
1.883

TABLE IX. Correlations as a function of iteration for L XL lattices with R =0.1.

Iter. L=8
0.5616
0.4318

16

0.6237
0.5389
0.4325

32

0.6401
0.5911
0.5494
0.4611

L=8
0.9040
0.7551

16

0.8877
0.7696
0.7409

32

0.8834
0.7720
0.7541
0.7534

Lattice size (L) 16X32

TABLE X. MC simulation data for MCRG calculations for
the d =2 Ising model with R =3.0. Data for correlation func-
tions taken every 20 MCS/site.

TABLE XI. Correlations (see Fig. 1) as a function of itera-
tion for R =3.0 and a 16X32 lattice. Note that the 0th itera-
tion refers to the system resulting from a preliminary (1X2) re-

scaling transformation (which yields a 16X16 lattice).

10 MCS/site used
10 MCS/site discarded
Fraction of successful MCS
Approximate correlation
time in units of MCS/site

450
37
0.158

Iter.

0.669(2)
0.714(3)
0.767(5)

0.705(2)
0.719(3}
0.767(5)
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TABLE XII. Estimates for the three largest thermal eigenvalues for R =3.0 with a 16&32 lattice.
Note that preliminary (1 &(2) rescaling transformation was performed prior to the RG analysis.

Iter.
No. of

interact.

1

2
3
4
5
6
7
8
9

10

0.932(5)
0.895(2)
0.947(2)
0.951(3)
0.957(5)
0.958(6)
0.959(9)
0.960(10)
0.961(10)
0.963(12)

—0.48(4)
—0.50(4)
—0.52(4)
—0.35(7)
—0.08(2)
—0.07(5)

0.00(3)
0.00(3)
0.01(2)

—2.05(10)
—2.15(15)

.
—1.55(16)
—1.35(10)
—0.92(13)
—0.91(8)
—1.00(9)
—1.01(10)

1

2
3
4

6
7
8
9

10

0.867(5)
0.924(4)
0.978(3)
0.982(3)
0.986(5)
0.981(4)
0.988(7)
0.990(9)
0.986(9)
0.976(11)

—0.49(4)
—0.49(4)
—0.49(4}
—0.29(7)
—0.10(8)
—0.04(13)

0.08(13)
0.08(14)
0.08(10)

—2.19(14)
—2.33(15)
—1.55(11)
—1.37(7)
—1.21(27)
—1.11(19)
—1.07(18)
—1.02(13)

transform it into an isotropic one through a rescaling
transformation. By carrying out such a calculation, the
equality of the renormalized correlation functions in the x
and y directions would directly demonstrate the correct-
ness of this description.

The most convenient value of the anisotropy for the
calculation outlined above is R =3, for which the ratio of
the correlation functions '" is known to be exactly 2. We
have simulated such a model on a 16&&32 lattice and give
information on the simulations in Table X. A 1X2
block-spin transformation was carried out before proceed-
ing with the RG analysis, to reduce the system size to
16' 16. Although the short-range behavior was still an-
isotropic after the 1)&2 transformation as shown by the
data in Table XI, isotropy was rapidly restored by the RG
transformation. By the second iteration, the correlations
in the x and y directions are equal to well within the ac-
curacy of the calculation. The thermal equivalences,
shown in Table XII, also show excellent convergence to
the correct values when the 1&&2 rescaling transformation
is carried out first.

VI. CONCLUSIONS

By straightforward MCRG analysis of isotropic and
anisotropic Ising models, we have demonstrated the
correctness of the conjecture that spatial anisotropy is a
marginal operator and that the critical behavior of the
general anisotropic model is governed by a line of fixed
points. We have demonstrated that the universality of the
Ising critical exponents is guaranteed by the possibility of
using preliminary rescaling transformations to describe
the critical behavior of any anisotropic model by any
point on the universal fixed line.
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