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Spectral-density method for classical systems: Heisenberg ferromagnet
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We formulate the spectral-density method in classical statistical mechanics in strict analogy with

the known quantum version, and we apply it to the classical Heisenberg ferromagnetic model in an
external field. A new formula for the magnetization in the classical formulation of spin-vector
Green functions is derived for arbitrary spatial dimensionality. Furthermore, the static properties of
the one- and three-dimensional cases are considered in detail. We obtain accurate results over a
wide range of temperatures with the external field for the one-dimensional model and without field
for the three-dimensional model. In the first case very good agreement with the exact numerical
transfer-matrix data is also found in the region of higher temperature where the interacting-boson

approach fails. In particular the zero-field susceptibility results are found to be consistent with the
exact results obtained by Fisher.

I. INTRODUCTION

The spectral-density method' (SDM) gives a systemat-
ic unperturbative procedure for obtaining successive ap-
proximations in order to investigate the thermal proper-
ties of many-body systems. The method has been widely
used for quantum systems' 7 that also involve phase tran-
sitions, ' and its effectiveness has been also checked ex-
tensively.

Since classical systems have assumed an important role
in the modern theory of critical phenomena, s it is of par-
ticular interest to develop in classical statistical mechanics
an unperturbative scheme that makes it possible to obtain
systematic and untrivial approximations. Only recently
has the SDM been formulated for classical systems and
applied to a classical Heisenberg ferromagnetic chain.
However, only preliminary results have been presented.

The purpose of this paper is twofold. Firstly we refor-
mulate, in a more detailed way, the classical spectral-
density method (CSDM) on the basis of the classical ana-
log' of the quantum two-time temperature Green func-
tions, in strict analogy with the well-known quantum ver-
sion. Then, in order to check its effectiveness, we apply it
to classical Heisenberg ferromagnets of arbitrary spatial
dimensionality. Furthermore, as examples for numerical
and analytic results, we consider in detail the one-
dimensional case and also give some data for the three-
dimensional case where long-range order exists at finite
temperature. This will be accomplished to the lowest or-
der in the CSDM; the theoretical results for some static
quantities are discussed and compared with the data ob-
tained by the transfer-matrix method and by the

interacting-boson approach.
Our choice of investigating a magnetic chain in order to

test the method is connected with the widespread interest
recently shown in classical one-dimensional systems from
both the theoretical and experimental points of view. ' A
strong impetus for such studies has been given by the
discovery that true one-dimensional systems do exist in
reality. This is particularly true for magnetic properties,
and in this respect (CD3)4NMnC13 (TMMC), CsNiF3, and
CuC12. 2NCqH5 seem to be nearly ideal one-dimensional
magnetic systems. ' ' Furthermore, the existence of
computer simulations' ' for Heisenberg ferromagnetic
chains with and without applied fields offers a comple-
mentary and valid tool for suggesting and guiding various
theoretical approaches.

In this paper some new elements appear. Firstly, we
derive, in general, a l.ehman spectral decomposition for
classical systems that is very similar to the quantum coun-
terpart. Furthermore, we obtain a new formula for the
magnetization in the classical formulation of spin-vector
Green functions. Finally, on the basis of simple calcula-
tions, we have results for any temperature with an exter-
nal field for the one-dimensional model and without an
applied field for the three-dimensional model, which are
consistent with exact numerical and analytical data.

The organization of the paper is as follows. In Sec. II
we introduce the classical spectral density for two arbi-
trary dynamic variables and formulate the CSDM.
Within this formulation, some known results of the classi-
cal statistical mechanics are also presented in a new form
that is more appropriate for the application of the
method. In Sec. III the general formalism developed in
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Sec. II is applied to the classical isotropic Heisenberg fer-
romagnet with arbitrary dimensionality. Here a detailed
investigation of the main thermodynamic properties of
one- and three-dimensional models is also presented. Fi-
nally, some conclusions are drawn in Sec. IV.

II. THE SPECTRAL-DENSITY METHOD
FOR CLASSICAL SYSTEMS

Following Ref. 10, we consider the classical two-time
temperature-dependent retarded and advanced Green
functions for two arbitrary dynamical variables A and B:

G„'",'(t —t') =6(t —t')( {A (t),B(t')I & ,

G~'~(t t') =——6(t' —t)( {A (t),B(t') I ),
where 6(x) is the step function, ( ) stands for the usual
statistical average, and {A,B I is the Poisson bracket of A
and B. In Eq. (1) the dynamic variables A and B depend
on the time via the coordinates q (t)—:{q;(t) I and the mo-
menta p (t)= {p;(t)I. They satisfy the equation of motion

= {A (t),HI, (2)

where H =H(p, q) is the Hamiltonian of the system. As
is known, the formal solution of Eq. (2) can be written in
the form

obtains in fact

&A(~)B)=Tf
Thus if one determines independently the spectral densi-
ties it is possible to obtain the correlation and the Green
functions and therefore the physical properties of a classi-
cal system. Our purpose is just to show that for classical
systems also one can construct a formalism (in strict anal-
ogy with the well-known quantum version) that makes it
possible to formulate a CSDM for a systematic calcula-
tion of the spectral density.

As a first step we show that, also for the present
Azz(co), a spectral decomposition can be derived in the
form of an infinite sum of 5 functions. Following Ref.
17, we introduce a Hilbert space W of the classical
dynamical variables with a scalar product defined by

f y"(u, q)y(J, q) """~pdq
1

=~ &O'V»q)NV»q) &

where d is the spatial dimensionality and N the partition
function of a system with dN degrees of freedom. In this
space we consider the eigenvalue equation for the Hermi-
tian operator I.

A(t)=e' 'A, (3)
L t('k ~ok 4k

where A =A (0) and L is the Liouville operator defined
by

iLA ={AHI .

In analogy with the quantum case, ' we now introduce
the classical spectral density for A and B:

A~„(w) = i ({,B—A(v ) I ) .

Then, it is easy to show that the Green function
Gzz(co), related to the Fourier transforms of (1) and de-
fined in the whole complex co plane with a cut along the
real axis, has the spectral representation

+oo d~' Agg(co )
G~a(~) =

27T Cg —CO

A V»q) = g &Pk I
A &itkV, q»

B(p,q) = g &4k I B)fk(p»q) .
(12)

%'e now observe that from Eqs. (7) and (8) it follows that

A~~(co)= —f dre'"'(A (r)B)
00

An important property of the Liouville operator is that all
its eigenfunctions are complex' and it is immediately
proven that if pk is an eigenfunction of L with eigenvalue
cok, then pk is also an eigenfunction of L with eigenvalue
—tok. If we assume that {fk I is a complete set of ortho-
normal eigenfunctions, for two arbitrary dynamical vari-
ables 3 and B we can consider the series expansions

where Azz(co) is the Fourier transform of A~~(~),

Ag„(co)= i ( {B,A (r) I
—)

+00= f dre' Agg(v) . (7)

Also, the dynamic correlation function (A (r)B ) can be
easily expressed in terms of Az~(co). This possibility lies
on the known result'

=—(X!A'"a)-'
T

e '~'~' 8 p, q

+ 00

X f dre'"+ '
A(p, )qpddq. (13)

—({B,A(~)I) =T ' (A(r)B)
d7

=T-'( {A(~),H IB),
which connects the Poisson bracket of two dynamical
variables and the corresponding dynamical correlations
function, T being the temperature. From relation (8) one

Then, taking into account Eqs. (11) and (12) and the
orthonormality and completeness conditions in W, from
(13) we obtain

A~~(~)=2~—~ 'g &A I B&&fk I
A)@~ ~k) (14)

k

which is the desired spectral decomposition to be com-
pared with the quantum analog
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A~g (co )=2m.(e"~ +il )N

Xy&k~B~k)&k ~A~k)
k, k'

&(e " 5(co Ek—+Ek ) (g=+1) .

Of course, if A =8', we have &Pi, ~

A ) =&gk ~8)* and
therefore

+00 dec""+"=5(co+L,)
277

it is possible to write Azz (co) in the compact form

(16)

(~)=2~—~ 'g
~ &fk ~8) ~'5(co co—) (15)

k

is a real quantity.
Note that, from (8) and (13), if we put formally

purpose of CSDM.
Physically, the parameters co'k

'"' that appear in (21)
take the role of effective eigenvalues of the Liouville
operator. From (6) and (9) it follows that they are still, as
in the quantum case, the poles of the Green function
G~g(co), and each of them represents a possible mode of
undamped oscillation for the correlation function
&A(~)B).

It must be stressed that the evaluation of the right-hand
sides of Eqs. (20) require the introduction of the higher-

order spectral densities. Therefore higher-order moment
problems should be considered, but the difficulty of calcu-
lations increases considerably. Therefore, in order to solve
self-consistently the system of Eqs. (20), it is usually
necessary to use some extra decoupling procedures and
thus introduce additional approximations in the CSDM.

III. CLASSICAL HEISENBERG FERROMAGNET

Agg(co) =2m —&85(a)+L)A )T

= —2ni& j8,5(co+L)A j ), (17)

We apply the formalism developed in the preceding sec-
tion to the classical Heisenberg ferromagnet described by
the Hamiltonian

(22)

d A~~ (r)
i & [ —8(i L) A (~}]) (m =0,1,2, . . . ) .

Then, taking the Fourier transform of Eq. (18) and using
the relations (16) and (17},we have

which must be considered the operational version of the
spectral decomposition (14).

The successive step is to show that, also for the classical
case, it is possible to write an infinite system of moments
for Azz(co). If we use the definition (5) for Az„(r) and
the equation of motion (2), one has

where S; (i =1, . . . , X) are the classical spins, J&~ &0 is
the ferromagnetic exchange constant restricted to the
nearest neighbors, and h is the external magnetic field.

We define the Fourier transforms of the spin vectors
and the exchange integral as

S =pe 'Si,
J

J(K)= g Joe
' ' =J(0)y

J

( ia)) A—~~(co) = 2mi & [8,(—iL) 5(co+L)A J ) .

Finally, integration over co yields

mABAM=lm 1 B, ELm

(m =0, 1,2, . . . ) .

(19) where

1J(0)=zJ, y =—g e'
z

5

(25)

(20)

and z is the coordination number. It is also convenient to
introduce the new dynamical variables

The Poisson brackets involved in the relations (20) can
be evaluated, at least in principle, and the result gives the
mth moment of the spectral density. Therefore, the se-
quence of Eqs. (20) represents a "moment problem, " the
solution of which would yield the spectral density. Un-
fortunately, as in the quantum case, this problem cannot
be solved exactly, and one must look for an approximate
solution of the spectral density. Suggested by the form of
Eq. (14), we seek an approximation for Azz(co) in the
form

(26)

so that

S'=(S )'+S+S- .

The model can be appropriately described by the 2X
canonical variables p;, S (i = 1,2, . . . , N}, where y; is the
angle between the projection of S; in the x-y plane and
the x axis. The Poisson brackets of the spin components
are

Agg(co) =2~ g A'k '"'5(co —co'k '"'),
k=1

(21) [S'-„,S', ) =+iS'=„k+ q
(28)

where n is a finite integer. The parameters A,k
' ' and

cok ' ' are to be determined as a solution of the set of 2n
integral equations obtained by inserting the expression
(21) into the first 2n moment equations (20). This is the

(S+-„,S:j = —2iS'„k+ q
(29)

It can easily be seen that, in terms of the Fourier com-
ponents one has
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H = —hso — g J(q)(S+S +S' S' ) . (30)
q

spectral density (35) and the reduced spectral density to
preserve the zero-moment equation, we obtain

According to the CSDM we introduce the spectral density m (1+a)=S ——,
' (S+S (38)

A„(co)= —i(IS,S+-„(v)))„ (31)

and assume that it can be represented approximately by
one 5 function

A„co =2',
where m = (S') . Thus it immediately follows that

=2Am. From the first-moment equation we have
k

~A cg =2h So +J 0 1 —y-„

x —gy ((S+S- )

A „(co)=2irA „5(co—co-„),

where A - and co- are parameters that will be determined
k k

from the moment equations (20).
From the zero-moment equation we have

From Eq. (38) it follows that for high temperatures, when
m ~0, the isotropy condition (S+S ) = —,

' S is fulfilled

regardless of the value of a. At low temperatures, when
the angular momentum S' is nearly saturated and, for Eq.
(27), S+S is small, a goes to 0 according to Eq. (38) and

S'=S ——
2 S

(39)

Now the expansion for m in terms of (S+S ) and a
can be compare with that following from Eq. (39}.
These two expansions will coincide if the parameter a is
given by the expression

(S+S-)
2S

(40)

where

This leads to the following formula for the magnetization:

S'—-'(S+S- )

1 ——,'((S+S-)/S') '

+2(S'„S', )) . (33)

The transverse correlation function appearing on the
right-hand side of Eq. (33) can be readily calculated. The
expression (9) leads to

and

(S+S-)=2Tm —g1 1

N co
q

(42)

(S+S ) =2TNm/co-„. (34)

The longitudinal correlation function in (33} cannot be
easily calculated within our scheme, and we resort to the
decoupling (S'„S' „)—+ (S'-„)(S' ), neglecting the

correlations between Fourier transforms of the S' com-
ponents of the spin. The mean value m = (S') of the an-
gular momentum provides us with another difficulty be-
cause the classical counterpart of the quantum kinematic
rule for the z components of the spin does not exist. We
suggest the calculation of the magnetization according to
the following procedure. Let us introduce the higher-
order spectral density defined as

T 1 ~ qco-=h +mJ(0)(1 —y „) 1+—
mX co

q q

{43)

A. One-dimensional model

The general results (41)—(43) now resolve themselves
into

Equations (41)—(43) represent the closed system that will
be solved explicitly for the one- and three-dimensional
models in the remaining part of the section. For the first
time such a systein has been obtained in terms of the clas-
sical spins, enabling us to explore the temperature region
where standard bosonlike formulation" fails.

Q(co) = g g ( i ( {S' S —-„,S+ -„(~)J )„),
q k

{35)

Performing the decoupling, we have

( I
S' S- „,S+ „(~)I )„

=(S' )(1++)(IS-„,S+ „(~)) )„, (36}

~*„=h*+oQ(1 —y„),
Q =1+T'[(h*+crQ)/K, —1]/o. Q,
cr =(1 3o T*/K~+)/(1 —o'T'/K ~), —

where we introduced the dimensionless quantities

J(0)S ' J(0)S J(0)s

(44)

(45)

(46)

Q(co) =m (1+a)—g A „(co),
1

k
k

(37)

where a is an unknown parameter. Requiring the original

and we can reduce the higher-order spectral density to the
more simple form

and

o = m/S, KT, =h "(h*+2oQ) .

The magnetization, evaluated in a numerical way for a
wider range of parameters, is reported in Fig. 1, and a
comparison between our results and the corresponding
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1.0 gi, given by exact numerical transfer-matrix results, is
well reproduced by our calculations throughout the tem-
perature region reported here.

Analytical results can be obtained in special asymptotic
regions. Expanding Eqs. (44)—(46} in terms of
T' «(h')'~ we obtain

0.5 T* T*

K + 6*+2

cok =h'+ (1—cosk)

T*

K 2K
(49)

0
0

I

0.2 go 04

1 —T* 1—
K

FIG. 1. The magnetization o vs temperature T for different
values of the magnetic field h . The dashed and the solid lines
report the interacting-boson and the present results, respectively.
The asterisks represent the exact transfer-matrix results.

2

4i = —2~ »m 2 (~k ~—k }/(~k ~ k}—k-odk2

we obtain

gi (og——/2h')'~

(47)

(48)

transfer-matrix and interacting-boson" data is shown. A
very good agreement with the exact transfer-matrix re-
sults is found also in the region of higher temperatures
where the interacting-boson theory fails.

It is possible to obtain an expression for the transverse
correlation length gi. By using the result (34) for the stat-
ic correlation function and the definition

+(T')'
K

—1
h' h*1—
K

(50)
2K

where K =h'(h'+2). For small magnetic fields
[(h')'~ && I], the result (49) resolves into that found by
Balucani et al." Different numerical factors correspond
to the different units. The only difference is that the term
(T*/K) in expression (49) is not present in Eq. (42) of
Ref. 11.

Let us consider the opposite limit h && T . When the
magnetic field becomes very small the magnetization ap-
proaches zero, causing the divergence of the parameter Q
and the frequency cok. In analogy with the quantum case3

we remove this divergence by modifyinig the divergent
term in expression (43). The modification

The corresponding numerical results are plotted in Fig. 2
and compared with other calculations. " The behavior of

1 1 Yq Vl 1 Yg

m N~coq gz N toq
(51)

1.8

1.0
0

I

0.1 0.2

FICi. 2. Temperature (T ) dependence of the transverse
correlation length gi for different values of the magnetic field
h*. The dashed and the solid lines report the interacting-boson
and the present predictions, respectively. The asterisks
represents the exact transfer-matrix results.

X(3g' —4Q+3T') —1=0,
Q = —,

' [(3XT') —I)/X,

(52)

(53)

where, of course, the modification (51) is taken into ac-
count. The susceptibility for high (T*»1) and low

( T' « 1) temperatures is found to be
2

x= 1

3T
2 11+— ~ ~ ~+3T. +3 3T

(54)

is found not to alter the results for m&0. The data re-

ported in Figs. 1 and 2 remain practically unchanged
under this modification. In regard to Eqs. (49} and (50)
for the magnetization and the frequency in the low-
temperature region [T' «(h')'~ ], the new expression
for o coincides with the previous one whereas the ( T*)
term of the expression for cok is only slightly affected.
The modification (51) is related to a slightly different
decoupling of corresponding Green functions which
reproduces the previous results and does not fail in the
range m~0.

In the limit h*«T for the magnetization one has
o.=Xh, where P is the paramagnetic susceptibility. To
first order with respect to h, the left-hand side of Eq.
(46) vanishes, so that the set of equations (45) and (46) is
reduced to
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8 1x=—
2

(55) MFA RPA CSDM HTS

TABLE I. The dimensionless critical temperature for 3D
classical Heisenberg ferromagnet.

respectively. The only difference between these results
and the corresponding exact counterparts' is that the
coefficient —', appears instead of —,

' in the formula (54) and
—,
' instead of 3 in the formula (55). For the first time the

results obtained are consistent with those of Fisher. '

Very recently Balucani et al. ' have shown the vanishing
of the magnetization in the liinit h ~0 by having
recourse to a new approach which goes beyond the frame-
work of the Green-function theory, however.

sc
bcc
fcc

0.333
0.333
0.333

0.220
0.239
0.248

0.245
0.262
0.269

0.241
0.257
0.265

en from Callen ] and compared with the molecular-field
approximation (MFA) result. At very low temperatures
the magnetization depends linearly on temperature and is
explicitly given by the formula

B. Three-dimensional model o = 1 —T*F(—1) I 1+T*[1+,F(—1—)]I . (60)

Let the magnetic field h "~0. Then the expressions
(41)—(43) can be reduced to

The magnetization falls off to 0 at the critical tempera-
ture

4yQ
Q=-, 1+ 1+ X 1 —y

q

1/2

co* =o'Q(1 —y ),
k k

cr=[1 3T F( ——1)/Q]/[1 T*F(——1)/Q]

where the lattice sum F( —1) is defined as

(56)

(57)

(58)

(59)

3F( —1) . (61)

The numerical values are reported in the Table I as
CSDM results. %e present also classical random-phase-
approximation (RPA) results which can be obtained by
dropping the second term in large parentheses of Eq. (61).
Our CSDM results are very close to the exact high-
temperature-series (HTS) results of Rushbrooke et al. 2'

whereas our RPA data coincide with those obtained by
Tahir-Kheli for the quantum model in the limit S—+ oo.

IV. CONCLUSIONS
The zero-field magnetization o versus T is presented in
Fig. 3 for the cubic lattices [the values of F(—1) are tak-

i.o

0.5

I

0.3

FIG. 3. Temperature ( T*) dependence of the magnetization
o. in zero field for 3D classical Heisenberg ferromagnet. The
curves 1,2,3 represent the present data for the sc, bcc, fcc lat-
tices, respectively. The dashed curve represents the MFA result.

In this paper we have presented the classical analog of
the SDM already developed for quantum systems. The
formulation, which has general validity in classical statist-
ical mechanics, has been applied to a d-dimensional clas-
sical Heisenberg ferromagnet. General moment equa-
tions, to be solved self-consistently, have been obtained to
the lowest order in the CSDM and a new formula for the
magnetization has been introduced. Apart from some nu-
merical results concerning the three-dimensional case in
zero field in good agreement with the exact HTS ones, we
have explored more extensively the one-dimensional case,
due to its widespread interest. For this, the magnetization
is evaluated in a numerical way for a wide range of pa-
rameters T and Ii and compared with the corresponding
transfer-matrix and interacting-boson" data. Very good
agreement with the exact transfer-matrix results is also
found in the region of higher temperature where the
interacting-boson theory fails. Analytic expressions for
the magnetization and susceptibility are also obtained in
some regions. For the first time, the zero field results ap-
pear to be consistent with the exact results obtained by
Fisher. ' In our opinion, all the previous results for mag-
netic systems constitute a good test of the effectiveness of
the CSDM. Finally, we wish to emphasize that, due to its
general character, this method also offers a possibility for
investigating the macroscopic properties of other classical
models and to include in the theory damping effects in a
very simple and systematic way. '
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