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The Heisenberg model of a ferromagnet is analyzed by a semiclassical method that attempts to in-

clude the effects of both dynamical and kinematical interactions. At low temperatures, the results
of Dyson are reproduced. At temperatures where the kinematical interactions become important, a
gap appears in the magnon excitation spectrum. This gap results, in part, from a long-range three-

magnon effective interaction. The interaction consists of the renormalization of the self-energy of a
magnon on some lattice site whenever an appreciable number of sites elsewhere in the crystal con-
tain two or more magnon wave packets. Because of the long range, the presence of a gap does not
violate the Goldstone theorem. An expression is derived for the magnon excitation energy which in-

cludes the effects of n-magnon effective interactions.

I. INTRODUCTION

Let us consider the Heisenberg model' of a three-
dimensional ferromagnet. The one-magnon Bloch spin-
wave states are orthonormal exact excited-state eigen-
functions of the Heisenberg Hamiltonian. In contrast, the
multiple-magnon spin-wave states have the defects of be-
ing (a) not exact eigenfunctions of the Hamiltonian, and
(b) neither normalized nor orthogonal. In his definitive
treatment of the subject, Dyson used property (a) to de-
fine the dynamical interaction and property (b) to define
the kinematical interaction. In physical terms, the
dynamical interaction refers to the attractive interaction
between neighboring, localized magnon wave packets; the
kinematical interaction refers to the ability of one-magnon
wave packet to inhibit or (in the spin- —, case) prevent a
second magnon wave packet's occupancy of the same lat-
tice site. Dyson developed a power-series expansion of the
free energy of the system, an expansion in ascending
powers of temperature. Let us write

P —Fo+~
where F0 is the free energy in the absence of any kinemat-
ical interactions, and ~ is the net contribution to the free
energy resulting from kinematical interactions. Dyson
proved the remarkable results that the power-series expan-
sion of ~ vanishes identically. This does not mean that~ itself vanishes. Although it must vanish at T=O, it
certainly does not vanish at temperatures close to the Cu-
rie temperature T~. The presumption is that ~ is negli-
gible at temperatures small compared with T&.

We make the corresponding decomposition for the
internal energy

U = U0+b, U,
where hU is the net contribution to the internal energy re-
sulting from kinematical interactions. Let us try to
understand qualitatively the nature of hU. As already
mentioned, the spin-wave states are not properly normal-
ized when there are two or more magnons in the entire

crystal. At low temperatures the effects of this must be
negligible. We assume that the lack of normalization be-
comes important when an appreciable fraction of all the
lattice sites of the crystal are occupied by two or more
magnons. We let n0 be the mean number of magnons per
lattice site. We consider the probability that a given site
contains two or more magnons. By expanding this proba-
bility as a power series in no, the leading term will be pro-
portional to no. Similarly, the leading term in the expan-
sion of the renormalization factor for the magnon spin
waves will also be proportional to no. In turn, there will
be a term proportional to n 0 in the renormalization of the
magnon excitation energies. Thus there will be a contri-
bution to EUof the form

~ Ui =c in 0 y ~kofk
k

(3)

Here c~ is a constant, fm~o is the excitation energy of a
magnon of wave vector k in the absence of kinematical
interactions, and fk is the statistical Bose factor. We
write

ficok =(BU/t) fk ),
no=& 'gfk

k

(5)

X being the total number of lattice sites in the crystal. It
follows that there is a contribution to b,k (and thus to
irtcok) of the form

P

bkt=(B/t)fk)bUi ——cino ficok0+(n0+) +2fk'~k'0 ~

k'

ttak ttak0+~k ~

where hk is the net contribution to irtcok resulting from
kinematical interactions. Note that EUi is an effective
three body interact-ion. It is also an effective long range-
interaction, in that the magnon being renormalized can be
far removed from the magnons giving rise to the renor-
malization. We have
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Note that in the k=0 limit where Acoko vanishes, 6k~
stays finite, with the value

6pi =clnoN ' g 2fk'~k'o
k'

We have arrived at the remarkable conclusion that there is
a gap in the magnon excitation spectrum, by virtue of the
kinematical interaction. Furthermore, there is no conflict
with the strictures of the Goldstone theorem, ~ since the
effective interaction is long range. In order to be con-
sistent with Dyson's results for ~, the quantity hk
should have a vanishing power-series expansion in T. For
example, if hk varies as T exp[ (Tc!—T)], this condi-
tion results. It could well be that this behavior results
from the presence of a gap in the excitation spectrum. It
should be admitted that the present arguments ignore the
question of whether or not a magnon excitation energy
can even be defined, because of lifetime effects, at tem-
peratures close to Tz.

In the next section, we will develop a method, admitted-
ly approximate, that attempts to deal with both dynamical
and kinematical interactions. A key ingredient of the
method is the use of the so-called semiclassical approxi-
mation, which allows for the treatment of finite angles of
spin deviation without getting into the morass of non-
physical sectors of Hilbert space. The resulting expres-
sions for the magnon excitation energy can be decom-
posed into a series of terms associated with the various
types of effective multiple-magnon interactions. Through
two-body interactions, the results coincide with Dyson s
results at low temperatures. A gap in the excitation spec-
trum first arises with three-body interactions and has a
form qualitatively consistent with Eq. (8).

II. SEMICLASSICAL TREATMENT

in that state where all spins are pointing along the x axis,
i.e., an orientation given by the spherical coordinates
8o ———,'ir, Po ——0. We choose this orientation in order to
avoid certain technical problems associated with the z
direction (problems related to the fact that the spherical
coordinate Pp is undefined in that direction). In the pres-
ence of an assembly of magnons, the spin on the ith lat-
tice site will point in the direction 8p+8;,go+ P;, where

p; = g Cksin(k R; tp—kt+4k),
k

(14)

8; = Q Ckcos( k R; teak t +4—k ) .
k

Note that P; and 8; each represent rotational oscillations
with respect to axes perpendicular to the ground-state
orientation. Together, P; and 8; represent a series of pre-
cessions about the equilibrium. orientation. 4k is a
random-phase angle associated with the mode k. Ck is

the amplitude of the mode k. In the interest of sirnplici-

ty, we restrict ourselves to the spin- —,
' case. The number

of magnons of wave vector k associated with the ampli-
tude Ck is given by

fk
—= —,

' N(1 —cosCk) = ,NCk, —

so that

Ck 4N 'fk .——
Thus Ck is proportional to X ' and is very small.
However, P; and 8; are not necessarily small. At any in-
stant of time, the spin on the ith lattice site will have an
angular velocity perpendicular to the direction of the spin.

We wish to perform a sequence of two oscillatory
transformations of coordinates, a different set for each
lattice site, given by

The Heisenberg Hamiltonian is

1

2 XJijSi Sj

Jij ——J(
i Ri —Rj i ), J;i ——0,

(9)

(10)

S~ i
=S~cosf( +Siy—sin/i

Siy i = Sm sinitii +Siycositii

Siz1:Siz ~

where the double sum is over the N lattice sites of the
crystal. Making use of the commutation properties of an-
gular momentum,

S, XS, i&vS, , —

Six 2
=S;~ icosO; —Sr'z 1sm8i,

Siy2=Siy i

S;,2=—S;„~sinO;+S;,~cos8; .

we can write

dS, /dt =S;XH;,

H; = fi ' 5II/5S; =A' ' g J;JSj . —
1

(12)

The idea is to make the precessing spins appear static
after the two transformations, the ith spin pointing along
the ith xz axis. Interchanging the order of the transfor-
rnations, we have

S ~
=S. cos8; —S~sin8;,

Equation (12) is the correct quantum-mechanical equation
of motion for dS; /dt. Invoking the semiclassical approxi-
mation, we try to solve the equation classically. One
would expect the approximation to be especially good in
treating the magnon excitation energy in the long-
wavelength limit k =0, where the total spin of the crystal
is precessing as a unit.

We take the system in the absence of any magnons to be

Siyg —=Siy

S;,&
=—S. sin0;+SizcosO;,

S~i=S~ icos/;—+Siy isinPi

Sy 2 =——S~ ising; +S»cosg;,

Siz2—:Si

(17)
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Since the two transformations do not commute, these two
sequences will lead to different results. As we will see, it
is necessary to take a particular linear combination of the
results of the two sequences. Because of the noncommu-
tivity of the two transformations, it follows that for either
of the two sequences there will be an instantaneous com-
ponent of angular velocity parallel to the instantaneous
orientation of the spin on a given lattice site. This spuri-
ous parallel component of angular velocity is associated
with the first of the two transformations in either se-
quence. In order to mitigate the effects of the spurious
component, we will follow the two oscillatory transforma-
tions by a rotational transformation parallel to the x2
axis, the same for all lattice sites. Thus we take

ix 1

dt Siy 1Hiz1 Siz 1Hiy 1 ~

dS,y i
Siz 1Hix1 Six 1Hiz1 ~

dSiz 1

dt ix1 iy 1 /y 1 ix 1

T11us

H;„ i H;„——cosP; +H» sing;

=Pi ' g JJ[cos(P~ —P;)Sj„i—sin(PJ. —P;)Sj»],
J

H» i ———H;„sing; +H» cosP;

(20)

Six3 —:Six2~

Sjy3 =Si» 2cos(Qt) —S;,&sin(Qt)

Si 3 =S'y2»n(Qt) +S;,2cos(Qt)

' g II [sin(pJ —p; )Sj.„i+cos(QJ. p; )—SJ» i], (21)
J

H,„=P,+H;, =P, +R 'g J-,,S,.„.
J

We have

We will later choose an explicit value for Q.
We first consider sequence I [Eq. (16)] of the two oscil-

latory transformations. We have

= —O;S;,2+ cosO; — '
sinO;,

dS,yi dS,y i

dt dt
(22)

dS;„i . dS;„dS;»
=P;S;» i+ cosP;+ sing;,

dS,y i . dS~ dS,y=—P;S. i — sing;+ cosP;,

dS;, i dS;,
dt dt

We define H;„,,H» i,H;„such that

(19)

=+8;S;„2+ sing;+ cosg; .

The corresponding values of H;„2,H,y i,H;, 2 a«

H. 2
——H;„ lcosO; —H;, lsin8;,

Hiy2=OI +Hiy1

H. 2 ——H~lsinO;+H. lcosO; .

In particular,

(23)

Hix2 Nisingi+~ g J~ {[cos(pj —p; )cos8;cosgJ +sing;singj ]S„2
J

—'
(QJ. —p; )cosg;SJ»2+ [cos(QJ —p; )cosg;singj —sin8;cosg ]S,2], (24)

~i»2=8;+& g&J[»n(p~ —p;)(cosgJSJ„2+singJS, q)+cos(p —p, }S.„2],
J

(25)

H~2=$;cosg;+& ' g J~J {[cos(QJ —p;)sing;cosgj. —cosg;sing ]S„2
J

—»n(QJ p; )sing;SJ»2+ [co—s(QJ —p; )sing; singj +cosg;cosgj ]S,z I . (26)

We next consider sequence II [Eq. (17)] of the two oscillatory transformafions. In a similar fashion we find

H~2=8p»p;+A' 'g JJ {[cos(gj 8;)cosp;cospj+sin—p;sinpj]SJ„2
J

+ [—cos(gj —8;)cosp;sing&+sing;cospj ]Szyq+sin(gj —8; )cosp;S.,2I, (27)

Hi»2 gjcosg;+& $ J~J {[—cos(8& 8; )sin);co—spj +cosp;sinpj]SJ„2
J

+ [cos(gj —8; )sing;sinpj +cosp;cosp ]S. 2 —sin(8. —g; )sing, .S,2j, (28)
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H. z
—P;+A' g JJ[—sin(01 —0;)(cosgjSj„z—singjSj„2)+cos(0j —0;)S~,2] .

J
(29)

Clearly, the results obtained for H;„2,H;„2,H;, 2 depend on the order in which the transformations are performed. We
choose a normalized linear combination of the two sequences, i.e.,

K;„z=—,
' (1+@)H,„z(I)+—,

' (1—e)H;„2(II), u =x,y, z . (30)

For the time being we leave the parameter e arbitrary. Note that the case e=O corresponds to choosing the symmetrized
product of the two oscillatory transformations.

%e introduce the notation

Hi@ 2 Aiu +~ g ~ij Bij uvSjv 2~ u~U x~Z, z ~

j,U

(31)

A = ——,
' [(1+@')P;sin0;—(1—e)0;sing;],

A;~ = —,
' 0;[(1+@)+(1—e)cosP;],

A;, = —,
'
P;[(1+@)cos0;+(1—e)],

Bj~= —,
' (1+a)[cos(Pj—P;)cos0;cos01+sin0;sin0j]+ —,

' (1 e)[c—os(0j —0;)cosP;cosPj+sinP;sinPj],

Bj„~————,
' (1+a)sin(Pj —P;)cos0; ——,

' (1—e)[cos(0j —0k)cosg;sing; sing;c—os'�],
Bj = —,

' (1+e)[cos(Pj —P;)cos8;sin0j —sin0;cos0j]+ —,
' (1—e)sin(0j —0;)cosP;,

B&~„———,
' (1+e)sin(Pj —P;)cos0j+ —,(1—e)[—cos(0j —0;)sing;cosPj+cosP;sinPj],

Bj„„=—,
' (1+e)cos(Pj —P; ) + —,

' (1—e) [cos(01—0; )sing; sing j +cosP; cosPj ],
= —,

' (1+@)sin(Pj —P; )sin0j ——,
' (1—e)sin(0j —0; )sing;,

= —,
' (1+e)[cos(Pj P;)sin0;—cos0j cos0;—sin0j ]——,

' (1—e)sin(0j —0; )cosPj,

Bj~———
2 (1+@)sin(Pj —P; )sin0;+ —,

' (1—e)sin(0j —0; )sinPj,

Bj =—,'(1+@)[cos(Pj—P;)sin0;sin0j+cos0;cos0j]+ —,
' (1 e)cos—(0j —0;) .

(32)

(34)

(35)

(36)

(37)

(39)

(42)

(43)

lin[f (0)]=—,
'

&f(0)+f ( —0) &

+ ,' 0&(d/d0)[f (0) f ( ——0)]& . —(44)

We now introduce the essential approximation of
linearizing the A's with respect to P;,P;,0;,0;, and the B's
with respect to P;,pj, 0;,0j. In so doing, we make use of
the fact that products of sines and cosines can always be
rewritten as sums of sines and cosines of suitable argu-
ments. What is meant by linearizing f(8) with respect to
0? By definition,

&cos0&= g [(—1)"/(2n)!]&0 "&=exp( ——,
'

&0 &),
n=0

&y,'& = &0,'& =-,' g C,'=N-'g 2f„,
k k

&0 0 & = —&0 0 & =
2 X~kck =N '»~kfk

k k

lin(0;sing;) = &0;sing; &

(47)

(48)

& 02ll & [(2n)t/n t2ll]
&

02&n (45)

In other words, we replace the even part off (0) by a suit-
able average; we replace the odd part by 0 times the aver-
age of the derivative of the odd part. In the present calcu-
lation, the averaging is with respect to time and with
respect to the random phases 4k appearing in P; and 0;.
This linearization approximation eliminates the possibility
of calculating lifetime effects associated with the magnon
excitation energies. Nevertheless, the approximation is
essential for being able to carry the present calculation to
completion.

For the angles we are considering, we can write

(49)

lin(0;cosP;) =8;&cosP; &+/; &0;(8/BP;)cosP; &

r

= 0.—N '»~kfk 4
k

&&exp N' gfk-
k

(50)

=&0,y, &&(d/dy, )sing, &

r r

N ' +2ekfk exp N' gfk-
k k
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&fter rewriting products of sines and cosines as sums of sines and cosines, the angular arguments of the resultant
trigonometric functions all have the form

8=(vigj+vzP;+v38j+v48;), v„=0,+1 . (51)

8= g Ck(Ivisin[k (Rj —R;)]+v3cos[k (Rj —R;)]+vqIcos(k R; iij—kt+4k)
k

+ I vicos[ k. ( Rj —R; )]—v&sin[ k ( Rj —R; ) ]+vz I sin( k R; cok t—+ iIik )), (52)

—,'(8 ) = —,
' QCk(Ivisin[k (R, —R;)]+vzcos[k (Rj —R;)]+v4I +Ivicos[k (Rj —R;)]—v&sin[k (R —R;)]+vzI )

k

=X ' g fk I(vi+vz+v, +v4)+2(vivz+ v3vg)cos[k (Rj.—R;)]I .
k

We have

lin(cos8) = (cos8) =exp( ——,
' (8 )),

lin(sin8}=8(cos8) =8exp( ——,
' (8 )) .

Defining the quantities

b =X ' g 2fk ——2no
k

(54)

B;,y„——,
' (1+—e)(Pj P;—)e

+ —,(1—e)[(Pj —P;)( I+e ")e

1 ~v
Bjyy =

z ( I+~)e

(62)

+ —,(1—e)[(l+e ")e "+(e "—l)e zb], (63)

(55)

gj ——X '+2fkII —cos[k (Rj —R;)]I,
k

we can now write the linearized versions of the A's and
the 8's as

+ijyz =~ijzy =0 ~

Bijzg: g ( 1 + )e[(8j 8i )( 1 +e '')e

+(8, +8;)(e "—1)e zb]

——,(1—e)(8j —8; )e

(64)

(65)

A. =dix

A,y ———, g Cksin(k. R; —cokr +~'k)
k

(56) Bj = —,'(1+e)[(1+e ")e "+(e "—1)e "]

(66)

X[(l+e)cok+(1—e)(cok d)e "j ' ],— (S7) Considering now the final rotational tranformation [Eq.
(18)],we have

A;, = ——,
' g Ckcos( k R; cok t +@k)—

k

X [(1 e)cok+(1+e)(cok —d)e—"j ' ],

H;„3———Q+H;„2,

Hiy 3 —Hiy zcos( Qt) —H;, zsin( Qt)

Hig 3 —Hiy zsin ( Q t ) +H;, zcos( Q t )

(67)

&

[ gij(1+ &ij) —zb( +gij 1)]

1
—g,-,.—(.in)b

Bogy =
z (1+&)(Pj Pi )e

——,
' (1—e)[(Pj —P;)(1+e ")e

—(P, +P;)(e "—1)e ' ],

(S9)

1
Si~3= 2 ~ Siy3=Siz3=0 . (68}

In order that the equations of motion be satisfied, we
must have

As already announced, we wish to find a "static" solution
in the x3y3z3 coordinate system. In the absence of mag-
nons, we took the ground state such that all spins are
pointing along the x axis. In the presence of magnons, all
spins are pointing along the xz axis. Thus, for all i,

Bij~ = ,'(1+e)[(8;—8;)(1+—e ")e

—(8j+8;}(e "—1)e ]

+ —,(1—e)(8j —8; )e (61)

H,y3
——H;z3 ——0 .

These equations are equivalent to

1Six2= » Siy2=Siz2=0

~iy2 —~- 2=0 .

(69)

(70)

(71)
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Equation (71) implies

2%A(y+ g J&jBtjy» =2%A&»+ Q J(jB(j»» =0 .
J J

(72)

For arbitrary e, Eqs. (72) have no solution. However, for
the case e=0 (symmetrized product of the two oscillatory
transformations), we have

2))2A(y+ g J(jB(jy»:g CkDk s111(k R' o)kt +C k)

+ g JjBjz,———g CjDj„cos(k.R; oj—k t +(11k),

where

—:Irto) (1+e ( / )b) —Irjde / ——'g J"{1—cos[k (R..—R. )]je sj(l+e s"+2e /
)

J

+ 4 g Jj{1+cos[k.(R —R;)]je (e "—1) .
J

(74)

It follows that Eqs. (72) are solved by setting

@=0, Dk; ——0

Dk; can be made to vanish by setting

1
'jt(ok = —, $Jj(ao j +a I j {1 —cos[ k. ( Rj —R; )] j ),

where

aI"—= ( (1+e ('/ )b) [e s"(I+e s'j+2e ('/2)b)
1SJ —2

(75)

(76)

Also,

H,„3() A;„—Q——+(2') ' g J;jB;j
l

Our exact equations of motion are

dS;x 3 =Siy 3H;z 3
—S;z3H,y 3

S,y3

df

(85)

(86)

+e (e "—1)],
and ao,j is chosen such that

—,
' g J; a; =(e+"/ ' +1) 'Kid

J
((1+ —(I/2)b) —Ie 2b~ J —

(
+sij 1}

2 e iJ
J

From the definition of d, we have

(77) dS;z 3

dt
=S 3IIy 3 Sy 3H x 3

We choose to linearize these equations of motion with

respect to the 5S; and 6H;. Thus we obtain

dS(
0

di

dS,y 2

dt
=H;„so5S;,3 —S;„3()5H;,2,

1Rd —
2 g J'j(ao'j b +a „,gj ) .

J
(79)

iz3 = —H~3()5Sy3+S 2o5H y3

Thus we can choose Note that the linearization has caused 5H;„3 to drop out
of the equations of motion. We define

(1 b+ +(I/2)b) —I
oij =

X[a(,jg,j —e (e —1)] .—(3/2)b +gij (80)

1

Six 3 Six 30 2 y iy 3 ~Siy 3~ iz 3 ~Siz 3 (81)

Let us now go beyond the "static" state we have been

considering. Rather than the values of Eq. (68), we take

5S;:5Sy 3+i—5S;,3,
5H' 5H'y3+i5H 3A g JjBjyy'5Sj'

J

Eo =&A; —1)t&+—,
' g J;,(B;, —B;,„),

J

(88}

(89)

(90)

CorrespondIngly, we have

~ix 3 ~ix 30+~~ix 3y ~iy 3 ~IIiy 3~ Biz 3 ~~iz 3

Making use of

(82)

2'J ilyy (91)

Thus we can write

(92)i A 5S; =Eo—5S(+—,g J(ja2,j(5S; 5Sj ) . —d 1

dh

+ijyy ~ij zz ~

we have

~ijyz +ij zy
(83)

By setting, for all i,

5Hy 3 fi Q JjBtjyy 5S~y 3, —
J we obtain

i( k R; —apkt+@k)
ke (93)

5Ht»3 fi 'g JtjB;jyy5Sj, 3 . ——
J

&k=Eo+ —,$Jja2j{1—cos[k (Rj —R;)]j . (94)
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At this point, we choose Q such that Eo equals the %coo of
Eq. (76). Thus

Q='4ix+(2~) g Jij ( ijxjj ~ijyy ~oij )

J

=(2)rj) ' g JJ [—,
' (e —e ")(e " 1)—

J

1az"=1 —g "+ —g ("2g " b—)
V &J 2 &J &J

+ )2 gjj (6b 3bgjj 5gij2) +
ir)Q= ——,

' $J"[g (b "—g")
J

+gJ(5b 7b—gJ+2gJ)+ ] .

(99)

(100)

( 1+e +(1/2)b) —1~ ] (95)

so that

Kiack = —, $JJ [a~~.+a2,J [1—cosk (RJ —R;)]I .
J

In order to understand the results we have obtained, we
exPand azj, ai;j, nzij, and Q in Powers of b and gJ.

pg i 7l2
Terms proportional to b g;J result from n-magnon in-

teractions, where n =(n)+n2+1):

To the accuracy of two-magnon interactions, a),z ——aqij
=(1—g;J ) and ao,J

——Q=0. This is just the form of )r)jok

derived by Bloch and by Poling and Parmenter, known
to lead to the correct low-temperature properties. Most
remarkably, aijj ——a2,j to the accuracy of three-magnon
interactions. The two alternative ways of calculating )r)cj)k

lead to different results only in the presence of four-
magnon interactions. A gap first appears in the magnon
excitation spectrum in the presence of three-magnon in-

teractions. To this accuracy, the gap is

Aojj 4 gjj( b —gJ )——,',
gjJ ( 18b +3bgJ —20gJ )+

1
+1jJ glj + 2 glJ (2glj'

(97)

)r)jj)0———', g J;Jg;J(b —g;J) .
J

(101)

This should be compared with the boi of Eq. (8), which
can be written as

(98)
j

b,o) ——4C1 g J,Jg,J(1—g,J )b .
J

(102)
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