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Equation of state of N2 and Ne near their critical points.
Scaling, corrections to scaling, and amplitude ratios
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Five stacked parallel plates forming four capacitors were used to measure the density at four clif-
ferent heights for nitrogen and neon near their critical points. Measurements were made on fluid
samples with an average density very close to the critical value in a temperature range
—5&10 ~ t ~ 1&10 where t is the reduced temperature ( T—T, )/T, . These measurements al-
low simultaneous determinations of (1) the coexistence curve, (2) isothermal compressibility both in
one-phase ( T ~ T, ) and the two-phase region ( T ~ T, ), and (3) the density as a function of chemical
potcnt1al of thcsc fluids. For data outside thc gravltatlonaLLy rounded rcg1011, power-law analyses ln
eluding correction to scaling terms were used. Data in the gravitationally rounded region were
analyzed with thc use of the restricted cubic model. Consistent results in T, (on the order of 0.2
mK) and the leading amplitudes were found between data in these two regions. In addition to the
leading exponent P and y we also determined from our data the correction to scaling exponent 6
and three universal amplitude ratios. Bur values for these quantities are in good agreement with
theoretical predictions.

I. INTRODUCTION

A bulk pill'c Auld llcRr its llquld-vapol' cl'ltlcR1 point ls
commonly believed to fall in the same universality class as
thc thl ce-dimensional Ising model OI' the Landau-
Ginsburg-%'ilsoIl model with a scalar order parameter.
Qn the coexistence curve below the critical tempera. ture
T„ if the average of the liquid and vapor densities is the
critical density (pL +pv ——2p, ), then the order parameter is
described by

Ap*=Bo
I
t

I
~,

where Ap~=(pL —pv)/(2p, ), t =(T—T,)/T, is the re-
duced temperature, and I3 is a universal critical exponent.
The simple power law is expected to be valid only in the
asymptotic critical region (i.e., sufficiently close to the
critical point). The value of 13 is predicted to be 0.325 by
renormalization-group (RG) theory. ' The value of I3
found in recent high-temperature-series —(HTS) expan-
sion calculations is converging toward the RG values. '

8o 1s a system-dependent aIIlpl1tudc.
Similarly, the dimensionless isothermal compressibility

XT——(P, /p, )(Bp/c)p)T as a function of reduced tempera-
ture, asymptotically becomes

The value of y+ is predicted to be 1.240 by RG (+0.002)
(Refs. 3 and 4) and HTS calculations. This expression
appllcs above T, oIl thc cr1t1cal 1sochorc. AIl cxpIcssion
identical to Eq. (2) with negative ( —) superscripts applies
along the coexistence curve. The I"s are system-
dcpcndcnt aIIlplltudcs.

Also of interest is the relation between the reduced
chemical potential,

where the value of 5 is predicted to be 4.82. Do is the as-
sociated amplitude. Among the many power laws and
critical exponents, the three listed above are of particular
interest to the experimental work to be presented here.
Not all the critical exponents are independent; they are re-
lated by scaling relations such that knowledge of any two
exponents allows the determination of' all the others. The
exponent relations of particular interest here are
y==P(6 —1) and y+=y

The experiment of Hocken and Moldover, performed
inside

I
t

I
~5&&10, found critical exponents in much

better agreement with the predicted values than those
found in many previous experiments performed farther
from T~.

It was recognized in the early 1970S that the true
asymptotic critical region is exceedingly small and there-
folc lllacccsslblc to IIlost cxpcllIllcllts. EquRtlolls (1), (2),
and {4) need to be modified by adding correction-to-
sca11Ilg terms to pI'opcIly dcsclibc data that cxtcnd out-
side the asyInptotic critical region. The detailed expres-
sions for pure fluids have been worked out by Ley-K00,
Green, and Sengers"' following Wegner's expansion. '

The extended forms for Eqs. (1), {2), and (4), are, respec-
tively,

&p'=(p, /P, )[p(p, T ) p(p„T )], — (3) &t +1DI(Ipp. )/p. l'"+ . ].
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The correction amplitudes 8(, Bp, I )+, 1 2+, and D) are
system-dependent quantities. The first correction ex-

ponent 6 has been calculated to be 0.493+0.007 by RG
methods. " The HTS values for b, are found in two recent
calculations to be 0.49+0.08 (Ref. 6) and 0.54+0.05.
The value of the second correction exponent is less cer-
tain, but has been estimated to be 0.9.' We make the as-

surnption that the second correction exponent is equal to
2g 12

The experimental evidence for the existence of such
correction terms first surfaced in 1969. If a simple power
law was assumed, the order-parameter exponent value in
Xe was found to depend upon the temperature range of
data being analyzed. ' This behavior was confirmed in

SF6 in 1972,' and in other experiments subsequently. '

The need for a correction-to-scaling term was also found
in a study of superfluid densities of He under pressure. '

Consistency with the correction-to-scaling terms is usu-

ally demonstrated by fixing the value of b, =0.5 and the
leading exponents at their RG values. This way of
analyzing experimental data yields a better fit (or as good
a fit) than analysis in terms of a simple power law with
effective exponents.

Direct experimental determination of the correction ex-
ponent 5 requires extremely precise density measurements
on the coexistence curve. If 8& of Eq. (5) is on the order
of unity then the correction term 8&

~

t
~

makes a contri-
bution of only about 3%%uo to the order parameter at a re-
duced temperature of t= 1&&10 . Ley-Koo and Green '

reanalyzed the previously obtained data on SF6 (Ref. 22)
and found 4 to be -0.52. The uncertainty in 6 was
found to be dependent on the procedures adopted, and
varies between 0.04 and 0.20. Beysens and Bourgou
found b.=0.52+0.03 in their binary-fluid experiments.
There is, however, some concern with their procedure of
data reduction. ' Our results, which are discussed
below, offer strong evidence that 6 is in fact near 0.5.

Scaling not only predicts relations between the critical
exponents, but also predicts that specific (system-
dependent) amplitudes should maintain universal ampli-
tude ratios. The three amplitude ratios that we mea-
sure are I 0+D08 ', I 0+/I'0, and 8&/I &+. These predic-
tions have been examined in a number of papers' '

by combining results from different experiments. These
"experimental" values of the ratios are not reliable since it
is exceedingly difficult if not impossible to detect and
eliminate inconsistencies in the experimental conditions
and in the procedures adopted for data analysis in the dif-
ferent experiments. The amplitudes, for example, are
very sensitive to the choice of T, . In order to test these
ratios properly, the appropriate amplitudes should be
determined consistently and independently in a single ex-
periment. Amplitude ratios obtained from a data analysis
that assumes specific parametric models of equation of
state are also not suitable, since in these models the ampli-
tude ratios are either built in or implied.

' We know
of very few experiments where these amplitude ratios were
determined with the above-mentioned bias-free pro-
cedures. For pure fluids, the ratio 10 /10 was measured
by Weber on O2 and Wallace and Meyer on He. The
only determination of the correction amplitude ratio to

date is by Pittman, Doiron, and Meyer' on He. The
values found by these workers shall be compared with our
results and with theoretical predictions in Sec. IV. We
know of no determination of the ratio I 0+D080 '. A
careful experimental examination of these commonly be-
lieved universal ratios is clearly needed.

In Pittman's experiment, the order parameter and the
isothermal compressibility are measured simultaneously
with three parallel plates forming two capacitors.
Weber used a stack of five capacitors spanning a total
height of over 10 cm in his sample cell. The
gravitational-rounding effect is a severe constraint in
Weber's experiment. In this experiment we improve upon
the parallel-capacitance-plate technique discussed above.
Our sample cell has five plates stacked together, forming
four parallel-plate capacitors (Fig. 1). This allows us to
measure the density at four different values of the chemi-
cal potential as a function of temperature. Below T, the
lower two capacitor gaps measure the liquid density and
the upper two measure the vapor density. Above T, the
density difference between any two capacitor gaps is a
measure of the isothermal compressibility [Eq. (6)]. Our
coexistence-curve data are sufficiently precise to allow
direct determination of not only the value of P, but also
the first correction to scaling exponent b. of Eq. (5). Since
there are four capacitors, we can measure the density
twice in the liquid and twice in the vapor at different
values of the chemical potential, and determine the two-

phase compressibility [Eq. (6) with negative superscripts].
On the critical isotherm we determine the chemical poten-
tial versus density [Eq. (7)]. This experiment yields a total
of four independent leading amplitudes (80, I 0+, D0, and
I 0 ) and two correction amplitudes (B~ and I

&
). Com-

bining the appropriate amplitudes, we obtain values for all
three universal amplitude ratios mentioned above. The to-
tal height of the five parallel plates is kept under 1.2 cm
to reduce the gravitational-rounding effects.

The design of the sample cell gives important informa-
tion (which is lacking in most earlier experiments) about
gravitational rounding and temperature gradients. The
former must be properly considered in the analysis, while
the latter must be eliminated. We report in this paper an
exhaustive study on nitrogen and neon. Data acquisition
continued, without warming the cryostat up to room tem-
perature, for 15 months —more than 2300 data points
were collected. The majority of the information is on the

N2 system because we initially gathered data with inten-
tionally imposed temperature gradients to thoroughly
understand their effect on our measurements. In addition
to N2 and Ne, we have also made equation-of-state rnea-
surements of HD near its critical point. We found the
time required to establish hydrostatic equilibrium in HD
is about a factor of 4 longer than the other two fluids.
Near T„up to 8 h per data point are needed. Since re-
transfer of He is required every S d, and each transfer
tends to disrupt the hydrostatic equilibrium of the sample,
we gathered far less data points for HD than for Nz and
Ne. Whereas the results we found for such quantities as

P, y, 80, and I 0 for HD are equally reliable as the ones
reported here for Nq and Ne, quantities such as 5, I 0,
and correction amplitudes that require more data points,
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in a separate paper.
The remainder of this paper consists of three main sec-

tions. In Sec. II we discuss the cryostat, the sample cell,
the low-temperature needle valve, and the measurement of
temperature and density with the thermometer and capa-
citance bridges. In Sec. III we begin with a discussion on
the special considerations and precautions taken with re-
gard to the effect of gravitational rounding, temperature
gradient, and the correct choice of T, . Results in dif-
ferent temperature ranges and along different thermo-
dynamic paths are then presented systematically. In Sec.
IV concluding remarks and comparison between our
values for the leading and correction exponents and the
amplitude ratios with the theoretically predicted values
are made.

II. EXPERIMENTAL APPARATUS
AND PROCEDURES

The details of the cryostat, capacitance bridge (for den-
sity determination), resistance bridge (for temperature
regulation and measurement), needle valve used to seal the
sample cell, and the "five-plate" sample cell used in this
experiment, are described below. All of the equipment,
except the five-plate sample cell, has already been
described in previous publications. ' The sample cell
used in those earlier experiments to search for an anomaly
in the dielectric constant near the critical point is used as
a reference capacitor in this experiment.

A. Cryostat

FIG. 1. Top half of the sample-cell body and the five (de-

tached) parallel capacitor plates. Each plate has an active center
set in a annular, electrically grounded guard ring. The
stainless-steel screens for the three inner plates, shown as cross-
hatched lines, are used to speed up hydrostatic equilibrium.
When assembled, the total height of the five plates is 1.2 cm and
outer diameter of each guard ring is about 3 cm. The plates are
separated by thin washers which are 0.0076 cm thick. Other de-
tails are given in the text.

contain uncertainties that are almost a factor of 2 larger
than those found for N2 and Ne. Since the results for HD
do not add materially to our major conclusions, they are
not presented here. In order to keep this paper coherent
in theme and reasonable in length, our results on the
coexistence-curve diameter of N2 and Ne will be presented

The cryostat is suspended from a vibrationally isolated
top plate. It fits inside a double-jacket Dewar. For the
Ne experiment the inner volume of the Dewar is filled
with liquid helium, and the outer with liquid nitrogen.
For the Nz experiment both volumes are filled with liquid
nitrogen. Retransfer of liquid helium is required every 5

d. The liquid-nitrogen bath lasts 14 d.
The outermost heat shield is suspended from the top

plate by stainless-steel tubing and is surrounded by the
cryogenic fluid. The outermost heat shield, referred to as
the outer vacuum can (OVC), allows evacuation of the en-
tire region around the sample cell and reference cell.
Suspended inside the OVC is a second shield or jacket
(J~). Its temperature is intermediate between that of the
OVC (at 4.2 or 77 K) and the jacket J2 that is closest to
the cells. The temperature of J2 (Tq ) is controlled by a

2

carbon-resistor thermometer mounted on J2 and is part of
the servoheater circuit used for its temperature control. A
three-lead measurement scheme eliminates lead resistance.
All electrical wiring connecting the cells to the equipment
at room temperature passes through the top plate, inside
stainless-steel tubing, through the top of the OVC,
through J&, and through J2 to the sample cell and refer-
ence cell. The wires are thermally anchored at each shield
to control and reduce the amount of heat that reaches the
cells through the wires.
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B. Sample cell and needle valve

In our cryostat the sample cell and the reference cell
(lower) are attached one on top of the other. Both cells
are made entirely of oxygen-free high-conductivity copper
(OFHC). The five-plate sample cell is a stack of five
parallel plates forming four capacitors (Fig. 1). It is actu-
ally two halves sealed together with an indium O-ring.
Suspended from the top half are the five plates. Each
plate has an active center electrode set in a guard ring.
The guard ring is held to the active plate and electrically
isolated by epoxy. Plate 1 is attached to the top half of
the cell by three brass (2-56 type) screws. On each screw,
identical copper washers leave a 0.0076-cm gap between

plate 1 and the top of the cell. Plate 2 is independently
suspended from plate 1 in the same way with three screws
and washers as spacers. When the top half with all five

plates in place is sealed together with the bottom half
there is a 0.0076-cm gap between plate 1 and the top half,
between each plate, and between plate 5 and the lower half
of the cell. Therefore, when filled to the critical density,
the position of the meniscus should be close to the
geometric center of the cell.

The thicknesses of plates 1—5 are 0.257, 0.241, 0.165,
0.231, and 0.259 cm, respectively. The "thinness" of these

plates and the gaps between these plates is chosen to mini-

mize gravitational-rounding effects. The diameter of the
electrode of plate 3 is 1.52 cm. The diameters of the elec-
trodes of plates 2 and 4 are 1.65 cm. The diameters of the
electrodes of plates 1 and 5 are 1.78 cm. This design min-

imizes the effect of stray electric field, since in our capaci-
tance measurements the smaller of the two plates forming
a capacitor is always close to zero potential and the guard
rings are grounded.

The outer diameter of the annular guard ring around

plate 3 is smaller (2.90 cm) than that of the guard rings
around the other four plates (3.15 cm). This way the ma-

jority of volume available to the fluid is in the center of
the cell, minimizing the effect of any movement of the
meniscus below T, .

To decrease the time required to establish hydrostatic
equilibrium, plates 2—4 have many holes drilled through
the active part. A stainless-steel screen (0.013 cm thick,
perforated with 0.013-cm-diam holes) is soldered onto
both sides of the plates. The screen purchased from
Buckbee-Mears Company of St. Paul, Minnesota has a
transparency of 28%. This configuration allows fluid to
move through the plates instead of around them. The ef-
fective gap between the plates, because of these holes, are
expected to be considerably wider than the nominal
0.0076-cm value. The total volume available to the fluid
in the five-plate cell is 2.5 cm

The fluid is sealed in the sample cell with a needle
valve that is actuated externally. It is connected to the
cell by 8.5 cm of stainless-steel capillary tubing (0.041 cm
o.d. and 0.020 cm i.d.). The volume of this connecting
capillary is further reduced by our stuffing it with a
0.013-cm-diam Evan-Ohm wire. The total volume of the
needle valve and capillary is less than 0.1% of the cell
volume. The temperature of the needle valve is regulated
above T, at t =-+1&10 using a servoheater system

identical to the one controlling the temperature of J2.
This keeps a small but constant amount of fluid in the
valve and connecting capillary.

The sample cell is filled by passing the nitrogen gas
(99.999% pure through a zeolite trap submerged in a
liquid-acetone bath at —30'C. For Ne (99.998% pure)
the zeolite trap is submerged in liquid nitrOge.

D. Capacitance bridge and density determination

The dielectric constant is measured with a capacitance
bridge setup similar to that used by Chan et al. This
bridge measures a ratio

@=Csample( Csample +Crer) (8)

In our experiment, at each temperature at least four dif-
ferent ratios are measured by forming different combina-
tions of the capacitors in the five-plate cell and the refer-
ence cell. Our labeling convention is

4'(12, ref) =Clz(Cl2+C„r)

where C12 is the capacitor formed by plates 1 and 2 of the
five-plate cell, and C„~ is the reference capacitor. Sinu-
larly, 4'(12,45) and 4'(23,34) measure ratios C12(C,1
+C&5) ' and C23(C23+C14) ', respectively. The bridge
is operated at 12 V rms and at a frequency of 1041 Hz.
Changing the frequency and excitation voltage of the
bridge causes no measurable change in our density deter-
mination. All electrical leads are coaxial to mimsmize

noise pickup. For all K's far from the critical point the
uncertainty in any ratio is approximately 5)&10 . Near

C. Resistance bridges and temperature determination

A platinum-resistance thermometer (Rp h h) is sol-
dered onto the sample cell. A second platinum thermom-
eter (Rp, l, ) is soldered onto the reference cell. Also, a
standard resistor (R«h, sh) is noninductively wound onto
the sample cell and another (R„l,~) is wound onto the
reference cell. Our standard resistors are made of Evan-
Ohm wire that has a negligible temperature coefficient of
resistivity. In two separate bridge circuits we measure
two 1CS1StallCC 1atloS defined by Ah&sh =R pl h&sh/R st h&sh

and A'1, ——Rp, l,~/R„l,~ in the Ne experiment. (For the

N2 experiment the ratio measured is R,,/Rp, .) The mea-

surement of each A is a "4" lead ac measurement that
eliminates lead resistance. The Al,„circuit is used to
control the temperature via a feedback loop. The Ah;sh
circuit is used to measure the temperature.

The thermometer on the reference (lower) cell is cali-
brated from 90 to 505 K by the manufacturer (Minco
Corpol'Rtloll, M11111capolls Mlllll. ). Tllc callbratlon ls
traceable to the National Bureau of Standards. Below 90
K we use the International Practical Temperature Scale of
1968 (IPTS-68). We estimate the absolute accuracy of
our temperature scale to be +10 mK above 90 K and +25
mK below 90 K. In the course of the experiment the sta-

bility in Ah;s„ is better than I X 10 for many hours,
which translates to temperature stability of +30 pK cor-
responding to +2& 10 and +6&10 in reduced tem-

perature for N2 and Ne, respectively.
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the critical point, large density fluctuations make the un-

certainty as large as 5Q 10
Dielectric constant values at the four different heights

in our experiment are obtained from the capacitance ra-
tios. The dielectric constant is converted to reduced den-

sity by using the Clauslus-Mossottl equation

(10)

In general, there are regular corrections to this relation-
ship, however, the corrections for Nz are extremely
small (less than 0.05%) over the entire range of this ex-
periment. The law of corresponding states implies com-
parable corrections for Ne. Since we are interested pri-
marily in density differences, small regular corrections to
the Clausius-Mossotti equation are of no consequence.
The values of the dielectric constant at the critical points
of N2 and Ne that we used are e, =1.155 (Ref. 35) and
1.0725. The dielectric constant between plates 1 and 2,
e&, is obtained from Ãz(21, ref)

Ã~(12, ref) ' —1
E&= (11)

Ãs(12, ref) ' —1

where X& is the capacitance ratio with the sample and
KE is the ratio with the gap empty. An identical relation
yields c2 from Ks(23,ref). C(12,45) and C(23,34) mea-
sure the ratio EJ /e4 and Ep/'E3 respectively. Typically, e,
and e2 are obtained from Ã(12,ref) and C(23,ref) and are
used to solve for e3 and e4 from C(23,34) and 4'(12,45).
The highest temperature at which data is gathered in any
run is about t=4~~10 . For t~1X10 the Y's are
well represented by linear functions of temperature. Here
Xz is so small that changes in density become unresolv-
able. The linear behavior is due to a combined pressure
and temperature deformation of the plates themselves.
Data in this range (typically 6—10 points) are fitted to a
straight line to obtain initial estimates for the ÃE s.
However, these cannot be exactly correct, because if the
Ks's equal the ÃE's at a particular temperature, then the
density difference would be identically zero, a physically
unreasonable relationship. The actual baselines are
straight lines as close as possible to the initial estimates
and satisfying the following physical requirements: Both
(p4 p])/2p and (p3 p2)/2p, must approach zero
without becoming negative at high temperatures, and the
average density as measured by (p4+p&)/2 and (p3+p2)/2
must be identical at a11 temperatures outside the gravity-
rounded region; the measurements of p4, p3, p2, and p& are
properly scaled to the height differences for t )3 && 10
The combined uncertainties in the KE's translate to an
uncertainty in (p4 —p&)/2p, and (p3 —p2)/2p„. of about
2)&10 . The percent uncertainty diminishes as Ap* in-
creases. At t=5&10 the uncertainty in the ÃE's intro-
duces a 3% uncertainty in (p4 —p~)/2p, . At t= 1 &10
the uncertainty in (p4 —p, )/2p, is approximately 1%. By
t= 1 &C10, the uncertainty in (p4 —p&)/2p„due to the
uncertainty in the KE's, is less than 0.2%. The percent
uncertainty in (p3 —p2)/2p„due to the uncertainty in the
K&'s„ is a factor of 3 larger than the percent uncertainty
in (p4 —p~)/2p, at any temperature above T, because hh

is 3 times smaller. For 1&(10 ~ t ~ —1&&10, the pri-
mary source of uncertainty in 4p* is the fluctuations in
the density near the critical point. the uncertainty is
about 0.2% at

~

t
~

=1&&10 and reaches 1% for

~

t
~

& 1&&10 . Farther below r„where the fluctuations
in density become small and the density difference be-
comes larger, the uncertainty in (p4 —p & ) /2p, and

(p3 —p2)/2p, becomes approximately 0.02%. Based upon
the above-mentioned uncertainties, we adopt a criterion
for allowable scatter in the residual to be (1) 0.1% for the
order-parameter analysis, (2) 2% for the cubic model
analysis, and (3) 5% for the one-phase compressibility
analysis.

III. DATA ANALYSIS

For data analysis we adopt the following values for the
cntical constants for N2 (Ref. 35) and Ne. The cntical
pressures in dyn/cm for N2 and Ne, respectively, are
P, =3.398)&10 and 2.72&&10, and the criticaL densities
in g/cm are p, =0.314 and 0.484. The value of g, the
gravitational constant, is assumed to be 981 cm/s .

Three experimental complications exist for pure fluids
near the critical point, which must be cautiously con-
sidered in data analysis. They are (1) gravitational round-
ing, (2) elimination of temperature gradients, and (3)
correct determination of T, . We consider them in order.

A. Gravitational rounding

In the earth's gravitational field there is a contribution
to the chemical potential that is proportional to the height
z above the height zo where p=p, in the Quid. The pL
and pv of Eq. (1) are found strictly at the meniscus
separating the two phases. However, measurements are
typically at a finite height below and above the meniscus,
and are an average over a finite measuring height. As t
approaches zero and Xz- diverges, the measured densities
deviate further from the true coexisting densities. An in-
dependent determination of this gravity effect is necessary
to know which data can be fitted to Eq. (5). Likewise, in
our measurement of Xr+, we assume &p/&p—:&p/g~"
where Ah is the difference in height between the two den-
sity measurements. Very near T, the density gradient
changes so sharply with height that this approximation
fails. ' The effect of gravity cannot be eliminated un-
less the experiment is performed in an extremely-low-
gravity environment. However, with the information ob-
tained from our five-plate sample cell, we are able to
determine over what temperature range our measurements
are significantly affected by gravity. Data which deviate
from a specific thermodynamic path due to the effect of
gravity are said to be in the "gravitationally rounded" re-
gion. Data in the gravitationally rounded region are ex-
cluded from power-law analyses, and are analyzed using
the restricted cubic model equation of state which is dis-
cussed below.

A further gravitational effect is the error in a single
density measurement that results from averaging over a
finite height. This is of secondary importance in our ex-
periment. It causes a 1% error for

~

t
~

& IX10 and
much smaller error farther from T, . Details of this type
of error have been discussed elsewhere.
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B. Suppression of thermal gradients

A second subtle difficulty in our experiment is the ef-

fect of a temperature gradient. If present along the cell, a

temperature gradient contributes to the chemical potential
an amount proportional to (BP/BT)(BT/Bz). For Nz,
(BP/BT )p, =1.715)& 10 dyn/cm /K. Therefore, a tem-

perature gradient of 0.2 mK/cm from top to bottom will

make a contribution to the chemical potential comparable
to that from gravity. For Ne the number is approximate-

ly 0.15 mK/cm. The presence of gradients can severely

complicate the analysis, rendering Eq. (6) incomplete and

destroying the simple connection between the parametric
model parameters and the power-law amplitudes. In-

dependent information on temperature gradients is essen-

tial to validate high-precision measurements.
In the assembly of the cryostat, we had this problem in

mind. Heat 1eaks from the sample cell and reference cell
to Jz are carefully installed to minimize any temperature
gradients along the cells. The top of the five-plate sample
cell is suspended from Jz by the three stainless-steel thin-

wall tubes 0.318 cm in diameter with a 0.025-cm wall

thickness. The bottom of the lower cell and Jz are con-

nected by three (identical but flattened) stainless-steel

tubes. This configuration provides almost identical
thermal links from Jz to the top and to'the bottom of the
two stacked cells. The electrical leads and fill capillaries
for each cell have nearly negligible conductivity compared
to the tubing. In order to compensate for any uneven heat
leak to J2, the heating configuration on the cells has two
heater wires in parallel; one is wrapped around the top of
the top cell and the other is wrapped around the bottom
of the lower cell. Externally, a resistance decade box is at-

tached in series with one of the heater wires. Use of this
external resistance enables us to adjust the proportion of
heat to the top and bottom cells, giving us total control
over temperature gradients.

The greater the total amount of heat that is applied
directly to the sample cell and reference cell, the greater
the possibility of a temperature gradient along the cells.
The amount of heat needed directly on the cells can be de-

creased by increasing the temperature of J2. However, in-

creasing Tq, reduces the possible range of data acquisition

because the lowest possible reduced temperature of the
sRI11plc cell Is tllc Icduccd temperature of Jz. Tllc amount
of heat required to maintain the temperature of the cells
are 5 mW for Nz and 4 mW for Ne. Given the thermal
conductivity of QFHC (which has its maximum value
around 30 K), the total amount of heat going to the sam-

ple ceH, and the dimensions of the cells, we calculate the
maximum possible temperature gradient near T= T, to be
15 pK/cm for Nz and 3 pK/cm for Ne. The calculation
assumes a configuration of heating that is mismatched
from thc thermal 1111k to Jz by 5%. Tllc 5%%uo value Is

based upon tests we have performed by systematically ad-

justing the heat distribution on the cells and the tempera-
ture of J2. It follows that our density profile at T, is dif-
ferent from the density profile duc to gravity alone by no
more than 7% for N& and 2% for Ne. The uncertainty in
our determination of Do (discussed below) is larger than
this, and thus the uncertainty in the temperature gradient

is not the limiting factor in our determination of Do.
There is additional evidence that we have no significant

temperature gradient in our measurements. First, we find
excellent agreement between the results as determined by
power-law analysis and by cubic model analysis (discussed
below). Second, the values of I o+, as determined by densi-

ty measurements in different capacitor gaps, approach
each other as the heating configuration approaches the
one that we determined to be optimum.

C. Determination of the critical temperature

Standard procedure for analyzing data in the critical re-

gion is to let the amplitudes, exponents, and T, be free pa-
rameters in a least-squares-fitting routine. The results for
the exponents and amplitudes are particularly sensitive to
the choice of T, . Experience has shown us that it is pos-
sible to obtain good-quality fits to experimental data with
incorrect values for the free parameters. This can happen
by including data that is not on the appropriate thermo-
dynamic path (e.g., in the gravity-rounded region) or by
not including correction-to-scaling terms for data outside
the asymptotic critical region. With our five-plate sample
cell we know when our order-parameter and compressibil-
ity measurements deviate from their appropriate thermo-
dynarnic paths, so T, as a free parameter is not shifted by
erroneously including data in the gravity-rounded region.
Furthermore, most experiments collect data on only one
thermodynamic path. Vhth our capacitance technique,
we make measurements on both the coexistence curve and
the critical isochore. To restrict the values of T, as a free
parameter, we should, ideally, analyze data above and
below T, simultaneously. However, this is technically
difficult because the precision of our density-difference
determinations below and above T, are different by as
much as 2 orders of magnitude. We allow T, to be a free

parameter for analysis of the order parameter on the coex-
istence curve fEq. (5)], for analysis of the compressibility
above T, [Eq. (6)], Rnd for analysis near T, using the re-

stricted cubic model. All of this analysis, to be discussed
below, is summarized in Tables I—II. For the three types
of analysis we find that T, as a free parameter is the same
to within 0.2 mK for N2 and 0.3 mK for Ne. The statisti-
cal uncertainty in T, for each type of analysis is consider-

ably (at least by a factor of 3) smaller than 0.2 mK.

B. Order parameter

Figurc 2 shows plots of Ap* versus reduced tempera-
ture for Ne. Figure 3 shows the region near T, in more
detail for N2. The squares are p4 and p],' the circles are p3
and p2. This plot tells us a orion which data must be ex-
cluded from a fit to Eq. (5). Where the two sets deviate
froID each other 1nd1catcs when each mcasurcHlcnt dcv1"

ates from the true coexistence curve. For N2 and Nc, at a
reduced temperature below T, of

~

I
~

=—1.5X10, we
observe that p4 and p3 dlffcr by about 0 1% Thcreforcy R

powcl'-1RW RIlalysls of (p4 —pi)/2p~, whIch Is RCCUlatc to
0.1%, should be limited to data in the region

~

t
~
) 1.5X 10 . Smce p~ and p4 are further from the

meniscus and XT scales as (hh)r, the rounded region is

larger by a factor of about 4 in reduced temperature for
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FIG. 2. Coexistence curve of Ne in reduced units. There is a
large number of data points near T=T, ; for clarity they are
represented by dashed lines.
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them than for p2 and p3. Therefore, our order-parameter
analysis of (p4 —pI)/2p, stops at

~

t
~

=1.5&&10, for
both N2 and Ne, and the analysis of (p& —pz)/2p, stops at

~

t
~

=—4&& 10 . A plot of Ap*/
~

t
~

t' vs t (Fig. 4) is a sen-

sitive way to examine the power-law behavior; this plot
also shows the need for corrections to the simple power
law for large

~

t
~

and the effect of gravity for small t
~

.
The dashed line shows the continuation of our fit into the
gravity-rounded region. Asymptotically, it approaches
the value of Bo. The squares are (p4 —pI)/2p„' the circles
are (p3 —p2)/2p, . If a simple power law were sufficient,

NITROGEN
T = lP.6.2I43

I l I l l

Q +4
REDUCED TEMPERATURE (IO )

FIG. 3. Reduced density of N2 vs reduced temperature inside

~

t
~

=8&&10 ' at four heights as determined by our five paral-
lel stacked capacitor plates.

FIG. 4. Plot of hp*/I t
~

' for Ne. The squares represent
data from the two outer capacitor gaps and the circles represent
data from the two inner capacitor gaps. Deviation from a hor-
izontal line at large

~

t
~

indicates the need for correction-to-
scaling terms. The dashed line comes from a power-law
analysis with all parameters except 6 floating (lines 13 and 18 of
Table I). Gravitational rounding becomes important for the
outer data set inside

I
t

~

= 1 X 10 3 and the inner data set inside

I
t

i

=4x10-'.

such a plot would be a horizontal line outside the gravity-
rounded region. For

~

t
~

& S.OX 10 the data are not on
a horizontal line, indicating the need for correction terms.
The upward curvature in the region

~

t
~

& 5 && 10 " is due
to gravity effects; the measurement of Ap* is no longer
the order parameter since, at T near T„hp* is larger
than pI —p~ at the meniscus. Figure 4 also shows, as ex-
pected, that the gravitational effect appears further from
T, for the order parameter as measured by the outermost
capacitor gaps. Inside the appropriate temperature range
(P&

—PI)/2P, and (Ps —Pz)/2P, are fit to Eq. (5) seParately
A nonlinear least-squares-fitting routine adopted from Be-
vington is used. The results of the analysis are summa-
rized in Table I along with the range of analysis and the
number of data points used. Four data sets as measured
by the two outer capacitor gaps and the two inner capaci-
tor gaps of the two fluids are analyzed in six different
ways: (1) all five parameters in Eq. (5) (T„p, Bo, BI,
and B2) are left free so as to minimize the X, (2) p is
fixed at 0.325, (3) T, is held fixed at the value determined
by cubic model analysis (discussed below), (4) T, and P
are held fixed, (5) assuming only one correction term
(B2 ——0) with T, fixed at the "optimum" value, and (6)
B2——0, but T, free (for N2 only). The correction ex-
ponent is fixed at 6=0.5 for a11 these fits. Fixed parame-
ters are enclosed in parentheses in Table I.
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&
I
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I
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Flxcd pRIRIQctcrs Mc shown 1n pa.rcnthcscs.

126.2142
126.2137

(126.2143)
(126.2143)
(126.2143)
(126.2018)

—2~10 2~t ~ —1.5~10
0.3253 1.478
(0.3250) 1.472
0.3285 1.516
(0.3250) 1.482
0.3261 1.512
0.3236 1.510

1.06
1.08
0.90
0.96
0.63
0.57

1.55
2.78
1.45

20,21
200

50

31 points
—2.08
—2.16

1.70
—1.58

(0)
(0)

N2

7
8
9

10
11
12

(p3 —p2)/2p,
126.2141
126.2136

(126.2143)
(126.2143)
(126.2143)
126.2113

0.3262
(0.3250)
0.3262
(0.3250)
0.3254
0.3252

—6X10 ~t ~ —4&10
1.483
1.475
1.482
1.473
1.486
1.496

1.04
1.00
1.07
1.00
0.80
0.70

33 points
—2.31
—1.79
—2.50
—1.51

(0)
(0)

1.00
1.75
0.88
6.67
6.70
1.0

Ne

13
14
15
16
17

44.4786
44.4781

(44.4789)
(44.4789)
(44.4789)

—4~10-'~ t ~ —1.5g10-'
0.3272 1.436
(0.3250) 1.420
0.3276 1.437

(0.3250) 1.419
0.3270 1.452

0.99
1.00
1.01
1.00
0.69

21 points
—1.58 1.00
—1.51 1.10
—1.66 1.00
—1.48 3.01

(0) 55

44.4788
44.4784
(44.4789)
(44.4789)
(44.4789)

0.3275
(0.3250)
0.3274

(0.3250)
0.3262

—6X10 3~t ~ —4~10 ~

1.432
1.415
1.427
1.411
1.426

1.09
1.01
1.17
1.00
0.90

18 points
—2.16
—1.07
—2.72
—0.4

(0)

1.08
1.83
1.00
9.17
1.1

We shall first comment on the fits that include the
second correction term. For Nz we find the critical
parameters as follows: T, =(126.2143+0.0002) K,
P=0.327+0.002, 80 ——1.479+0.006, 8i ——1.02+0.06, and

8z ———2.0+0.5; for Ne we find T, =(44.4789+0.0003)
K, P=0.327+0.002, 8O ——1.425+0.010, 8i ——1.02+0.07,
and 82 ———1.6+0.6. The value we found for T, by al-

lowing all parameters to be free is in excellent agreement
(within 0.2 mK for N2 and 0.3 mK for Ne) with that
found in a cubic model analysis of data near T, and
power-law analysis of one-phase isotherinal compressibili-
ty. This agreement is reflected in the quoted uncertainties
of the critical temperatures. These uncertainties do not
enclose the T, values with p fixed at 0.325. Indeed, Table
I shows, by the X values, that our data prefer a value for
p that is higher than 0.325, for instance, 0.327. Since the
cubic, model analysis is most sensitive to the choice of T„
the cubic model value is considered to be the canonical
value. The uncertainty in T, is relative in nature in that
the temperature scale, as discussed above, is reliable to
+10 mK for T~90 K and +25 mK for T «90 K. It
should be noted that consistent values for p as well as 80
and 8i are found by using different methods of analysis
on the "outcr" (p4 —pz)/2p, and "inner" (p3 —p2)/2p,
data sets; the uncertainty quoted for p reflects the total
variations, and thc uncertainty quoted for the amplitudes

enclose six of the eight values obtained from our four fits
on the two data sets. The uncertainty quoted here is at
least a factor of 3—4 larger than the statistical uncertain-

ty. The statistical uncertainty does not take into account
the correlations between the free parameters.

.Since the number of data points and the estimated ran-
dom error are different for each data set, the X value

shown in Table I and in subsequent tables should only be
used to estimate the relative "goodness" of the various fits
applied to a single data set. In addition to the X value,
the goodness of a fit can be evaluated by inspection of the
percentage residual, that is the percentage difference be-

tween the fitted and the actual measured value of the fit,
as a function of reduced temperature. Such a plot is
shown in Fig. 5. For the sake of brevity, only the fits, one
each for Nz and Ne, allowing all parameters except 6 free,
are shown. The residual percentages from outer and inner
data sets are combined in these plots. In the entire tem-
perature range 2X 10 &

~

r
~
~ 4X 10, the residuals of

the Nz data lie inside 0.03% and show no noticeable sys-
tematic trend. The Ne residuals, in the range
4&&10 &

~

t
~
&4&&10, also show no systematic trend

and lie inside 0.15%. We do not know exactly why the
scatter in Ne in this region and other regions is worse
than that in N2, it is probably due to the fact the smaller
dielectric constant value of Ne reduces the sensitivity of
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our capacltancc tcchnlquc, and that, wc werc forccd~
the 5-d heliuIn-bath life, to gather Ne data at a quicker
pace. In any case, the residuals shown in Fig. 5 compare
very favorably with all published data near the critical
point. The residual plots for other fits exhibit the expect-
ed correlation with the 7 values.

It should be pointed out that the physical significance
of the amplitudes B2 is not clear. ' ""' However, the
X value for fits that exclude the 82 terms shown in Table
I indicate that such a term is clearly needed for the outer
data sets and less important for thc inner data sets. This
is the case since the temperature range of the outer data
sets are farther from T„naml ey3X 10 &

~

t
~

~ 1.5 X 10 for the outer data sets, versus 6g 10
&

~

t
~

& 4 X 10 for the inner. The second correction
term is expected to be more important at large

~

t ~.
Below a certain minimum temperature, we find that p2 be-
coIIlcs suddenly ncally 1dcnt1cal to p3, 1ndlcat1Ilg that thc
gap bctwccn plates 2 Mld 3 duc to thc cap111ary f1sc ef-
fect ' 6 is wetted by the liquid. Since the liquid-vapor
surface tcns1OIl vMllshcs ncaI thc crlt1cal po1Il t w1th a
power law, this effect is present only for large

~

r
~

. This
prevents us from obtaining useful data on (p3 —p2)/2p, for

~

t
~

&6&&10 . For the outer data sets, the g value we
found by excluding the second correction term is about a
factor of 50—100 larger than that found by excluding the
B2 term. This is the case with either T, fixed at the cubic
model value or with T, left as a free parameter (shown

t ) tiiul
]Q 5 ]Q 2

REOUCED TEMPERATURE

FIG. 5. Percentage residual of the power-law fit of the order
parameter of N2 and Ne to the form Ap
=BO

I
t

I

~(1+&~
I

&
I
'+ B2

I
t

I

") -~11 parameters, ex«p«
(equal to 0.5), are floating in the fit {lines 1, 7, 13, and 18 of
Table I). Squares and circles are data from, respectively, the
outer and inner capacitor gaps.

for N2 only). The percent residual of these fits show large
systematic trends with reduced temperature, at the max-
imum (worst) value, it is about a factor of 10 larger than
those shown in Fig. 5. In spite of these difficulties, the
values found for p and Bo are in reasonable agreement
with those including the Bz term. The value of B, found
here are 30—40% smaller. For the inner data sets, the ex-
clusion of the second correction term does noi cause as
much difficulty: The X value does not increase much.
For N2, if all parameters are left free, the new T, value,
although changed, strays away from 126.2143 K by 3 mK
as compared to 12 mK for the outer data set. The values
we found for P, Bo, and even B, are in reasonable agree-
ment with the analyses with a 82 term. The values of BI
in these fits are, respectively, 20% (for Nq) and 10%
smaller than those in fits including 82.

In a recent interferometric experiment on SF6 studying
the capillary rise between two closely spaced plates, Mold-
over and Gammon found an anomalously thick film
that intrudes between the interferometric plates and the
vapor for T&TC. The thickness was found to be in-
dependent of temperature, but the density changes as the
bulk liquid.

If a similar wetting liquid layer is present in our vapor
capacitance gaps, the thickness is expected to be about,
1000 A, or 0.2% of the 0.0076-cm capacitor gap. A
liquid layer of this magnitude may cause a systematic er-
ror in our vapor-density determination on the order of
0.2%. This possible systematic error does not alter our
results since the uncertainties we found in the leading am-
plitudes Bo are larger. This effect is not present for data
gathered in the one-phase region, including those used for
deducing t]he one-phase compressibility and cubic model
parameters. This effect is insignificant in comparison to
the observed uncertainties for the two-phase compressibil-
ity and critical isotherm data. This effect is important in
determining the behavior of the coexistence-curve diame-
ter."

E. Experimental determination of the correction exponent 6

In the above-mentioned analysis, the correction ex-
ponent was held fixed at 5=0.50. We have repeated the
analysis of the order parameter, using iwo correction
terms with 4 as a free parameter. The high quality of our
data allows us to undertake this type of analysis. The re-
sults are summarized in Table II. The temperature range
of analysis and the number of data points used here are
the same as for the analysis shown in Table I. This table
shows that thc correction cxponcnt 5 1s 0.51+0.03 fol N2
and 0.49+0.05 for Ne. These values are in good agree-
rncnt with the values predicted. by RCx and the high-
temperature-series —expansion method. The amplitudes
Bo and B&, as well as T, and p, are not affected by allow-
ing 6 to be a free parameter. These results also confirm
that the leading exponent p is slightly larger than the
predicted value of 0.325. When P is held fixed at 0.325 in
the analysis, g increases noticeably as it did when 6 is
fixed at 0.5.
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TABLE II. Analysis of the order-parameter data to the form b,p* =BD
~

t
~

~(1

+B~
~
t

~
+ Bz

~

t
~

). The exponent 6 is left floating. Fixed parameters are shown in parentheses.

Bo Bi

N2

1

2
3

126.2143
(126.2143)
(126.2143)

0.3262
0.3259
(0.3250)

—2X10-'& t & —1.5X10-'
1.485 1.08
1.488 1.18
1.480 1.00

—2.32
—2.93
—1.78

1.00
1.90

18.3

31 points

0.500
0.529
0.502

N2

4
5

6

126.2143
(126.2143)
(126.2143)

0.3274
0.3268
(0.3250)

—6&&10 &t & —4~10
1.497 0.91
1.489 1.01
1.480 1.00

—1.71
—2.28
—1.16

1.00
1.00

18.8

33 points

0.486
0.496
0.524

Ne

7
8
9

(p4 p& ) /2p

44.4790
(44.4789)
(44.4789)

0.3258
0.3256
(0.3250)

—4)&10 &t & —1.5y10
1.407 0.93
1.418 0.99
1.420 1.00

—1.19
—1.44
—1.49

21 points

0.453 1.20
0.489 2.95
0.503 2.90

Ne
10
11
12

(p3 p2) /2p
44.4788
(44.4789)
(44.4789)

0.3255
0.3257
(0.3250)

—6y10 &t & —4)&10
1.416 0.96
1.415 0.95
1.420 1.00

0.02
—0.04

2.88

18 points
0.497 1.10
0.491 1.20
0.548 4.45

%'e have also analyzed the N2 and Ne order-parameter
data according to Eq. (5) with T, and p fixed at the "op-
timum" values (T, =126.2143 K for Nz and 44.4789 K
for Ne and p=0.327), but with the values of 6 systemati-
cally changed from 0.40 to 0.60. The X value, as a func-
tion of the imposed value of b, for one set of Nz data, is
shown in Fig. 6. A sharp minimum of X is found at
5=0.52. This is in agreement with the analysis shown
above with b, as a free parameter. Similar sharp minima
of X are seen for the other sets of data. The minimum g
occurs at 6=0.48 for Ne. Our results on Nz and Ne
presented here are probably the strongest evidence to date
that b, is in fact equal to a value near 0.5.

cance is completely masked in the uncertainty in the den-
sity measurement. At t =3&(10, the percentage scatter
in the density difference is about 2%%uo. If the amplitude of
the second correction term is unity, it contributes only

l)i I I I I I I I

25—

F. One-phase isothermal compressibility

X

20—

Figure 7 is a log-log plot of gr+, the one-phase iso-
thermal compressibility versus reduced temperature for
N2. The squares represent the compressibility as mea-
sured by p4 —p&, the circles are for p3 —pz. The reduced
temperature at which the two sets begin to deviate from
each other gives a rough idea at what temperature the ap-
proximation Bp/Bp -=Ap/b, p is faulty, and therefore
which data points should be excluded from a fit to Eq. (6).
A plot of Xr+/t r vs t, shown with the same temperature
scale in Fig. 7, clearly indicates the need for a correction
term.

The single-phase analysis of Xz. simultaneously fits
both density differences p4 —

p& and p3 —pz to Eq. (6).
This is possible because they are both scaled by the ap-
propriate height factor. A second correction term of the
form I z+t is not included in any fit because its signifi-

l5—

IO—

0—
l l I l l l l l I

0.42 0.46 0.50 0.54 0.58 0.62

FIG. 6. N2 data from the outer capacitor gaps are fitted to
the form hp~=BO

~

t
(

(1+B~
~

t
( + B2 (

t
~

) with T,
fixed at 126.2143, and with Bo, B&, and B2 floating. The g of
the fit as a function of the imposed b is shown in this figure.



M. W. PESTAK AND M. H. %. CHAN 30

er Q.Q52—

050
+
~ o.ooe—

I I I l llll) I I I I lllli 1 I Igllll
o

00

I I I I llll
I I I III)

(O+Q atbQ

I I I I II II
i ~ I&II

I I I I l I ll
I I I III8

NITROGEN

i iiiiiil « ii«ill « i «&n
~O-4 tO-'

REDUCEO TEMPERATURE

0.3% at this temperature. Since the analysis extends to a
range of about 3&(10 )t) 7&&10 for N2 and Ne, the
second correction-to-scaling term is not justified. For Nz
we find y=1.233+0.01; for Ne, @=1.250+0.015. Table
III also shows the results with y fixed at 1.240 as predict-
ed by RG theory. The values of T, as free parameters are
in excellent agreement (within 0.2 mK) with the values

FIG. 7. Lower panel: The one-phase (T ~ T, ) dimensionless
isothermal compressibility PT as a function of reduced tempera-
ture as determined by the outer (squares) and inner (circles)
capacitor gaps. The circles coincide with the squares outside
t=1X10; they are not shown for the sake of clarity. Upper
panel: +T+/t ' as a function of reduced temperature; the up-
ward trend as t is increased indicates the need for correction-to-
scaling term. The dashed line results from a power-law fit to
the form g~ ——I o+t ~(1+I I+t ), with all parameters except 6
(equal to 0.5) floating (line 1 of Table III).

obtained from power-law analysis of the order parameter.
For Nz we find I o+ ——0.048+0.001 and I &+ ——1.07

+0.06. For Ne I o ——0.053+0.003 and I &+ ——1.15+0.15.
The uncertainties quoted enclosed the fitted values by four
different methods of analysis.

In Fig. 8 the percentage residual of the fit allowing all
parameters except 5 equal to (O.S) to be free is shown for
N2. As discussed above, due to the much smaller density
difference, the percentage residual is much larger than
that in the two-phase region. Inside t=l&10, sys-
tematic deviations in residuals begin to show up between
the data from the inner and the outer capacitor gaps.
This is probably due to gravitational-rounding effects.
When the data inside t= 1 X 10 (eight points) are ex-
cluded from the analysis, no noticeable change in the fit-
ted parameters are found. Plots for Ne similar to Figs. 7
and 8 are not shown; they are indeed similar to the N2
plots. The percentage residuals for Ne is again slightly
larger than the N2 data.

The one-phase —compressibility data also contains
strong evidence that there is no significant temperature
gradient. We have repeated the experiment eight times on
nitrogen, each time adjusting the distribution of heat from
the top and bottom heater to intentionally impose a tem-
perature gradient. We spanned a range as large as possi-
ble until the temperature gradient set up turbulence, mak-
ing it impossible to measure XT+. Near the center of the
sample cell the fluid is closer to the critical density and,
therefore, is more strongly affected by temperature gra-
dients. When the amount of heat input from the top
heater is within 5% of the amount from the bottom
heater, we found an identical (to within 1%) value of Xz+

according to the two inner capacitor gaps (p3 —pq), and
two outer capacitor gaps (p4 —p&) in the range
1)&10 )t) 2&10 . When heat is redistributed within
this 5% limit, we also found no measurable effect on the
density-versus-height profile even inside the gravity-
rounded region. Outside the 5% limit, noticeable effects
on XT+ and density profile near T, are found. Our esti-
mate of the maximum temperature gradient along the cell
is based on these studies. The measurements reported
here used the optimum distribution of heat from top and
bottom.

TABLE III. Analysis of the one-phase dimensionless isothermal compressibility data to the form
+T+ ——I ot (1+I lt ). Fixed parameters are shown in parentheses.

N2

1

2
3
4

126.2143
126.2141

(126.2143)
(126.2143)

7X10 &t&1X10
1.233

(1.240)
1.233

(1.240)

0.049
0.047
0.049
0.047

1.10
1.06
1.01
1.12

45 points

1.00
1.19
1.01
1.23

Ne

5
6
7
8

44.4787
44.4788

(44.4789)
(44.4789)

7X10 '&t &3X10
1.251

(1.240)
1.250

(1.240)

0.051
0.056
0.051
0.055

1.30
1.02
1.10
1.07

30 points

1.01
1.05
1.36
1.15
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FIG. 8. Percentage residual of the power-law fit of the form

X,+=rp t ~(1+I, t ), with all parameters except 6 (equal to

0.5) floating. Squares and circles represent, respectively, data

from the outer and inner capacitor gaps.

G. Cubic model analysis

Measurements which deviate significantly from their
specific path due to gravity can be analyzed using a
parametric model. " The restricted cubic model equa-
tion of state ' transforms the temperature and density
to parametric variables r and 8 according to the following
prescription:

can be deduced from Figs. 2 and 3 for N2 and their coun-

terparts for Ne. In these figures, we see that the density
as determined by the four capacitor gaps approach the
average value very symmetrically as the temperature is
raised from below T, to above T, . Indeed, the average
density of the sample is very close to p„within 0.15% for
N2 and 0.4% for Ne.

The connection between restricted cubic model parame-
ters and the amplitudes of the power laws is I 0+=0/a
and 80 k(1——+c)/(b 1)~—. Any temperature gradient
causes its most noticeable effect near T, and should show

up as a poor match between restricted cubic model param-
eters and power-law amplitudes. For N2 we find that
a =20.4+0.8 and k =0.96+0.01, which yields
8 o=1.538+0.016 and I'0+ ——0.047+0.003 (to be com-

pared with Bo——1.479+0.006 and I o
——0.048+0.001

from power-law analysis). For Ne, a = 18.2+0.5 and

k =0.945+0.008, which yields Bo——1.513+0.012 and
I 0+ ——0.052+0.002 (compared to 80 ——1.425+0.010 and

I 0+ ——0.052+0.003). The critical temperatures for Nz and

Ne are found in data analyses to be 126.2143 and 44.4789
K, in complete agreement with power-law analyses. The
excellent consistency we found between the cubic model

analysis and power-law analysis for T„BO, and I"o+ also
indicates that there must not be any significant tempera-
ture gradient in our sample. This is the case because we

do not determine a directly but rather the ratio of a and

g, the gravitational constant [see Eq. (14)]. Since the
values we found for I 0+ and hence a are consistent with
power-law analyses, there is no significant temperature
gradient to alter the "effective" gravitational constant.

t=r(1 b8 —), (12)

hp*=r ~k8(1+c8 ),
bp*=r +a8(1 —8'),

(13)

(14)

where by*=(gp, /P, )(M) and M=z —zo. Here, z is the

height in cm and zo is the height at which p=p, in the
fluid. In the restricted cubic model, b is assigned the
value 1.2766, and c, 0.055. For these special values of b

and c the isothermal compressibility becomes a function
of r only (i.e., independent of 8), and the predicted ampli-

tude ratios are always maintained. This representation,
which incorporates scaling, is not limited to a specific
thermodynamic path. We make use of it only in a small

region above the critical point, i.e, 2& 10 & t & 2& 10
and corrections to scaling are not required. Since at each
temperature our capacitance assembly gave four indepen-

dent measurements of density versus chemical potential,
we have, in fact, 40 data points for N2 and 52 data points
for Ne in this narrow temperature range. In the two-

phase region are analyzed. The procedure is to solve for r
and 8 in terms of Ap~ and t using Eqs. (12) and (13) for
an initial set of free parameters, then fit b,p* to Eq. (14)
and repeat the process. This analysis uses the same non-
an initial set of free parameters, then fit by* to Eq. (15)
and repeat the process. This analysis uses the same non-

linear least-squares-fitting routine used for the power
laws. In our analysis, we make the assumption that zo,
the position where p=p„ is at the center of the middle
capacitor plate. The fact that this is not a bad assumption

H. Compressibility in two-phase region

Our stacking capacitor assembly allows direct measure-
ments of the compressibility of the fluid in the two-phase
as well as the one-phase region. The vapor-phase
compressibility can be deduced from the density differ-
ence between the top two capacitor-gap and the liquid-

phase values from the lower two capacitor-gap density
measurements (see Fig. 3). The vapor-phase compressibil-

ity is expected to be identical to that in the liquid phase.
Since the compressibility in the two-phase region is about
a factor of 5 smaller than that in the one-phase region,
meaningful data in the two-phase region extend over even

a narrower temperature range than that in the one-phase

region. Inside
~

t
~

=1&&10,gravitational rounding be-

comes severe, at
~

t
~

=5&&10, the uncertainty in the
density difference between neighboring capacitor gaps due

to the uncertainty in C~ (empty capacitance ratio) is
-5% of the density difference. The percentage uncer-

tainty increases rapidly as
~

t
~

is increased. In Fig. 9 the

N2 vapor-phase compressibility in the two-phase region is

plotted against the reduced temperature on a log-log scale.
This figure shows that the data in the temperature range
4.5X10 &

~

t
~

& 1.5)&10 is consistent with a simple

power law of the form

g~ ——I o t

with y =y+=1.24, and I o
——0.010+0.001. The value

and uncertainty of I 0 is evaluated by dividing the mea-
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sured gz value by t ' in the temperature range
4.5&&10 &

~

t
~

&1.5&(10 . Using a similar procedure,
we found I p

——0.011+0.0015 for Ne.

I. Critical isotherm

On the critical isotherm our five stacked capacitor
plates measure the density at four different values of
chemical potential. If we write b,ltt~=g(p, /P, )b, z, where
LL=z —zp is the height difference between a particular
capacitor gap (at z) and the position where p=p, (at zp),
we can then rewrite Eqs. (3) and (4) as

Dp=(gp. /P. ~l:~/I (p p. )/p. l

'I . — (15)

As in Sec. III G, we shall assume zp is at the center of the
middle capacitor plate. In Fig. 10 we apply Eq. (15) to
our Ne data points near T= T, . The symbol "1"
represents the value of Dp obtained by assuming 5=4.82
and using the value of density p& and height z& at the top
gap, the symbol "2" represents the value of Dp from the
second gap from the top, etc. [Since Eq. (15) is expected
to be valid only at T=T„ in the ideal condition, we
would expect the symbols 1, 2, 3, and 4 to coincide at
T=T, . Using the T, determined above (T, =44.4789 K),
we found in this procedure Dp ——10+3. Following the
same procedure we found Dp=8+2 for Nz. The uncer-
tainty in Dp is large, ' this is probably due to the fact that
Dp is extremely sensitive to any possible small error in

p —p, through the large exponent 5.

IV. DISCUSSION OF RESULTS

The design of this experiment allows us to extract rdi-
able information in the critical region. Firstly, our mea-
surements clearly indicate over which range of tempera-
ture a power-law analysis is appropriate. Data in the
gravitationally rounded region are analyzed with the re-

I I I llllll I I I

IO
RIEDUC ED TEMPERATURE

FIG. 9. Two-phase (T & T, ) isothermal compressibility P~ as
a function of reduced temperature

~

t ~. The dashed line is
drawn according to I'p

~

t
~

' ~=0.010
~

t
~

' (with
T, = 126.2143};the error bars shown represent an uncertainty in
I 0 of +0.001.

I I I I I I I I I I I I I I I I I I I I I I I I I I I

0. 478 Q. 479
TENPERRTLJRE-44 (t()

FIG. 10. Plot of Do=(gp, /P. )[M/I (p —p, )lp, ~'j for Ne
with 5=4.82. The symbols 1 represent the determination of Do
using the density and height value of the topmost capacitor gap,
and the same applies to 2, 3, and 4. At T= T, =44.4789 K, we
found Do ——10+3.

stricted cubic model equation of state. Secondly, the
four-capacitor setup allows for the detection of possible
temperature gradient in the sample, and our special heater
and heat-sinking configurations of our sample cell allow
for the elimination of any significant temperature gra-
dient.

Excellent consistency is found in the determination of
T Bp and I p from the power-law analysis of order-
parameter data, power-law analysis of isothermal
compressibility data, and the cubic model analysis of data
near T, . The maximum difference in T, found for both
Nz and Ne in these three different analyses is 0.3 mK.
The values of Bp and I p vary less than 4% between
power-law and cubic model analysis. Such consistencies
lend support to the reliability of our results.

We have shown in this paper that Wegner correction-
to-scaling terms of the form B&t and I ~+( with 6=0.5
are clearly needed to describe the order-parameter data in
the temperature range 6&&10 &

~

t
~

&4&&10 and the
one-phase isothermal compressibility data in the range
3&10 &t &7&10 . In order to fit order-parameter
data in the range 2X10 &

~

r
~

&1.5&&10, the in-
clusion of a second correction-to-scaling term Bzt is
needed.

Qur results are summarized in Table IV. We wish to
repeat that the uncertainties quoted for the amplitudes,
and hence their ratios in this table, are not the much
smaller statistical uncertainties, but rather variations in
their values when completely different conditions were as-
sumed in the analysis. For both N2 and Ne fluids, we
found P=0.327+0.002; their difference from the predict-
ed value of 0.325 is probably insignificant. It is, however,
interesting to point out that we consistently found that if
P is fixed at 0.325, the fit to our data worsens. Our deter-
mination of y is less precise; the values we found,
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TABLE IV. Summary of experimental results.

Tp

N2

126.2143+0.0002

0.327+0.002

1.233+0.01

0.51+0.03

1.479+0.006

1.02+0.06
—2.0+0.5
0.048+0.001

1.07+0.06

0.010+0.001

1.71+0.5
4.8+0.6

0.95+0.13

44.4789+0.0003

0.327+0.002
1.250+0.010
0.49+0.05

1.425+0.010
1.02+0.07

—1.6+0.6
0.053+0.003

1.15+0.15

10+3
0.011+0.0015

2.05+0.8
4.8+0.8
0.9+0.2

Theory
(RG)

0.325

1.240

0.493

1.75

4.80

0.85, 0.73

Theory
(HTS)

0.325

1.240

0.49, 0.54

1.60
5.07

1.233+0.01 for Nz and 1.25+0.01 for Ne, are again in

very good agreement with theoretical predictions. Our
determinations of 13 and y are also in very good agreement
with the experiment of Hocken and Moldover performed
much closer to T, . In their experiment the exponents
were obtained by assuming a parametric equation of state
in the data analysis.

For most of the data analysis we have adopted a value
of 0.5 for 6, the correction exponent. We have also al-
lowed 6 to be a free parameter in analyzing the order-
parameter data, and found b, =0.51+0.03 for N2 and
OA9+0. 05 for Ne. These values are again in very good
agreement with theoretical predictions.

The amplitude ratio I o /I 0 in our experiment was
found to be 4.8+0.6 and 4.8+0.9, respectively. These
values are in excellent agreement with the theoretical
values of 4.8 (RG) and 5.07 (HTS). This ratio was found
by Weber to be 4.8+1 and by Wallace and Meyer to be
3.7 (no uncertainty was given). Our values for the ratio
I o+Do8 ' are 1.71+0.5 (Nz) and 2.05+0.8 (Ne), respec-
tively; these values are again in reasonable agreement with
the theoretical values of 1.75 (RCx) and 1.6 (HTS). For
the correction-to-scaling amplitude ratio 8

~ /I ~+, we
found 0.95+0.13 for N2 and 0.9+0.2 for Ne; these values
are in good agreement with the value calculated by Chang
and Houghton at 0.85, and that estimated by Aharony
and Ahlers at 0.73. If we use the 8& values obtained by
excluding the second correction term on the order-
parameter data taken with the inner capacitor gaps, we
also find very good agreement with the theoretical results.
For N2 we have 0.75 and for Ne, 0.78. The only other ex-
perimental determination of this ratio is the He experi-

ment by Pittman et al. ' They found values of 0.3+0.2 if
two correction to scaling terms were used in the analysis,
and 0.43+0.08 if one correction term was used. These ra-
tios have also been estimated in a number of other papers
by combining results from different experiments. As we
have discussed in the Introduction, values obtained this
way are not reliable.

The determination of the various amplitudes in this pa-
per is independent and unbiased in the sense that no
specific parametric model equation of state with either a
built-in or implied connection between the amplitudes is
assumed in the analysis.

To conclude, our determination of the critical ex-

ponents, correction-to-scaling exponent, and the three
universal amplitude ratios are all in good agreement with
current theoretical values. These agreements lend strong
support to our current understanding of the behavior of
fluids near the critical point both inside and outside the
simple-scaling regime.
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