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Hybridization-mediated anisotropic coupling in plutonium compounds
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The magnetic bchavlor of a class of cerium and light Rctlnldc coIIlpoUnds contMning moderately
delocalized f electrons has been explained on the basis of an anisotropic two-ion interaction that
arises from the hybridization of band electrons and the f electrons. This theory, first developed by
Siemann and Cooper for cerium compounds using the treatment of Coqblin and Schrieffer for the
hybridization, was later generalized by Thayambaih and Cooper to f systems in the L-S and j-j
coupling limits. Wc herc cxtcnd thc theory to thc case of intermediate lntI'Monlc coUpllng Rnd fuI-
ther include thc posslblllty of long-period antlfcrromagnetlc stI'UctUI'cs. In particular, wc have con-
sidered the Pu +(f') ion in PuSb. The theory reproduces the experimentally observed magnetic
behavior of PuSb quite closely, predicting a phase transition from a low-temperature ferromagnetic
phase to a long-period antiferromagnetic phase at about 75 K, for a fitting to a Ncel temperature of
85 K, with ordered moments close to the experimental values. However, while the modulation in
the long-period antiferromagnetic phase has been experimentally observed to be longitudinal, the
theory predicts a transverse modulation with moments aligned along the cube edge. We also present
the T=O magnetic excitation spectrum in the ferromagnetic phase calculated on the basis of this
theory using the random-phase approximation.

I. INTRODUCTIGN

The heavier monopnictides (antimonides and bismu-
thides) of cerium and the light actinides (U, Np, and Pu)
which crystallize in a NaC1 structure show a number of
unusual magnetic structures with extremely large aniso-
tropy along the cube edge. ' In CeSb there are many
different antiferromagnetic structures below the Neel tem-
perature (16 K) with ferromagnetic I001I planes as the
basic units. PuSb undergoes an initial ordering to a
long-period antiferromagnetic phase at the Neel tempera-
ture of 85 K and undergoes a first-order transition to a
ferromagnetic phase at 75 K.

The static and dynamic magnetic properties of cerium
compounds have been successfully explained as arising
from a highly anisotropic interionic interaction arising
from the resonant hybridization of moderately delocalized

f electrons with band electrons. This hybridization in
Ce +(f') compounds, which was first treated by Coqblin
and Schrieffer' to explain the behavior of dilute cerium
alloys, has been extended by Thayamballi and Coop-
er" ' to the general case of f" ions and applied to
U +' +(f,f ) compounds and, more recently, to the case
of Pu3+(f ) compounds such as PuSb.

In this theory of hybridization-mediated anisotropic
two-ion interaction the angular dependence of the interac-
tion depends on the f occupation number and on the na-
ture of the intraionic coupling. Thayamballi and Cooper
have reported the results of calculations for the f system
in two limiting cases of intraionic coupling, j-j coupling
and I -5 coupling. ' ' %'hile the magnitude of the mo-
ment and the behavior of the magnetization with tempera-
ture were well reproduced in the I.-S limit, no phase tran-
sition from a ferromagnetic phase to an antiferromagnetic

one could be obtained. On the other hand, in the limit of
j-j coupling, a transition to antiferromagnetic behavior
was obtained, but the size of the moment and the varia-
tion of the magnetization with temperature in the fer-
romagnetic phase could not be reproduced.

In this paper we will describe extensions of previous
work' ' on the behavior of the PuSb to the case of inter-
mediate coupling (IC) within the Pu +(f ) ion. Other
than the fact that more terms are involved, the calcula-
tions for the case of intermediate coupling are similar in
principle to those in the L-S coupling case. In Sec. II and
in Appendix A we briefly review the treatment of inter-
mediate intraionic coupling following Judd. ' Section III
contains a brief review of the model of hybridization-
mediated interionic coupling in the f" system (which has
been presented in detail elsewhere' ). We have also inves-
tigated the magnetic excitation behavior in the
intermediate-coupling case; this will be discussed in Sec.
IV. Results and dlscuss1on alc plcscntcd ln Scc. V.

In the present intermediate-coupling (IC) calculations
we have included the possibility of long-period planar an-
tiferromagnetic structures which were not considered ear-
lier. We have also investigated the effect of including
such longer-period antiferromagnetic structures in the
limit of l. Scoupling. The -inclusion of such structures
has been motivated by two factors. First, since the
ground state is ferromagnetic in the situation pertinent to
PuSb, antiferromagnetic structures built out of periods
having several successive ferromagnetically aligned planes
(with compensating sequences of planes with antiparallel
moments) should move closer to the ground state in ener-

gy as the number of planes in each ferromagnetic se-
quence is increased, and this should increase the likeli-
hood of a thermal transition to an antiferromagnetic state.
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The second motivating factor is the experimental observa-
tion that PuSb undergoes a transition to an antiferromag-
netic phase that is characterized by a long-wavelength
modulation.

In agreement with spectroscopic evidence and earlier
calculations, ' we find that the IC ground state of the
Pu + ion is composed primarily of the H state (which is
the ground state in the L Sco-upling limit) and four 6
states. Hence, it is not surprising that the results of the
L-S limit should be close to experimental results and that
the results for the case of intermediate coupling should be
close to those obtained in the L-S coupling limit. The
change to intermediate coupling does not lead to any sig-
nificant qualitative differences in the results. We have
found that the inclusion of a long-period
(+ + + ———) antiferromagnetic structure in the cal-
culations makes it possible to reproduce the experimental
magnetization-versus-temperature (M T) curve-s quite
closely and at the same time obtain a first-order phase
transition to the long-period antiferromagnetic structure
at the correct temperature. There is a significant
disagreement with experiment, however, in that the long-
period antiferromagnetic structure is experimentally
found to be characterized by a longitudinal modulation of
the magnetization (modulation wave vector parallel to
the moment direction), whereas the theoretical calcula-
tions indicate a transverse modulation (moments along the
cube edge, but perpendicular to the modulation wave vec-
tor). This discrepancy and its implications are discussed
in Sec. V.

II. INTERMEDIATE COUPLING

The problem of determining the eigenstates and
eigenenergies of many-electron atoms, particularly those
in which there are two or more electrons outside a closed
configuration, is an old one particularly familiar to spec-
troscopists. ' The Coulomb interaction between the elec-
trons, given by

2

and the coupling of the orbital angular momentum to the
spin angular momentum (spin-orbit coupling), given by

A, , = gg(r;)s; 1;,

have to be considered in addition to an effective central
potential. These interactions are generally treated as per-
turbations on the central potential. The problem is rela-
tively easy to solve at the two limiting cases where either
the Coulomb interaction or the spin-orbit coupling dom-
inates. These limiting cases are the familiar Russel-
Saunders or L,-S coupling limit where the Coulomb in-
teraction dominates and the spin-orbit interaction is
neglected, and the j-j coupling limit where the spin-orbit
coupling dominates and the Coulomb interaction is
neglected. Although most atoms can be described reason-
ably well by one or the other limiting case (atoms lighter
than the actinides by the L,-S and the heaviest actinides

R(3)CG(2)C:R(7)CSU(7) . (3)

An ordered trio of integers 8':—(w~, w2, w3 ) is used to
label the irreducible representations of G(2), while an or-
dered pair of integers U =—(u ~, u 2) labels the irreducible

by the j-j), the correct description of any atom is to be
found in an IC scheme where both the Coulomb repulsion
and the spin-orbit coupling are simultaneously taken into
account. Such intermediate coupling effects are known to
be significant for the lighter actinides.

In order to obtain the eigenstates and energies in the IC
scheme it is convenient to start with a familiar set of basis
vectors. The problem then becomes one of finding the
matrix elements of the Coulomb interaction and the spin-
orbit coupling in this basis, and of then diagonalizing the
resultant matrix. Since most atoms lie near the I.-S cou-
pling limit it is common to use the eigenstates of the L S-
coupling limit as the initial basis set for the problem of in-
termediate coupling. In the limit of L Scoupli-ng, the to-
tal angular momentum of the atom L, the total spin S,
and the total angular momentum J are all good quantum
numbers. In the intermediate-coupling case, only J is a
good quantum number. Hence, as one proceeds to inter-
mediate coupling from the I.-S limit by turning on the
spin-orbit coupling, J remains a good quantum number,
and if the spin-orbit coupling is small (as it is in Pu +), it
is reasonable to assume that the lower-energy levels do not
cross, and the value of J for the IC ground state is the
same as that of the L Sground -state. It is also known
from experiments that the ground state of the Pu + ion
has the same J (=—', ) as the Hund's-rule-favored (L S-
coupled) ground state. This fact can be utilized to reduce
the calculations significantly.

While the calculation of the matrix elements of the
spin-orbit coupling is straightforward in most cases in-
volving nonequivalent electrons outside a closed shell, for
equivalent electrons outside a filled shell (as in our f"
case) the possibility of more than one state being described
by the same values of L and S raises the problem of de-
fining a state. Consequently, attention has been focused
on the problem of defining other quantum numbers which
will serve to distinguish states with the same values of L,

and S. This problem has been addressed by Racah' using
the theory of continuous groups. An account of Racah's
methods has been given by Judd. ' The motivation for
the method comes from the fact that under three-
dimensional rotations the 2L+1 components of a term
with given S and Ms transform according to the represen-
tation DL of the group R(3). Then the objective is to find
a group G of operations which includes the operations of
R(3) as a subgroup so that the irreducible representations
of G can be used as additional labels for the states. If the
terms can then be divided into sets such that the eigen-
functions of each set form the basis for an irreducible rep-
resentation of G, and different terms with the same L and
S values belong to different irreducible representations,
then one has appropriate labels to distinguish all the
states. In the case of f electrons a hierarchy of two such
groups, R(7) and G(2), are sufficient to provide appropri-
ate distinguishing labels. A part of the succession of
groups and subgroups may be represented as
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representations of R{7). Occasionally, two different states
may occur that have the same values of O'USL and we
will use a label ~ to distinguish these. Any state can then
be distinctly labeled as

~

8'UvLSMLMs). The matrix ele-
ments of the spin-orbit Hamiltonian of Eq. (2) can be ob-
tained using the properties of these irreducible representa-
tions. The details of these calculations are presented in
Appendix A.

The matrix elements of the Coulomb interaction for f"
configurations have been worked out by R number of au-
thors. These matrix elements are evaluated in terms of
four radial integrals which are usually treated as experi-
rnentally determined parameters. We have used. the ina-
trix elements determined by Wybourne' and the values of
the radial integrals quoted by Chan and Larn. '5

Upon diagonalizing the sum of the Coulomb and spin-
orbit matrices, the ground state is found to be composed
primarily of the H term (-72%), which is the L S-
ground state, and four 6 terms (-23%). These numbers
differ somewhat from those found by Chan and Lam
(67% and 25%). One possible source of this discrepancy
is that we have not been able to locate all the requisite
tables of the factors of the coefficients of fractional paren-
tage. This leads to a spin-orbit matrix that is only ap-
proximately correct, and this might explain the discrepan-
cy between our results and those of Chan and l.am.
Since, as described below, we retain only the H and 6
terms, and vary their percentages slightly to see if this af-
fects our results, there was no reason to pursue this slight
dlscl cpancy.

A ground-state wave function
~
9MJ) with a given

value of M~ may be approximately written as

I
&MJ) =CIA I'Hen~i)

4

+Cg g y ~

a 65g2Mg)

where a—:8'U distinguishes the four 6 states. Here, and
in subsequent calculations, we neglect the contributions
from all the other terms and scale up the total proportions
of the 6H and "6 terms (~ CII

~

and
~
Cg

~

) to complete
100%. The relative phases of all terms and the relative
contributions of the four 6 states are left unchanged.

The wave function of a many-electron state can be ex-
pressed as a totally antisymmetrized determinantal prod-
uct of one-electron wave functions commonly known as a
Slater determinant (SD). The elegant group-theoretical
techniques that we have just referred to were developed by
Racah and others in order to avoid having to deal with
such SD's as much as possible and thus keep calculations
from becoming too cumbersome Rnd complicated. How-
ever, in the case of f" systems, to determine the scattering
coefficients Am ~, which arise in our theory"' from
one-electron transfers, we need to have the ground state
expressed as a linear combination of SD's. The details of
how the relevant linear combinations are obtai. ned can be
found in Appendix B.

III. HYBRIDIZATION-MEDIATED
INTERACTIDN

The methodology of treating f-electron —band-electron
hybridization in terms of resonant scattering was first
developed by Coqblin and Schrieffer for cerium impuri-

ty ions, and later extended by Siemann and Cooper ' and

Yang and Cooper ' to develop the hybridization-
mediated anisotropic two-ion interaction in cerium com-
pounds, and by Thayarnballi and Cooper to treat the
two-ion interaction in compounds of the light actinides.
Here we will briefly review the theory. The basis for the
theory is provided by the Anderson model with its mix-

ing HRInlltonlan,

~ .= g{&~bk & +I'kc bk ) .
k, m

Here Vq is the strength of the mixing potential, and b t (b)
and c (c) denote creation (destruction) operators for the
band and ionic states, respectively. The mixing potential
is assumed to be spherical, and resonant. mixing occurs be-
tween the localized f electrons and the f partial-wave
component of the bands. Upon applying the Schrieffer-
Wolff ' transformation the scattering contribution
transforms to an effective electron scattering Hamiltoni-
an. When this scattering Hamiltonian is treated in
second-order perturbation theory, one obtains an interion-
1c lrltcx'action which ls similar, ln csscrlcc to thc
Ruderman-Kittel interaction, information being
transmitted between ions by the scattered band electrons.
In the f ' case Siemann and Cooper have shown that the
predominant two-ion coupling comes from the ml =0
(quantization along the interionic axis) part of the local-
ized f wave function, corresponding to the piling up of
charge along the interionic axis. This is true as long as
thc rn1xlng is spherical.

For treating the single-site band-f hybridization in the
f" case, Thayamballi and Cooper' have adopted the
single-electron exchange scattering Inethodology de-
veloped by Coqblin and Schrieffer' for the f' case.
Then, in the f" case, as in the f case, the predominant
contribution to the two-ion interaction comes from
scattering events in which the exchanged electron has
m~ ——0. For that reason, only such scattering events are
considered in finding the two-ion interaction, and one uses
R single-site scattcrlng Hamlltonlan glvcn by

~ns g gkk' g g ~mm' dM'dMbk'm'bkm
MM'

k, k' M, M' m, m'
=+1/2

MM'
where A m is the scattering coefficient for the event,
M(m) and M'(m') are the initial and final magnetic
quantum numbers of the ion (band electron), dt (d) is the
cl'cRtloll {dcstIllctlon) opcl'Rtol fol tllc Rpproprlatc lolllc
state, and gkk is the coupling coefficient which depends
on the mixing s«cngth

I
V

I

' »d the en«gies « t c I»-
tial, final, and intermediate states. New scattering coeffi-
cients can be defined which retain only the exchange and
relative direct scattering contributions,
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and

MM' ~MM '~NN '

m, m
=+1/2

L Ii= I&& (&I .

The indices m and m' are summed over —,, and M, M ',

N, N' are summed over all possible Mz values for the
ground-state multiplet of the ion. Ej is a range function

which, for free-electron bands, is identical with the
Ruderman-Kittel range function.

At present we have treated the interaction range factors
EgJ as phenomenological parameters with E„giving the
strength of the interaction with the nth near neighbors.
Since a small isotropic (Heisenberg) Ruderman-
Kittel —type interaction, defined through

(J; I, ),
2

is also expected to be present, we have also included pa-
rameters, H„giving the Heisenberg interaction with the
nth near neighbor. At this point in the development the
ionic states are labeled by their magnetic quantum num-
bers with quantization along the interionic axis. In order
to treat inagnetic ordering in a lattice of ions, all such
states must be transformed to a common quantization
axis through the appropriate transformation. ' This
two-ion interaction is treated in a molecular-field formal-
ism in order to obtain equilibrium behavior and to study
phase transitions.

(10)

IV. EXCITATIONS

The two-ion interactions of the system can be written'

~=—Q g J„'„(q)L„~+,q,
q P.&~

f, CT

where p, v, e, and 0. refer to the M& states referred to the
crystalline coordinate system; the JfTv(q) depend on the
two-ion interaction constants, the JNN defined in Eq. (8),
and the rotational transformations between each interionic
axis and the crystalline coordinate system; the 1.&~ are
Fourier transforms of the transition operators defined in

Eq. (10). The equilibrium magnetic state is obtained by
treating the Hamiltonian A in Eq. (12) in the mean-field
(MF) approximation. The transitions between the MF
states are induced by the difference between the Hamil-
tonian of Eq. (12) and the mean-field Hamiltonian A M„,

(12)

~MF=gg& L
i m

(13)

MM ' MM ' MM mm5 5
mm ~+[ mm

N

Then, treating the single-site scattering Harniltonian to
second order one obtains the interaction between ions at
sites i and j as

(P
~ij Eij g JNN ' LM ML'N N '~

M, M'
N, N'

where

where we have denoted the MF states by lower-case Latin
letters, and 5" denotes the energy of the MF state

I
m &

on site i.
To study the excitations of the system we project the

Hamiltonian A into the MF manifold. ' At T=0 we

need only consider the set of operators that take the sys-
tem from, or to, the MF ground state (L i or L
m&1). The dynamics of the system is found by using the
equation-of-motion technique. For the ferromagnet, the
commutators with the MF Hamiltonian are

l~MF Lm~n l=(N' —&.)L '. . (14)

In calculating the commutator with ~' (=~—~MF),
we use the random-phase approximation (RPA) to decou-
ple terms with more than one I. „operator. This yields

t~, L.'.i=2(«.'. &
—«.'. &) y J:.'(q)L„' .

s, t

The thermal average (L~~ & is unity if m is the ground
state (m =1) and zero otherwise. Upon diagonalizing the
resulting 10)&10 dynamical matrix (upward and down-
ward transitions between the ground state and each of the
five excited states), we obtain five modes at energy gain
and five at energy loss.

V. RESULTS AND DISCUSSION

Since the ground state of the L Scoupling lim-it is the
predominant component of the IC ground state (which we
take as 75% H and 25% 6), it is not surprising that the
results in the two cases should be very similar. In fact,
the scattering coefficients M~~ for the IC case are not
very much different from those of the L Scase. Fig-ure 1

shows the free energies at T =0 of the low-lying states for
the I.-S case, the IC case and a case where the proportion
of the 6 states has been increased to 35%. All three
cases in Fig. 1 are for Ei E2 ——IE, I.——In all antifer-
romagnetic structures the modulation is taken to be along
the [0011 direction. The 3,3 structure is one which has
ferromagnetic planes in a three-up —three-down

(+ + + ———) arrangement. The moments on the
three planes in one sequence of three "up" planes or three
"down" planes are not identical, but are symmetrically ar-
ranged, i.e., the two outer planes have the same rnornents,
which differ from the moment on the central plane in any
sequence of three ferromagnetically aligned planes. The
ratio of the moment on one of the outer planes to that on
the central plane is close to unity at zero temperature, but
changes significantly as the temperature is raised.

At zero temperature the ground state for both the IC
case and the L Scase is a fe-rromagnetic structure with
nearly saturated moments aligned along the cube edge.
As expected, the 3,3 structure is closer in energy to the
ferromagnetic state than the type-I or -IA structures, and
a transition to such a structure is more likely than a tran-
sition to a type-I or -IA structure. It is interesting to note
that of the three type-I structures considered here (with
different directions of moment alignment), the one with
the moment along the face diagonal has the lowest energy,
so that it is not possible to produce a transition to a type-I
structure with the experimentally observed anisotropy
favoring cube-edge moment alignment. Of the three
type-IA structures and of the three 3,3 structures, the ones
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FIG. 1. Free energies at zero temperature of diffexent mag-
netic structures for the cases of I.-S coupling, intermediate cou-
pling (75 jo H and 25% G), and a state with 65% H and 35fo
6 vAth Eg =E2. FM dcnotcs ferromagnetic structures~ I and

IA denote antiferromagnetic structures of types I and IA,
xespectively, and 3,3 denotes a thxee-up —three-down antifer-
romagnetic structure.

with lowest energy are the ones with moments along a
cube edge perpendicular to the direction of modulation.
This characteristic foreshadows our finding that the anti-
ferromagnetic structure to which the ferromagnetic one
undergoes a transition is characterized by transverse, rath-
er than longitudinal, polarization.

The effect of changing the ratio Eq/Ei is shown in
Fig. 2, and Fig. 3 shows the effect of including crystal-
field splitting. Changing the ratio Eq/Ei or introducing
a crystal-field splitting does not make the longitudinally
polarized phase (state 10) lower in energy than the trans-
versely polarized one (state ll). Indeed, as we can see
from Fig. 2, upon decreasing E2/Ei the ground state goes
from a cube-edge ferromagnet (state 1}to a face-diagonal
ferromagnet (state 2). (In Fig. 2, state 2 is actually slight-

ly lower than states 1 and 3, with which it appears to
coincide. ) Upon increasing the ratio E2/Ei the longitudi-
nally polarized antiferromagnetic phase moves even fur-
ther above the transversely polarized one. Upon including
a relatively small positive crystal field, the ground state
changes from a cube-edge ferromagnet to a body-diagonal
ferromagnet. For a negative crystal field, as the crystal
field becomes increasingly negative the most important ef-
fect is that the magnitude of the moment in the ferromag-
netic structure decreases slightly. %e have utilized this
feature in matching the experimentally observed f mo-
ment in PuSb.

FIG. 2. ZcIo-tcmpcratuI'c frcc cncI'gics of diffclcnt magnetic
structures for different values of E2/El in the intermediate-
coupling case. The structures are labeled as in Fig. 1. For
E2/E) ——0.5, structure 2 has the lowest energy.
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FICr. 3. Zero-temperature free energies for different magnetic
structures vnth E&/Eq ——1 and varying values of the crystal-field
parameter (Ref. 26) Bq. The structures are labeled as in Fig. 1.
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The addition of a small antiferromagnetic H3
( —0.028Ei for IC), a moderate antiferromagnetic E3
( —0.32Ei for IC and —0.33Ei for L S-coupling), or a
somewhat larger E4 ( 0.—54Ei for IC with E3 set equal
to zero) produces a transition to a 3,3 structure (with a
moment along the cube edge, but perpendicular to the
modulation direction) at about 75 K for a Neel tempera-
ture of 85 K (i.e., choosing Ei to fit Tz ——85 K). If a
crystal field is also included, the value of the antifer-
romagnetic coupling required changes slightly. It should
also be noted that upon introducing an antiferromagnetic
anisotropic (E„) or isotropic (H„) interaction with the
third or further near neighbors in either the IC or the L-S
coupling case, the [110) type-IA structure is favored over
the [100] and [001] structures. Consequently, it is not
possible' to reproduce a transition to a type-I or -IA anti-
ferromagnetic structure with the correct moment aniso-
tropy by including a negative E3 OI H3.

The variation of the moment with temperature for in-
termediate coupling (75% H and 25% G) with

Ei E2
I
Ei

I
and E3 = —o 32Ei is shown in Fig. 4

along with the experimental magnetization results of Spir-
let, Rebizant, Vogt, and Mueller. ' For the antifer-
romagnetic phase we have plotted the average of the mo-
ments of the three ferromagnetically aligned planes.
(There are no available experimental moment values in the
antiferromagnetic phase as yet. ) The variation of moment
with temperature in the other cases (IC with H3 or E4 or
L Scoupling wit-h E3 or E4 or H3) is almost identical in
the ferromagnetic phase (apart from an overall scaling of
the moment in the L-S case which arises because the g
factor for the L Scoupling case-is smaller than that in
the IC case), and shows only minor differences in the anti-
ferromagnetic phase.

The g factor for the intermediate-coupled state is given
in terms of the g factors of the component L Sstates as-16

g( J)= g g(SLJ) I
(rSLJ

I
J) I

r, S,I.
(16)

I I

Experiment neutron scattering

0.75—
PuSb

0.50-

For the IC ground state (75% H and 25% G) of Pu +

this equation yields a value of g= «, which is 25%
higher than that for the L S-c—oupled ground state.
Thus, the theoretically predicted moment for the IC state
at zero temperature (with no crystal field) is 0.89pn,
whereas the T=O moment in the L,-S—coupled case is
about 0.7

lpga.

The f moment as determined from
neutron-scattering experiments is (0.76+0.03)p~, while
the overall moment (presumably including antiparallel
band-polarization effects) has been determined from mag-
netization experiments ' to be 0.67pz. In the j-j cou-
pling limit the T=O moment would be much larger
(about 2. lpga) than the experimental moment. We have
been able to reproduce the experimentally determined
low-temperature moment of 0.76tLt~ as well as a first-
order transition from a ferromagnetic to an antiferromag-
netic phase at the correct temperature with
Ei E2

I
Et

I

= 129 8 K &4 = —(1.3/60)Ei and H3
= —0.0278Ei. The value of the crystal-field parameter
84 has been chosen (relative to Ei) so as to match the
low-temperature f moment determined from neutron ex-
periments. Figure 5 shows the variation of the theoretical
and experimental (magnetization) moments with tempera-
ture. Again, for the antiferromagnetic phase the averaged
sublattice moment (which cannot be measured in a mag-
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Ternpertt ture (K)

75
0.0

100

FIG. 4. Variation of magnetic moment with temperature.
The experimental curve {solid line) is from the magnetization ex-
periments (Refs. 4 and 13) and the theoretical curve (dashed
line) shows the predicted f moment in the intermediate-coupling
case with E& ——E2 and E3 ———0.32E~. (To match the experi-
mental value of T~, El ——90 K.) The theoretically predicted
average sublattice moment {see text) has been plotted for the an-
tiferromagnetic phase. The theoretical moments must be multi-

plied by g (= 7 ) to be compared with the experimental values.
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FIG. 5. Variation of magnetic moment with temperature.
The experimental magnetization curve is the same as in Fig. 4
(Refs. 4 and 13). We also show the experimental f moment
from recent neutron experiments of Lander et al. (Ref. 25). The
theoretical curve shows the predicted f moment in the
intermediate-coupling case with E& ——E2, H3 ———0.0278E&, and
B4———(1.3/60)E~. In order to match the experimental Tz, we
have set Ej ——129.8 K, which gives B4———2.81, and hence

hcF ———1012 K; negative splitting means I 8 is lower than I 7.
The value of B4 has been chosen (relative to E&) so as to match
the f moment determined from neutron experiments. The
theoretical moments include the g factor (=—,4). The average

sublattice moment has been plotted for the antiferromagnetic
phase.



HYBRIDIZATION-MEDIATED ANISOTROPIC COUPI. ING IN. . .

netization experiment) has been plotted. The fact that the
crystal-field parameter Bq is negative means that the I s

state is lower in energy than the I q state. The value of Ei
(around 130 K) required to match the experimental Ncel
temperature implies a crystal-field splitting of about 1000
K.

A large inagnetic field is required to destroy the cube-

edge anisotropy in PuSb. (Experimentally, this field is
known to be greater than 100 kOC. ' ) In the model sys-
tem with E, =Ez ——

~
Ei

~

and Es ——0.3Ei, upon apply-
ing a magnetic field along the (lll) direction at zero
temperature, the moment of the IC or L-S coupling
(001 ) ferromagnet gradually tilts toward the ( 111)
direction until, at about 1 MOe, there occurs a first-order
phase transition to a ferromagnetic phase, with moments
aligned along the (111)direction. In the model case with

Ei Ez an——d Hs —— 0 0—28E. i, the magnitude of the field
at which this transition occurs is & 600 kOe.

Figure 6 shows the predicted Inagnetic excitation spec-
trum, at T=O, for the IC case with E~ E2 ——~—E—i ~,
84 ———(1.3/60)Ei, and H3 ———0.0278Ei. Because the
crystal-field splitting is large, the MF energy levels are
grouped into a quartet and a doublet. The I 8 quartet and
the I 7 doublet are further split by the hybridization-
med1ated 1nteract1on. The I 3), L 4,1, and I 5) IQodes ale
transverse excitations. The most intense of theseL, 4i, has
Rll cxcltatioil ciiclgy of abollt 250 K Rt thc I poiilt (clioos-
ing Ei to match the experimental T~ for PuSb) and in-
creases in energy as we approach the X points. The aniso-
tropy of the excitations between the directions parallel and

perpendicular to the moment direction is small (about
10%%u~ djffcrence in energy at the X points).

A number of points are quite clearly made by the re-

sults presented above. First, it is clear that while going to
intermediate intraionic coupling brings the antiferromag-
netic structures closer in energy to the ferromagnetic one

at zero temperature and increases the magnitude of the

moment, the behavior of the IC system is not drastically
different from that of the L-S system. On the other

hand, the long-period antiferromagnetic structures play a
crucial role in shaping the phase diagram of the system

since they provide antiferromagnetic states of lower free

energy. In considering the possibility of such long-period
antiferromagnetic structures, it is necessary to have long-
range (to third or fourth near neighbors) antiferromagnet-
ic coupling in order to stabilize the long-period antifer-
romagnet over the correct temperature range.

As wc liRvc Rli'cady noted tllc pi'cdlctcd polRrizRtloii of
moment in the long-period antiferromagnetic structure is
transverse to the modulation direction of the structure,
whereas experiments have determined the polarization to
be longitudinal. From Figs. 2 and 3 it is clear that chang-
ing the crystal-field parameter or the ratio Ez/Ei does
not bring the longitudinally polarized antiferromagnetic
structure lower in energy than the transversely polarized
one, though on reducing Ez/Ei the gap between the two

is reduced slightly. The transverse polarization is a fine
detail characteristic of the Pu +(f ) system near the L S-
hmit when the Pu + ions are coupled via hybridization
with the band electrons. On the other hand, in the limit

Excitations at T= 0 for Ferromagnet Moment Along GO't

with E&=E2, H~=-0.0278E„6084=-1.3E&

I

L61

L51

6 0.30)S/2y-O. 95I-3/2&

5
083I'~2&-o.ssl-5i, &

0
X —, , O, O

O.ssI 5'&+o.soI-3q,&
0

XO, O, —,

FIG. 6. Dispersion curves for excitations in the ferromagnetic phase at T=0 with intermediate coupling, E~ ——E2 ——
~
E& I,

H3= —0.0278Ei, and 84= —(1.3/60)E& for q along the [100] and [001] directions (parallel and perpendicular to the moment direc-
tion, respectively). E~ ——129.8 K to match experimental T~. The solid curve shows the most intense mode (that which is likely to be
observed experimentally using the same criterion as in Ref. 9). The solid and dashed curves indicate excitations tran~verse to the mo-
ment direction. Other curves show the longitudinal (dashed-dotted) and quadrupolar (dashed —double-dotted) excitations. The energy
levels of the molecular-field (MF) states and their compositions in terms of the angular momentum eigenstates (quantized along [001])
are shown on the far right. The modes I. „are labeled by the corresponding dominant transitions between these MF levels.
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of j-j intraionic coupling, as shown by Thayamballi and
Cooper, ' ' the behavior of the Pu +(f ) system would be
the same as that of the Ce +(f') system. Thus, the exper-
imental polarization indicates that the behavior of the
plutonium in the monopnictides is even more ceriumlike
than our theory yields. Either we are not capturing the
full subtlety of the intraionic coupling —our way of com-
bining intraionic correlation and hybridization with the
bands' may be a bit too crude —or there may be some
other feature being omitted, such as the cubic part of the

mixing potential, that will supply the necessary correc-
tion. In a sense, having the theory be more j-j—like might
give the longitudinal polarization because this would give
a more ceriumlike interionic interaction. It must be noted
that we cannot reach the j-j coupling limit simply by in-
creasing the proportion of G states because as the ratio of
the spin-orbit —coupling parameter to the electrostatic in-
teraction parameters is increased, other states (such as F
and D) which have been ignored here begin to contribute
significantly to the ground state. Of course, as we move
closer to the j-j limit, the magnitude of the moment in the
ferromagnetic phase is also likely to grow even larger than
the experimental moment.

In order to obtain the correct moment with the IC cal-
culations a rather sizable crystal field is required and the
parameter B4 used to achieve this is negative (implying
that I s is the ground state). The size of the crystal-field
splitting is large compared to the ordering temperature
and this may suggest that the crystal field should be intro-
duced into the theory before the hybridization-mediated
interaction is introduced as a perturbation. However, as
in CeSb, the single-ion effect of the hybridization
presumably pushes the I 8 state down in energy toward
the I ~ state (which is the ground state in a point-charge
crystal-electric-field model), as the hybridization affects
the I 8 state selectively and reduces its energy. There-
fore, the apparent large negative crystal-field splitting
may just be a refiection of a strong Coqblin-Schrieffer
(CS) hybridization rather than a large bare crystal-field ef-
fect. At least some of this single-ion effect should be in-

cluded in the direct scattering included in Eq. (7), but this
might not be an adequate treatment of the single-ion ef-
fect. The large crystal-field parameter required to match
experimental values incorporates the remaining single-ion
correction as well as the bare crystal-field effect.

If the bare crystal field is indeed larger than or compar-
able to the hybridization-mediated CS coupling, we need
to consider the CS interaction between crystal-field basis
states. These states reflect the cubic symmetry of the
crystal, and it might be hoped that working in this basis
would produce an antiferromagnetic phase with the
correct polarization. This reflection of the cubic symme-
try would not, however, be the same as the effect of the
cubic part of the mixing potential.
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APPENDIX A

In this appendix we briefly outline the calculation of
the matrix elements of the spin-orbit Hamiltonian of Eq.
(2).

We begin by labeling the states of the configuration 1"
as

f
Q), those of the configuration 1" ' as

f
Q), and the

states of the 1' single-electron configuration as
f
co). Then

we may write

f
Q) = g (Q;co

f
Q)

f

Q)
f
co), (A 1)

and the matrix elements of a single-electron operator
F=g,f; may then. be written as

(Q
f
F

f
Q')=n(Q

f f f

Q')

=n g (Q
f
Q;co)(co

f f f
co')(0;co'

f

Q') .

(Q; &
f
Q):—( W U vL MI.SMs'lm/ms

f WUrLMLSMS)

=(L MI 1m~
f

LlLML )(SMssm

&&(W U&L+1
f
WUrL)

&&(1" 'vS+1
f

)1 "vS), (A3)

where v labels the "seniority" of the state. The part
remaining after the two Clebsch-Gordan coefficients have
been factored out is called a "coefficient of fractional
parentage, " usually abbreviated to cfp. For f electrons
the first factor in the cfp can be further factorized as

( W UrL+l
f
WU&L)=(UYL+f

f
UrL)

X(WU+f
f

WU) . «4)

These two factors have been tabulated by Racah, ' Judd, '

and Wybourne' and the quantity (f" 'vS+f'
f
If"vS)

can be easily calculated using expressions given by Judd. '

Then the matrix elements of the spin-orbit Hamiltonian
of Eq. (2) may be written as

(AZ)

The problem then reduces to one of finding the coeffi-
cients (Q

f
Q; co). These coefficients can be factorized as

(1"WUrSLJM~
f
A, , f

l"W'U'r'S'L'J'M q) =$6(J,J')5(M~, M I)( —1) + + [l(1+1)(21+1)]'~

S
X

S' 1

L J (1"WUrSLffw'"'ff1"W'U'r'S'L ),
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where g is a radial integral usually treated as an experimentally determined parameter and the last quantity is the re-

duced matrix element of the tensor operator W'"'. We have used the value of g quoted by Chan and Lam. ' The re-

duced matrix elements may be written as

[ ][ '][ ][ '] '"—

(A6)

where [(2]=(2a+I)!,
I
8):—

I
I" 'IV UrSL) is a parent

term of
I
8)—=

I
/" WUrSL), and (8[

I
8) is the relevant cfp.

The general one-electron spherical tensor operator of
rank k is defined so that its reduced matrix element is
given by

APPENDIX B (nl
I
IU'"'I In'I') =(2k +I)'i 5(n, n')5(l, l ') . (81)

In order to determine the scattering coefficients A
which arise in our theory"' [see Eq. (6)] we need to ex-
press the different degenerate ground-state wave functions
as linear combinations of Slater determinants. Here we
present an outline of the calculations involved in obtain-
ing such linear combinations. The relevant linear com-
binations are easily obtained in the L-S coupling limit be-
cause the 8 state with the highest values of

I ML, I
and

I Ms
I

contains only one SD, which can be easily found
by inspection. The states with other ML and M~ can then
be found by using the raising and lowering operators L+
and S+. In the IC case we need to find, in addition, the
linear combinations of SD's corresponding to the 6
states.

In order to determine the linear combination of Slater
determinants corresponding to a state with given values of
L and S, it is simplest to start by determining all the SD's
which have the largest values of

I
M

I
and

I
Ms I

com-
patible with the given L and S. Then one needs to obtain
the matrix elements of L and of S between these SD's
and diagonalize the resulting matrix of L +S, i.e.,
simultaneously diagonalize L and S . It is then possible
to pick out the eigenvectors corresponding to the required
values of L and S. (Note that one can diagonalize
L +S and consequently d&agonahze L and S simul-
taneously, rather than diagonalizing L and S sequen-
tially, because one has selected a set of SD's that belong to
L and S equal to or greater than the L and S of interest. )
Linear combinations for other

I
LSML Ms) states can then

be found by using the spin and orbital angular momentum
raising and lowering operators.

When there are many distinct states with the same L
and S, we need to carry this procedure further in order to
obtain a unique linear combination of SD's for each state.
To do this we note that L is the Casimir operator for the
group R(3). The other quantum numbers that distinguish
the states with common values of L and S label irreduci-
ble representations of the groups G(2) and R(7). Hence,
we need to diagonalize the matrices for the Casimir opera-
tors of these groups along with L and S . We can then
pick out the eigenvectors corresponding to the required
values of WUSL and thus obtain a unique hnear combina-
tion of SD's for each of the 6 states.

I
1m/) .—Nl~ g PPl g

For configurations I" with more than one electron, we

can, in analogy with angular momentum operators, define

(83)

For the case of f-electron configurations, the tensor
operators V"', V' ', and V' ' serve as generators for the
group R(7), and V'" and V' ' serve as generators for the
group G(2).

If we denote the generators of any continuous group by

X&, and the metric tensor in the weight space by g&„, the
Casimir operator for the group is defined as

Ã =g" X„X„. (84)

The Casimir operators for R(7) and G(2) are then given by

&[G(2)]= —,
'

[( V" ')'+( V"')'], (85b)

respectively. The squares of the tensor operators are de-

fined in the usual way,

( V(k))2 y [( (k)) ]2+2 y (U(k)) .(U(k)) (86a)

and

(U(k))2 (U(k)) .(U(k)) (86b)

Then the effect of the qth component of the tensor opera-
tor on a one-electron state can be expressed as

Uq"'I lm))= Q( —1) '(2k+1)'~
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(U(k)) .(U(k)) y ( 1)q( (k)) (
(k)

)

q

(B6c)

Combining this with Eq. (B2) one can calculate the matrix
elements of the two relevant Casimir operators. In addi-

tion to tensor operators that change the magnetic quan-
tum numbers of individual electrons by 1 (the familiar
angular momentum raising and lowering operators, which
are related to the operators V+)), one now has to contend(&)

with operators that may change the individual magnetic
quantum numbers by as much as +5.
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