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The effect of paramagnetic impurities in anisotropic superconductors is investigated with use of
the Shiba-Rusinov theory for the impurities and the Eliashberg formalism for the host superconduc-
tor. The analytical expressions for the transition temperature T, and the specific-heat jump AC are
derived with the use of the square-well model for the electron-phonon interaction. Considered as a
function of the spin-flip scattering rate a, the quantities T, /T, o and hC/ACD depend on the micro-
scopic parameters A, , coD, and p* of the host material. The dependence on the material parameters
becomes insignificant if the above properties are plotted versus a/a„or if AC/ACO versus T, /T, o

is studied. (T,o and AC0 are values of T, and 6&, respectively, in the absence of impurities, a„ is
the value of a for which T, becomes zero, A. is electron-phonon —interaction parameter, coD is the
Debye frequency, and p* is the Coulomb pseudopotential. )

I. INTRODUCTION

Recently, Okabe and Nagi' have studied the effect of
paramagnetic impurities on the anisotropic superconduc-
tors by treating the impurities within the Shiba -Rusinov
(SR) model. In the SR theory the electron-impurity
scattering is calculated exactly assuming a classical spin
and the well-known Abrikosov-Gor'kov (AG) theory is a
limiting case of this model. In Refs. 1—4 the host metal
is described by using the Bardeen-Cooper-Schrieffer
(BCS) formalism of the theory of superconductivity and
as such the properties do not depend on the microscopic
parameters A,, coD, and p' of the host (A, is the electron-
phonon —interaction parameter, co& is the Debye cutoff
frequency, and p is the Coulomb pseudopotential).

It is important to consider the problem of paramagnetic
impurities in superconductors by treating the host metal
using the Eliashberg formalism (EF) of the theory of su-
perconductivity. The transition temperature T, for the
case of AG impurities in isotropic superconductors using
EF and the square-well model of the electron-phonon in-
teraction (or the A, model) was investigated by Allen.
Detailed numerical study using a F(co) of lead in the AG
case was done by Schachinger, Daams, and Carbotte
[a~F(co) is the electron-phonon spectral density]. The T,
and some tunneling properties for the case of SR impuri-
ties were considered by Schachinger. ' The specific-heat
jump of anisotropic superconductors with AG impurities
using EF and the A, model has been given by Zarate and
Carbotte.

The purpose of the present paper is to generalize the re-
sults of Ref. 1 by using the Eliashberg formalism. We are
interested in the analytical expressions for the transition
temperature and the specific-heat jurnp and as such we
use the k model. In appropriate limits the results of
Refs. 1 and 11 are retrieved from our calculations.

The plan of the paper is as follows. In Sec. II we out-
line our general formalism. The transition temperature

T, and the specific-heat jump b,C are discussed in Secs.
III and IV, respectively. In Sec. V we give conclusions.

II. FORMALISM

Assuming a low concentration of magnetic impurities
in a strong-coupling superconductor, the single-particle
Green's function for the conduction electrons, averaged
over the positions and the spin directions of the impurities
is given by

G (n) = [iso-(n)p3 —e-—b, (n)p2o2]k k k k

where

k'U-, (m)
co-„(n)=co„+rrT g A, -„-„,(n —m)

k k ' [U2 (m)+ I]&/2

U-, (n)f U „,(n)+1]'~
+I l U, (n)+so

(2.1)

(2.2)

1
(n) =rrT g [A, -,(n —m) —p*]

k k k' [U-„,(m)+ I]'i2

[U „,(n)+1]'~

(+I2 2 2U, (n)+eo
(2.3)

2I l
——1/V.l+ 1/r2,

2I 2
——1/r( I /r2, —

(2.4a)

(2.4b)

In above equations e is the single-particle energy, ~; and
k

p; (i = 1,2,3), respectively, are Pauli matrices operating on
the ordinary spin states and the electron-hole spin states,
co„ is Matsubara frequency [co„=m.T(2n +1), where T is
temperature and n is an integer], U-(n) =co-(n)/b (n),

k k k

eo is the normalized position of a bound state within the
BCS gap, and

30 2659 1984 The American Physical Society



S. YOKSAN AND A. D. S. NAGI 30

where 1/r2 (1/~]) is the spin-flip (non-spin-flip) scattering
rate from the magnetic impurities. Further ( )' indicates
the Fermi-surface averaging over the electron states k ',
the parameter p* is the Coulomb pseudopotential, and
A,--, is the electron-phonon —interaction parameter.

k k'
We use the square-well model (or the A, model) of the

electron-phonon interaction and take

[ U-„,(n)+(]'i'),
U, (n)+ eo

(2.11)

(1+a-„,)
1+~ 1+~ ~)o [U'-, (m)+1]'" , 2.10

A, -„„,(n —m) =A, -„-„,8(a)D —
i
a)„ i )8(con —

i
co

i ), (2.5}

where coD is the Debye cutoff frequency. The quantities
I &, I 2, and p are taken to be isotropic. For anisotropy,
we use the separable model of Ref. 12 and write

U, (n)

[U'-„,(n)+)]' ' ) (2.12)

A, „„,=A(1+ a „)(1+a„,),
~-=4o+&-4]

k k

where a is the anisotropy parameter.
k

Using the above models, Eqs. (2.2) and (2.3) give

4o~+& -„0]~+rub.
U„(n) 1+r]&C„+a„1/(1+1,) '

where

0
0o]=

1

(1+g )

)+). 0 [U-, (m)+)]'~ )

(2.6)

(2.7)

(2.8)

(2.13)

(2.14)

a]„/U (n) =Aon+a A]n+a A2„, (2.15)

From now on various sums go up to N =(coD/2m. T)
For temperature near the superconducting transition

temperature T„ the superconducting order parameter be-
comes very small and U (n) ))1. Furthermore, the an-

k

isotropy parameter is assumed to be small. Thus for T
near T„Eq. (2.8) can be rewritten as

Ip*, (2 9) where after lengthy algebra, we find
[U-„,(m)+1]'i

2e'o —1 0ozaz~n 2e'o —1
3 2

2 3 2

Ao. =Ao.
I r=T, + 4+ 0oÃ II2n )

2 ((o„+a]„}4 2
(2.16)

Oox~n
Ao. I r=T, =

CO~ +CKg 1+~ ([o„+a]„)'(~„+Pq)'
(2.17)

0o~~.h(~. a~) 0o] (2&o—1} co„P]„h(co„,ag)

(~„+ay)(~„+f3') 2(co„+a&)'(co„+p]„) (~,+pq)(~, +ay)

2
a~con

1+" (~n+a~)'
(2.18)

A2. = —4o] co„h (co„,ag)—
1+& (m„+a„)(m„+Pg)'

2' —1
2

2 1+A, (~„+a]„)
0o~

+ 4o] (2&o—1}
(~.+a~)'(~ +Pn~)

(2.19)

1 a)„h (co„,ag) P],r,]„co„h(co„,a~)
~2m = + P, -3a,—

(~, +Pq)(~„+aq) (co„+Pq) 1+A, ~.+P~ (~.+a~)

2
co„I 2+gh (co„,a][) ~nI npA,—2 +1+~ (co„+Pz)~ 1+& (~, + q)(~a„+Pq)

(2.20)

where we have introduced
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(2.22)

P~=l i~= 2ad1+&» ~=&2~&i (2.23)

(2.24)h(co„,ag) = hco„+, ag
p

iL(1+p*)
(1+A, )(A, —p*)

Now we proceed to Eq. (2.9) for p&&. Expanding the square root in the denominator for small 1/U-„, (m), then substi-

tuting Eqs. (2.15)—(2.20) and evaluating the Fermi-surface averages, we obtain
r

+a
&—p* „o ~ +a~ (~, +a~)'(~„+P~)

2
2 1 2 2 2

h (ro„,ag)—
2 NOA. r 4 ~n+2(1 —eo)ah+2& P~N+3aA(1 —eo)+PA(1+~0)i.&o (~.+a~)' (~„+Pq)'

2k 2 co„h (co„,ag)
+ (2eo —1)a~1+A. (co„+aq)(~„+Pq)

(2.26)

III. TRANSITION TEMPERATURE

At the transition temperature, the order parameter becomes zero. Setting go~=0 in Eq. (2.26), and following a stan-

dard procedure, we obtain

(1+h a )ln
cO

+a h)
13~

=[1+a h, (2h —h
& )] 1t

——P —+1 1

2 2 2' Tg
r

+a (h —h)) f ——Q
—+1 1 P~

2 2 2&TQ

(~) 1

2~T, 2 2m T,
—+ (3.1)

I.O

a~
h) ——

1+~ A —a~
(3.2)

0.8

g'"'(z) are polygamma functions, ' and T«& is the transi-
tion temperature of a pure anisotropic superconductor
given by

TG

Tco
0.6

1+1, = ( 1+6 h )ln(2e tt)D IwT p)
A, —p

(3.3) 04

C =1-
Tc0

mP

4T,p(i+a h )
(3.4)

with C as the Euler's constant. Equation (3.1) is our gen-
eral T, equation and agrees with Eq. (49) of Ref. 11.
Note that the difference between the AG- and SR-
approximation results is only through the definitions of
1 ~ and I 2. Using the values of these quantities given in
Table I of Ref. 1, we obtain T, in the AG and SR models.
Note also that Eq. (3.1) of Ref. 1 is retrieved from our
equations by taking h&~0, h —+1, and a~ —+a.

In the limit of low impurity concentration n; —+0, Eq.
(3.1) gives

0.2 .2

0.2 0.4 0.6 ~ 0.8
Tco

1.0 1.2

FIG. 1. Normalized transition temperature T, /T, o vs n/T, o

for a =0.03 and 5=0.2 and 4.0. The quantity a is proportional
to the impurity concentration, a is the anisotropy parameter,
and 6=~2/~& with 1/v2 (l/~I) as the spin-flip (non-spin-flip)
scattering rate. The microscopic parameters used for solid
curves are A, =0.313 [appropriate for Zn (Ref. 14)] and p,

*=0.1.
The dashed curves denote the BCS results.
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with

I'=ui+a h Pi —2a h ui
1+JM

The critical value of a which makes T, =O is obtained
from Eq. (3.1),

Tc
ln

cO

2h
A' u~. a' (i) 1

1+A, 2~Tc 1+& ~ 2 2mTc
—+

(3.7)
1TTco

u„=(1+A,) ec 1+

g2(g g )2/(]++2p2)

Tco 2A, ahu„=(1+A, ) exp
2e I+& I+a h

(3.8)

a hi(5 —1)
Q exp

2(1+a h }
(3.6)

One should note the dependence of Eqs. (3.4) and (3.6) on
the microscopic parameters by comparing these with Eqs.
(3.2) and (3.3) of Ref. l.

When ui ——Pi (i.e., 5= 1.0), Eqs. (3.1) and (3.6) become,
respectively,

The dependence of T, /T, o on the impurity concentra-
tion for the case of A, =0.313 [appropriate for Zn (Ref.
14}]p* =0.1, and for the BCS case is shown in Fig. 1. We
have taken a =0.03 and 5=0.2 and 4.0. One notes a
dependence on the microscopic parameters in the figure.
However, this dependence becomes very small if we plot
T, /T, o versus the normalized impurity concentration
u/ucr.

IV. SPECIFIC-HEAT JUMP

4o
=Bo(n(, T) +—

2 2%T
(4.1)

where

In this section we discuss the specific-heat jump at T, . Because the A, model is essentially a weak-coupling model,
with the electron-phonon —interaction parameter regarded as a constant, we calculate' b,C by following the same pro-
cedure as in Ref. 1. First we write Eq. (2.26) as

'2
TcO Bi(n;, T)

ln 0 ~ 0

T (1+A,)'

Bo(n;, T)= 2%T

1+a h O

+a h
1

COn

I(0„+[(1+A}/(1+@')]uiI 2

(~.+ui. )'(~.+pi. )
(4.2)

B,(n;, T)= [bo(n;, T)+& bi(n;, T)],
1+a h

(4.3)

bo(n;, T}= (2n.T)
n)o (~n+ui, )

(2' —1)ui

((o„+ui )
(4.4)

1 2
h I(o„+[(1+A)/(I+p"))uiI~

bi(n;, T)=16m3T3 g [3(o„+3ui(1—eo)+pi(1+co)].&o (~.+ui. )' (oi„+pq)'

2A, , uk'. h I. +[(I+~)/(I+V*)]ui.]
(2eo —1)

1+A, ((o„+ui.)((o„+pi. )
(4.5)

In BCS limit Eqs. (4.2)—(4.5) reduce to Eqs. (2.16)—(2.19) of Ref. 1.
Now the specific-heat jump is given by

1+a h ()hC =Cs —C~ 8' N(0)T, (1+A——) 1+T, Bo(n;, T)
Bi(n;, T, )

' dT
(4.6)

where Cs and C~ are the electronic specific heat in the superconducting and normal states, respectively. It is convenient

to define

aC T, Bi(o T.o} 5
ECo T,o Bi(n;, T, )

' BT1+T,

where b,Co is the value of b,C for n; =0 and is given by

8~'N (0)T„(1+k, )(1+a'h ')'
ECo =

8A,(3)(1+6a h }

(4.7)

(4.8}
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with

p (2n + 1)' 2'( —1)'(I —1)!
(4.9)

First we calculate the initial depression of b,C/ACp in the limit of n; ~0 U. sing Eqs. (4.7) and (4.2)—(4.5) we obtain

bC
ECp

where

12K,(2) P 4A, (4) Q
1+a h 2m'Tcp A(3)(1+6a h ) 2m'Tcp

(4.10)

Q =a~(i+op)+a h [ ', (a—i„+P~)+ 2 (2ep —1)(3a&—Pi„)] 4a—h ai„(op+1)
1

and P is defined in Eq. (3.5). One should note the dependence of Eq. (4.10) on the microscopic parameters.
It is also interesting to calculate the quantity

8 bC 8 Tc

Bn; ECo Bn; T,p n; 0

using Eqs. (3.4), (3.5), (4.10), and (4.11) in Eq. (4.12), thereby obtaining

1+a2h& g(4) a(i+op)+a h f
—', (a+p)+ —,

' (2'—1)(3a—p)] —4a h a(1+Ep)[(Ap, )—/(1+i' )]
C =3-

1+6a'h' A.(2)A,(3) a+a h P—2a h a[(A, —p*)/(1+p, *)]

(4.11)

(4.12)

(4.13)

Comparing Eq. (4.13) with Eq. (4.4) of Ref. 1, we note that the anisotropy parameter a has been replaced by a h and
the terms proportional to (A, —p*)/(1+@*)have been added in the numerator and the denominator. Taking a =0.03,
ep ——1.0, and 0& (P/a) & 5, however, we find no significant difference between the BCS value of C" and the value com-
puted by taking A, =0.313 (appropriate for Zn) and p' =0.1.

For the purpose of numerical evaluation of the specific-heat jump at different impurity concentrations, we use Eqs.
(4.7) and (4.2)—(4.5) to write

b, C (1+6a h ) Tc [8(ni Tc)+a ~(ni Tc)]= 8k,(3)
ECp (1+a h ) T, p [C(n;, T, )+a D(n;, T, )]

(4.14)

(~) 1 +A,
A(n;, T, ) =1—

hatt + (4.15)

B(n;, T, )=h (h —hi) — f —+
27TT 2 27TTQ

hi(2h —hi) +h,
C 2mT.

1

2 ir Tc 2 277Tc
+

+h, Pk aX (2) 1

2m T. 27TT. 27TT. 2 2&T.

n + —,
' +2(1—ep)(ai„/2m T, )

C(n;, T, )= g
n)p [n + —,

' +(ag/2m T, )]4

(4.16)

(4.17)

D(n;, T, )=2 g 1

n&o 1 aq"+2+ 2-T,

4 3(n + —,)+3 (1—ep)+ (1+Ep)
P~

2-T. 2-T,
'

1 1+A,
h n+ —+

2 1 +p 2~Tc

1"+2+ 2-T,

+ (2' —1) (n + —, )h
2$ 2 a~

aq"+2+ 2-T,
P~"+2+ 2-T,

1 1+A,n+ —+
2 1+p* 27rT
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h h—
27T Tg

B(n;, T, )=h

3
1

2 1+A,

When ai ——pi (i.e., 5= 1.0), Eqs. (4.15), (4.17), and (4.18) remain valid but Eq. (4.16) becomes
r

2A ~()) 1 +k A A, +t (2) 1

1+A, 2 2rrT, 1+1, 1+ A, 2m T, 2 2nT,
2h- —+

(4.19)

In the AG limit (ep= 1.0) the above equations agree with corresponding ones given in Ref. 11, and in the BCS limit the
results of Ref. 1 are retrieved.

We show the dependence of hC/ECo versus a/T, o for e() ——0.0 and 0.5, a =0.03, and 5=1.0 in Fig. 2. The micro-
scopic parameters used for the solid curves are A, =0.313, coD ——26.3 meV [appropriate for Zn (Ref. 14)], and (M =0.1.
The dashed curves denote the BCS results. Although one notes a dependence on the material parameters in the figure,
this dependence becomes very small if we plot hC/b, Co versus (z/a„. We have also found that the normalized plot of
the specific-heat jump versus the transition temperature does not depend on the microscopic parameters significantly.

Now we give b C for the nonmagnetic impurities (ai =0). In this limit, we obtain
r 2

hc/Tc . . . , P~ („1 Pi1+ah —ah 1(
—+

(&Cp)p/(T, p)p 277Tc 2 27TTc

g'h' 2~~, (, ) 1 (, ) 1 Pi„—+
Pi 2 2 2mT,

2~T 1 2mT, 1 Pi
P)„2 2n T,g —+ (4.20)

where (ECo)o and (T,o)o are the values of the corresponding quantities for n; =0 and a =0. For a «1, we have

~C/~c 2 2 pi. (i) 1=1—2a h P(" —+
(ACo)o/(T, o)() 2n.T, 2 2n T,

1+[ ) y(2)( )
)]

—)

p),
~ 2+2.T,

c, 12q(() q(1) +
Pi 2 2

2&T.

p)

2mT.

1

2

I.O

0.8
hC
BCp

0.6

Comparing Eq. (4.21) with Eq. (4.8) of Ref. 1 we note that
the quantity a has been replaced by a h and p has been
replaced by pi =p/(1+1, r). With a suitable scaling of a2

and p, the dependence of b,C/T, on p)„/T, o is the same as
shown in Fig. 5 of Ref. 1.

V. CONCLUSIONS

p4

0.2

I

1.20.40.2 0.6 0.8 t.0
Tco

FIG. 2. Normalized specific-heat jurnp at T, vs a/T, o for
eo ——0.0 and 0.5, a2=0.03, and 5=1.0. The microscopic param-
eters used for solid curves are A, =0.313, coa ——26.3 meV, and
p*=0.1. The dashed curves denote the BCS results.

We have studied the problem of anisotropic supercon-
ductors containing paramagnetic impurities. The host su-
perconductor is described using the Eliashberg formalism
and the impurities are treated within the Shiba-Rusinov
theory. The analytical expressions for the transition tem-
perature T, and the specific-heat jump hC are derived by
using the A, model of the electron-phonon interaction
and our results are the generalization of those given in
Ref. 1.

T, and AC are discussed in Secs. III and IV, respective-
ly. The initial depression in T, [Eq. (3.4)], the critical
value of the spin-flip scattering rate a„[Eq. (3.6)], and
the initial depression in b.C [Eq. (4.10)] depend on the mi-
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croscopic parameters A., coD, and )Lt* of the host material.
The variation of T, /T, o and hC/b, Co with a!T,o are
shown in Figs. 1 and 2, respectively, and these curves also
depend on the microscopic parameters (we took
a =0.03). We have found that the dependence on the
material parameters becomes insignificant if the above
properties are plotted against tz/a„or if EC/ACo versus
T, /T, o is studied.
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