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Within the framework of a generalized Heisenberg model, it is shown that under certain condi-
tions the electron spins may couple to phonons by exchange interaction. This process, going beyond
the Born-Oppenheimer approximation, is possibly necessary for superconductivity. From such a
supposition, criteria for superconductivity are derived which prove to be true for 18 cubic-symmetry

metals investigated recently.

I. INTRODUCTION

The generally accepted theory of superconductivity of
metals is based upon an interaction between conduction
electrons and phonons in the crystal.’?> On the other
hand, it has been argued by Matthias® that superconduc-
tivity in transition metals is due to an electron-electron in-
teraction. Schmidt et al.* found that superexchange in-
teractions possibly mediate pair formation in a great num-
ber of metals. In a more chemical approach to supercon-
ductivity by Krebs,” and more recently by Johnson and
Messmer,® correlations were found between the occurrence
of superconductivity and the existence of certain molecu-
lar orbitals at the Fermi energy, where Johnson and Mess-
mer call superconductivity ‘“delocalized conduction-
electron antiferromagnetism.” An experimental hint that
there is a correlation between superconductivity and ex-
change interaction in 415 superconductors was given by
Ekbote et al.” These authors argue for the possibility
that the electrons responsible for superconductivity are
“pbound through exchange interactions of antiferromagnet-
ic type.”

In discussions of this problem, exchange interactions
and electron-phonon interaction are usually treated as al-
ternative phenomena being responsible for superconduc-
tivity. In the present paper, it is argued that both types of
interaction are necessary for a pairing of the electrons:
On the one hand, the pairing is effected by an electron-
electron exchange interaction W which is strongly spin-
dependent whereas, on the other hand, this interaction W
is mediated by spin-phonon exchange interaction. In the
framework of our considerations, the superconducting
state can therefore be described in terms of spin-
dependent (or “magnetic”) exchange interactions as well
as by the Bardeen-Cooper-Schrieffer (BCS) theory? and its
extensions. The spin dependence of W is required to
answer the question of which materials are superconduc-
tors and which are not.

The spin-phonon exchange interaction cannot be han-
dled in the framework of the adiabatic or Born-
Oppenheimer approximation. It will be described in
terms of nonadiabatic localized functions depending on
the electron coordinates as well as on coordinates charac-
terizing the motion of the nucleus. The electrons of the

30

considered conduction band will be assumed to move in
the potential of nuclei which are connected by springs
realized by the core electrons and by the conduction elec-
trons of the other partly filled bands. This, however, does
not mean that the further influence of these remaining
electrons is disregarded: The symmetry properties and the
spin dependence of the localized functions belonging to
the considered conduction band are largely determined by
the fact that the localized states must be orthogonal to
each other, to the core states, and to the states of the
remaining conduction electrons. Thus the spin-phonon
interaction which will be derived from these properties in
the framework of a generalized Heisenberg model is due
to direct exchange as well as to superexchange interaction.

In Sec. IT a hypothetical narrow, partly filled isolated s
band is considered. It is shown that under certain condi-
tions the electron system may lower its Coulomb energy
by coupling to the motion of the nuclei. This coupling
has no further consequences within an isolated s band
which, as is well known, never does exist in real metals.

In Sec. III the band structure of niobium is considered
as an example for a metallic band structure. Niobium ap-
pears not to possess a conduction band which has the
same symmetry as the considered s band. The situation,
however, is drastically changed when the existence of the
electron spin is taken into account and the localized func-
tions are thus allowed to belong to a double-valued repre-
sentation of the point group. In fact, niobium has a nar-
row, single (but degenerate) conduction band from which
we may construct optimally localized functions belonging
to a two-dimensional double-valued representation of the
point group. This band, which will be called the “o
band,” is (with respect to its symmetry type) a generalized
s band. Also, in a narrow o conduction band the elec-
trons may lower their Coulomb energy (under the condi-
tions given in Sec. II) by coupling to the motion of the nu-
clei. Within a o band, however, the spins of the electrons
also couple to the motion of the nuclei by exchange in-
teraction.

From this we conclude in Sec. IV that the electron spins
couple to phonons such that the angular momentum is
conserved in the nonadiabatic electron-phonon system.
The matrix elements of the resulting operator of spin-
phonon interaction, __s"_gh, are given in terms of nonadia-
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batic localized electron and phonon functions. Though
we are not able to give H'Jp explicitly (since these nonadi-
abatic functions are not available) we may derive one
essential property of the electron-phonon system: In Sec.
V we conclude from the conservation law of angular
momentum that, at zero temperature, the electrons neces-
sarily form Cooper pairs in a narrow o band. From the
comparison of the N-electron system with a classical sys-
tem of N particles we give an argument indicating that
spin-phonon coupling is necessary for superconductivity.
On the basis of this assumption we present in Sec. VI cri-
teria for superconductivity. A summary of our considera-
tions has been published recently.

II. COULOMB INTERACTION
IN A NARROW s CONDUCTION BAND

We first consider a metal with an isolated narrow, part-
ly filled s band. The Bloch functions ¢T<’( r) belonging to

this band can be transformed into Wannier functions,
1 band

=2 _RBy— —~iX- Ry (7 )
w(¥—R) Vi %e $(T), (2.1)

having s symmetry,

Pla)w(F—R)=w(F—aR) for aEG, . 2.2)

P(a) denotes an operator of the point group G, acting on
a space function f(T) according to

Pl@)f (D =f(a"'T), (2.3)

and a is a point-group operation. For simplicity, only
cubic-symmetry metals with symmorphic space group are
considered. For these metals, the operators P(a) are by
themselves space-group operators.

Let

H=Hyp+Hcy,—Hy 24

be the Hamiltonian operator of the valence-electron sys-
tem with

Hyp= E <RIHHFIR' %Qi,s (2.5)
K, K’
denoting the Hartree-Fock operator and
Ho=3 (RuRs | Ha IRLRS)h e e cxyy,
Es
(2.6)

as the operator of the Coulomb interaction. The operators
€%, and €%, create and annihilate, respectively, electrons

in the localized states | l_i,s) represented by the Wannier
functions. H, subtracts that part of H¢, which is already
included in Hyy; it does not matter in the following and
will be suppressed for brevity.

H, may be split into three parts,

IiCb =gc +Iiex +I_12 ) (2.7)

with
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containing the matrix elements with _ﬁl:ﬁ’l and
R2=R’2,

R T
RE (R,R; | He | Ry, R, Eﬁns €g..C
s

’

containing the matrix elements with §1=R2 and
R,=R ] and

I_:[z= 2 (ﬁ],ﬁz’ﬂcb IRII,R'Z)CL Q% c

fure “Rys; Ky K '252£i 151
R,s
(2.10)
comprising the remaining matrix elements with

{RI,RZ};&{RI,R } where {RI,RZ} {R,,R } means
R]—Rl and Rz-—Rz or R]—Rz and RZ"‘RI

H. is the operator of the Coulomb repulsion between
the charge distribution of the localized states | R,s). He
and H, originate from the motion of single electrons
which “see” their instantaneous positions within their lo-
calized states. Both H., and H, are short-ranged interac-
tions which would vanish if H¢, were constant or if the
Wannier functions would not overlap. H., is the familiar
Heisenberg exchange operator acting on the electron spins.
Since H., and H, are similar with respect to their physi-
cal origin, H, also may be expected to be the origin of an
exchange interaction.

We show that under certain conditions H, may be the
origin of an interaction coupling the electronic motion to
the motion of the nuclei. In the following the operator
H., is suppressed and the simplified operator

H=Hyr+H +H, 2.11)

is considered.
As a first step we make some general remarks on the
(exact) ground state | G') of the operator

H'=Hyr+H, (2.12)

containing only the Hartree-Fock operator and the
Coulomb repulsion. | G’) may be written in the form

|Gy =2di i), (2.13)

where

T
% ¢k . 10}, (2.14)

_ At
| 4:) —EX 252 T Rysy

151
with N being the number of electrons belonging to the
band and i labeling the (3) possible distributions of N
electrons on 2 M localized states.

If the Hartree-Fock energy is small compared to the
Coulomb repulsion,

(G'|H.|G')>(G'|Hur |G") ,

the electron system may be described in the framework of

(2.15)
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the tight-binding approximation. The Coulomb repulsion
of two electrons with different spin directions occupying
localized states on the same lattice point R is larger than
the Coulomb repulsion of two electrons occupying adja-
cent localized states.” Therefore, in (2.13) those numbers
d; will dominate which belong to nearly homogeneous
electron distributions |¢;) (2.14) as it is the case in the
atomic or Heisenberg model.

If, on the other hand, the Hartree-Fock energy is much
larger than the Coulomb repulsion,

(G'|Hur |G")>>(G'|H,|G"), (2.16)

the electrons exhibit a more random occupation often re-
ferred to as bandlike behavior.

For the real Hamiltonian neither (2.15) nor (2.16) is
true. The system finds a compromise between atomiclike
and bandlike behavior. As is well known, the conduction
electrons tend to a more atomiclike behavior with decreas-
ing bandwidth and to a more bandlike behavior with in-
creasing bandwidth.

As a second step we consider the influence of H, on the
electron system. From its definition (2.10) follows that
H, generates virtual transitions between adjacent localized
states. We assume therefore that (i) the ground state | G )
of H=H'+H, tends more toward random occupation
than does |G'). Thus, due to H,, the balance bandlike
and atomiclike behavior is shifted toward bandlike
behavior and hence the Coulomb repulsion increases.
This increase of the Coulomb repulsion will be small if
| G') already exhibits random occupation; it will be the
larger increase as | G’) tends to have more homogeneous
occupation. The (positive) energy difference

AE=(G |H'|G)—(G'|H'|G") (2.17)
will hence increase with decreasing bandwidth.
The expectation value
8E=(G |H,|G) (2.18)

will also increase with decreasing bandwidth since, ac-
cording to the above assumption (i), 8E will decrease if
the balance between random and homogeneous occupation
in | G) is shifted toward random occupation. Thus the
energy difference

(G|H|G)—(G'|H'|G'Y=AE +8E (2.19)

will increase with decreasing bandwidth.
Further, we assume that (ii) H, is a small operator in
the sense that 8E + AE =0 for a certain bandwidth. We

hence may expect that |
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8E+AE >0 (2.20)
in sufficiently narrow bands. Summarizing, we may state
that the relationship
(G|H|G)>(G'|H'|G") (2.21)
probably holds in sufficiently narrow energy bands.

Relation (2.21) is essential for our considerations.
Below (in the next section) (2.21) will be postulated for the
narrowest bands which exist in the band structure of the
metals. Here we continue to consider a hypothetical s
band sufficiently narrow for (2.21) to apply.

Relation (2.21) means that the ground-state energy
should increase when H, is activated. This, however, will
not happen in reality. We remember that the short-ranged
interaction H, emerged (besides the Coulomb repulsion
H_) since an electron sees the momentary motion of the
electrons which occupy adjacent localized states. The re-
lation (2.21) was gained assuming that, within the local-
ized states Iﬁ,s), the electrons move on rigid orbitals
given by the Wannier functions (2.1). By this assumption,
any change of the electronic motion generated by H, can
only be realized by virtual transitions to adjacent localized
states. In reality, however, the electrons may also change
their orbitals within their localized states. If (2.21) is true,
the electrons will suppress (at least partly) their virtual
transitions to adjacent states by changing their orbitals
within their localized states.

A localized electron now moves in a potential depend-
ing on which of the adjacent localized states is occupied
and on the momentary motion of the electrons within
these states. Such an electronic motion, however, cannot
be described within the framework of the adiabatic (or
Born-Oppenheimer) approximation since such a motion
yields, at a given moment, an electronic charge distribu-
tion within the localized states which is not symmetric
with respect to the positions of the nuclei. Thus the nu-
clei become (for a time) accelerated in certain directions.
The nonadiabatic localized states |R,n) must therefore
be represented by localized functions T, q | R,n) depend-
ing also on the acceleration g of the nucleus on the lattice
point R. The number n labels different states of motion
of the nucleus.

In terms of nonadiabatic localized functions the above
statement reads as the following: If (2.21) holds, the con-
duction electrons lower their energy by coupling to the
motion of the nuclei so that the modulus of the matrix
elements,

<§1?§2 'I—Ig‘b ' §’1,§I2)=
becomes minimized for {R;,R,}5{R{,R%}. For simpli-

city we set
(Ry,R; | HE IR}, R3)=0 for (Ry,Ry}#(R{,R3),
(2.23)

and for nonadiabatic functions labeled by a distinct quan-

e? [ (Ryn |G, (Ron |G, (T, G |Ryn (T, G | R{,n)

|T—T

dFdt’dddg’, (2.22)

f
tum number n.

The nonadiabatic operator of the Coulomb interaction
is then given by

Ht =3, <§1’ﬁ2|ﬂ€‘b |§1,§2)£§ s e Q"ﬁ c
=5 1°1
R,s
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(where the exchange term HJ, is still suppressed). The
operators ggs and Qi’s create and annihilate, respective-

ly, an electron with spin s in the localized state lﬁ,n ).
They obey (for fixed n) the well-known commutation
rules of fermion operators,

n n n n —_—
[-C'Tis’g'fi .s,]+~0 s [Q’R's’gi 5 1.=0,
(2.25)
t
[Q% ).C_ni' ’ ;]+—8'ﬁ i’ ,assl >

since H%, must be invariant with respect to the permuta-
tion of two localized states. The nonadiabatic localized
functions are therefore orthogonal according to

[ (Ron | 7g0(Eq | Rn)dTdg=5 .
HZ, commutes with the point-group operator product
P(a)Q(a),

[HE,P(a)Q(a)]=0 for aEG, .

(2.26)

(2.27

Thus the localized functions {7, q | R,n ) belong to a rep-
resentation of the point group (since H{, is diagonal)
which is, in the case of the considered s band, the identi-
cal representation

P(a)Q(a)T,qd |aR,n) for aEG,,

(2.28)

I§’n>=<?ya

where P(a) is still acting on
according to

Q@)f (@)=f(a~'q) .

As stated above, a nucleus becomes accelerated at a
given moment when the electronic charge distribution
within the localized state is unsymmetric (with respect to
this nucleus) at this moment. It is essential, therefore,
that Eq. (2.28) does not hold when P(a)Q(a) is replaced
by P(a) alone. Under the action of P(a) we obtain local-
ized states in which the nucleus is (generally) not ac-
celerated in the direction of the center of charge. Neither
does Eq. (2.27) hold when Q(a) is suppressed,

[HZ,P(a)]£0 for some a EG, (2.30)

[(2.27) is false if the commutator does not vanish for at
least one a €G,]. This again demonstrates that the elec-
tron system has gained new possibilities to move by cou-
pling to the motion of the nuclei since the adiabatic
Coulomb interaction (2.6) must commute with P(a) (for
aEGy). In this context the ratio m, /mg of the mass of
the nucleus and the electron is not relevant, since the am-
plitude of the acceleration § is meaningless. From the
largeness of this ratio we conclude as usual that the nuclei
do not move far from the lattice points R.

The nature of the interaction between the electronic
motion and the motion of the nuclei characterized by
(2.30) can be elaborated. The operator of the Coulomb in-

teraction of the electrons,
2
1 e
Iicb =7 2 - — ’
v l rﬂ._ r, !
ptv

T and Q(a) is acting on q

(2.29)

(2.3D
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is independent of ¢ and hence we have

[Hey,P(a)]=0 for a€G, , (2.32)

which appears to contradict the relation (2.30). The
operator H{ as given in (2.24), however, must be
represented by

Hl,=P"Hc, P", (2.33)

where P" projects on the space A being spanned by wave
functions of the form

nt ... .0t
|¢' "Rls —ﬁ2s2 g—ﬁNsN

|0), (2.34)

i.e., A is the space of wave functions being antisymmetric
w1th respect to the permutatxon of two localized states la-
beled by R sand R’ ,8'
P" commutes with any observable, therefore we have
[P",P(a)Q(a)]

=0 for aEG, . (2.35)

The operator

P(a)c PT(a)
is, for some a € Gy, not a linear combination of operators
,c_"it 5 since, under the action of P(a), we generally obtain

nonadiabatic localized states in which the acceleration q
of the nucleus is not directed toward the center of charge.
Thus

P(a)|¢})
does not belong to A4 for some a € G and we have

[P",P(a)]#0 for some aEG, . (2.36)

Relation (2.30) is then true in spite of the validity of Eq.
(2.32). In other words, the assumption that the electron
system lowers its own Coulomb energy by coupling to the
motion of the nuclei does not violate physical principles
since the Pauli principle is valid. In this sense the interac-
tion coupling the electrons to the motion of the nuclei is
due to the Pauli principle and may therefore be called an
exchange interaction. However, it cannot be described in
the familiar way in terms of an exchange integral.

The electronic charge distribution within the nonadia-
batic localized states differs from that within the adiabat-
ic states represented by the Wannier functions (2.1). To a
first approximation we shall assume that the Coulomb
repulsion is not crucially affected by this modification of
the charge distribution, i.e., we replace Hg, by H, (2.8).
The nonadiabatic Hamiltonian

=Hyr+H (2.37)
is hence approximated by
=Huyr+H, , (2.38)

as given in Eq. (2.12).
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III. COULOMB INTERACTION
IN A NARROW ¢ CONDUCTION BAND

The description of the nonadiabatic system as given in
the preceding section is incomplete inasmuch as the nona-
diabatic fermion operators g”ﬁs (2.25) are still labeled by

one purely electronic quantity, namely by the electron-
spin quantum number s. For the conduction band, how-
ever, which will be considered in this section we must in-
troduce fermion operators g%m which no longer depend

on s.
Consider, e.g., the band structure of Nb (Ref. 10) de-

picted in Fig. 1, in particular the band denoted by the

heavy line. It is characterized by the representations

F,251 H,25: NZ’ and P4

which belong to the band in the points I', H, N, and P (in
the notation of Bouckaert, Smoluchowski, and Wigner!?).
As shown in detail in Ref. 12 we cannot assign to this sin-
gle band familiar Wannier functions which both are op-
timally localized and belong to a representation of the
point group since I'ys, H5s, and P, are three-dimensional.

The construction of optimally localized functions be-
longing to a representation of the point group, however,
becomes possible in a natural way if we account for the
existence of the electron spin. For the double-valued rep-
resentations one has

DipXTys=I7 +T§ , D\pXHys=H{ +Hy ,
(3.1

D1/2XN2=N+ , DipXPy=P;+Pg

with D,,, denoting the two-dimensional double-valued
representation of the three-dimensional rotation group
O(3). It is easily seen that there exists a subset of double-
valued representations, namely

F;F,H;_,N-*-, andP-,,

being compatible in the sense that H7, N1, and P, are
subduced by I';.

25'
y
E
Ejgl ENb
12
J

N r P N P H

FIG. 1. Band structure of Nb after Mattheiss (Ref. 10). The
heavy line denotes the o band.
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From this group-theoretical result it follows'® that we
can assign to the considered single band “spin-dependent
localized functions” (SLF) of the form

band TR

am(r-R )= Efsm k)us(t)¢—>(r)e LAt (3.2)
k s

transforming according to

=

R,?)
= zdm'm(a)am’(?—aﬁ,t) for a€Gy .
o

P(a)S(a)a, (T—

(3.3)

Here f,( K) is a l_f-dependent unitary two-dimensional
matrix and u,(¢) are Pauli’s spin functions. The matrices
d,'m(a) belong to T'F. S(a) acts on the spin coordinate ¢
according to

S(a)us(t)= Y, Dys(a)uy(t) for a€O0(3), (3.4)

with Dy (a) belonging to the representation D;,,. The
index m labels the rows of the two-dimensional represen-
tation F7 It is convenient to set m;=+ and
m, = —~. In addition to (3.3) the SLF transform accord-
ing to
Ka,(F—R,t)=+a_,(F—R,?), (3.5)

by application of the time-inversion operator K. We de-
fine the upper sign to belong to m =+ and the lower
signto m = — .

The matrix f, (k) may be chosen such that (a) Egs.
(3.3) and (3.5) are true and (b)

S (HD=3 fom(Kluy () (F) (3.6)
s

varies smoothly (for fixed T and #) in K space'® though
there exist several symmetry degeneracies. Such a choice
of fon! K) yields the optimally localized'? SLF on the con-
sidered band It is essential in the following that the ma-
trix fom(K) which belongs to the optimally localized SLF
of the considered Nb band must necessarily depend on k.
This follows from the very fact that the considered band
cannot be represented by Wannier functions belonging to
a one-dimensional (single-valued) representation of the
point group [the SLli (3.2) are identical with such Wan-
nier functions if f, (k) is independent of X].

We define a o band as a band to which we can assign
SLF belonging to a (two-dimensional) double-valued rep-
resentation of the point group and cannot assign Wannier
functions belonging to a (one-dimensional) single-valued
representatlon of the point group. Thus the matrix
fsm(K) which belongs to the optimally localized SLF (3.2)
ofaco bang is not independent of K.

If fon(k) depends on K the symmetry relation (3.3)
does not holii when P(a)S(a) is replaced by S(a) alone.
S(a)a,(T—R,t) is rather a linear combination of SLF,
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S(@)an, (F—R,1)
=3 d(m,f(;m’,fi';a)am'(?—ﬁ’,t) for a€Gy ,

R'm'

(3.7)

which also belong to lattice points R’£R. In the follow-
ing, the form of the coefficients d(m,R;m’,R’;a) is
meaningless except for the fact that, for some a € G,

J

Hey= 3, (Rym;Ry,my |Hey |R,m{;R,,m) dels

Km

“Rym;~ R,m,

.'.
where ¢ Em

a,(F—R,t) and

nd c-»
ad_Rm

<Rl:m1;R29m2 'ECb lRll’mll ;RIZ’mIZ >

a,",‘,l(f’—RI,t)a,",‘,z(f”—Rz,t’)am,l (f’—R'],t)am,2 (T'—R5,t")
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there are nonvanishing coefficients with R ’;él_i.
Since f,, (k) is unitary, the SLF are orthogonal to each
other according to

S [ am(F—R',0an(F—R,0dT=5 = Spm . (3.8)
t

Neglecting the influence of the other bands, we may
therefore write the operator of the Coulomb interaction of
the electrons within the o band in the form

Loel, e (3.9)

create and annihilate, respectively, an electron in the localized states represented by the SLF

_e
_ng

Again we set
H'’=Hyp+HZ
and
H=Hyp+H;+H;
with

HZ=3 (Ry,m;;Ry,my | Hey | Ryym;Ry,m) >£%
R,m

containing the matrix elements with R’lzﬁ} and ﬁz
=Rj and H; the matrix elements with {R},R;}=

{R1,R%} (where the term HY, is still suppressed).

We now apply the arguments discussed in Sec. II for
the hypothetical s band to the more realistic o bands. Let
|G) and | G'?) be the ground state of H and H' (3.11),
respectively. We postulate that

(G|H|G)>(G"|H"”|G")

holds if the considered o band is one of the narrowest
bands within the band structure of the considered metal,
and that the energy difference (G |H|G)
—{(G'’|H'? | G"?) is at least of the order of the electron-
ic thermal energy at temperatures well above the super-
conducting transition temperature T,. We give three ar-
guments corroborating this postulate.

(1) Experimentally, it is found that the d electrons of
transition metals exhibit behavior characteristic of the
atomic model.'* Since, as stated above, H? restricts the
validity of an atomic or Heisenberg model, it may be ex-
pected that there exists a mechanism making H, ineffec-
tive least for the narrowest bands. Such a mechanism will
be derived from (3.13).

(2) Because of (3.7) the operator HZ (3.12) does not
commute with S(a),

(3.13)

drdr’ . (3.10)
=
(3.11)
1y 2"‘2£K2'"'2£§ 1mi 12
I
[H?,S(a)]#0 for some aE€0(3), (3.14)

since H? is diagonal with respect to the SLF. The com-
plete Coulomb interaction, on the other hand, commutes
with S(a),

[Hep,S(a)]=0 for a€0(3), (3.15)

since Hc, does not depend on the spin coordinates. Con-
sequently, the interaction H; restores the conservation of
spin angular momentum. Such an interaction may be ex-
pected to be neither purely attractive nor purely repulsive,
which raises the probability that the two basic assump-
tions labeled by (i) and (ii) in the preceding section are
valid.

(3) H? has the same order of magnitude as the ex-
change term H. of Hg, since the matrix elements of
both operators have the same form. Since the interaction
H,., generates exchange effects as, e.g., ferromagnetism,
even at room temperatures, it is conceivable that exchange
effects can be derived also from a sufficiently large energy
difference

(G|H|G)—(G"”|H"|G"”)>0.

From (3.13) we again conclude [cf. (2.37) and (2.38)]
that HZ (3.12) is an approximation for the nonadiabatic
Coulomb interaction
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in a narrow o band. The matrix elements of HZf,

— — no | ) 2 ,
(Ry,m;Ry,my | HE | Ryym ;R mY )

— e — t
vmiRym; | HE |Riymi;Rymy ey

(ﬁl,ml, |rtq)(R2,m2,n{r t’“”)(rtq]Rl,ml,n)(r g’ ]Rz,mz,n)

are integrals over nonadiabatic localized functions of the
form

(7.4, |R,m,n) , (3.18)

and _c_'"i’: m and g'fﬁm create and annihilate, respectively,
electrons in localized states represented by the localized

functions (3.18). The fermion operators g’i:r and c?,
Rm Rm

satisfy the commutation rules (2.25) and hence the local-
ized functions are orthogonal according to

S [ Rm'n | T49)(Fq | R,m,n)dTdq

=8—> - ,6mm’ .

z R (3.19)

The quantum number n labels again those functions for
which

| (Ry,my;Ro,m, | HE |Ri,m 1R 5,m5 ) |
is a minimum for {R;,R,}={R|,R}}.
again set

For simplicity we

(Rhml;ﬁz,mz |I_i&‘,’|§'1,m'1;—R"2,m'2 )=0
for {R,R,}={R|,R5} (3.20)

and for nonadiabatic localized functions labeled by a dis-
tinct quantum number n. The existence of such functions
is assumed in the following.

Since H{§ (3.16) commutes with the point-group opera-
tors,

[HE,Q(a)P(a)S(a)]=0 for aEG,, (3.21)

the functions (3.18) belong to a representation of the point
group which is 'S in the case of the o band of Nb and
I'd, s, ', or I'7 in the case of any given ¢ band. We
then have

P(a)Q(a)S(a){T,t,G | R,m,n)

= dpm(a)(

m'

1,t,q|aR,m',n) for aE€EG,,

(3.22)

where still P(a), Q(a), and S(a) act on T, q, and ¢,
respectively. -

It is essential that, according to (3.14), the interaction
HZ (3.12) does not conserve the electron spin. Since HZ
is the adiabatic approximation of the nonadiabatic
Coulomb interaction H¢§ we cannot expect that HZ con-
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nt n n
i’zngizmégfilm" 3.16)
drdr'dqdq’,
=
(3.17)
r
serves the electron spin. Thus we have
[HE,S(a)]#0 for some a€EO(3) . (3.23)

The Coulomb interaction H¢, (2.31) does not depend on
the spin coordinates. The spins therefore couple to the
motion of the nuclei by exchange interaction in the sense
that

[P",S(a)]~0 for some aEO(3), (3.24)

where P"° projects on the space 47 being spanned by
wave functions of the form

!¢ nT oo IIT
i —lel R,ym, RN”‘N

|0) . (3.25)

Because of relation (3.24) the operators

St s'(a)

cannot be expressed, for some a €0(3), as a linear com-
bination of the fermion operators g’g - The momentari-

ly unsymmetrical charge distribution within a nonadiabat-
ic localized state, characterized by a distinct value of the
acceleration g of the nucleus, hence depends on the spin
direction (that is, on the spin coordinate 7). The localized
functions satisfying Eq. (3.20) are not products of a space
function and a spin function [and Eq. (3.22) does not hold
if one of the operators P(a), Q(a), or S(a) is suppressed]

The nonadiabatic Coulomb interaction HZZ (3.16) does
not conserve the electronic spin angular momentum. The
conservation law of angular momentum, however, should
hold also within the nonadiabatic system. Thus relation
(3.15),

[Hcp,S(@)]=0 for a€0(3),

which holds in the adiabatic system, should be replaced by
an analogous relation which holds in the nonadiabatic sys-
tem.

Let

M(a)=T P(@)Q(a)S(a)TZ! (3.26)

be those space-group operators which leave unchanged the

position R of the localized function on which they are
acting,

M(a){T,,4|R,m,n)

= dpm(@)(T,,d|R,m",n) fora€G,. (327
por

In Eq. (3.26) Ii’ denotes an operator representing a
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translation from the origin ﬁo (with aﬁozﬁo) to R. The

operators M(a) commute with the operators ¢ 'ilim in the
same way as the S(a) commute with the Cqo where €%,
still annihilates an electron with spin s in a state

represented by the Wannier function w( F—R) 2.1):

§(a)gi.s§“(a)= gps.s(a)g.ﬁs, for a€0(3) (3.28)

[cf. (3.4)] and
M(a)_c_'lﬁmMT(a);' S dumla) , fora€Go, (3.29)

J

M(a){T,t,q | R,m,n){T,t,q |R',m",n)
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[cf. (3.27)]. Thus M(a) must be identified as an operator
turning the total spin angular momentum of the nonadia-
batic localized state, and

[H™,M(a)]=0 for aEG, (3.30)

as the conservation law of angular momentum in the

nonadiabatic system. H"? denotes the complete Hamil-

tonian of the o band electrons which will be given in (5.1).
According to (3.26) it is

=[T4 P(@)Q(@)S@) T3 (%6, | R,m,n ) [T P(@)Q(@)S(@)TF (T4 | R, m',n)] (33D

when M(a) acts on a product of two localized functions
belonging to different lattice points R and R'. This rela-
tion (3.31) shows that, in this case, the operators M(a) are
not space-group operators since the M(a) effect a rotation
of the coordinates T,¢,q around centers R and R, respec-
tively, which are different for the two localized states.
Thus (3.30) does not follow from the symmetry behavior
(3.21) of the Hamiltonian H{f{; it is rather an additional
condition.

The nonadiabatic operator of the Coulomb interaction
HY¢ (3.16) does not conserve the angular momentum,

[HE ,M(a)]#0 for some aEG, . (3.32)

This follows from the very fact that HZj has matrix ele-
ments with {m,m,}s4{m],m5}. Firstly, such matrix
elements vanish if the localized functions are products of
a space function and a spin function as was the case for
the narrow s band considered in the preceding section, or
secondly if the operator Hcp, (2.31) commutes with opera-
tors turning T, and T, around different centers Rand R/,
respectively. Since both conditions are not fulfilled, (3.32)
is true. [The adiabatic approximation HJ (3.12) of H{f
also does not commute with any of the operators M(a)
since it has matrix elements  (3.10)  with
{m,my}#{mi,m3}. This follows simply from the
properties of the SLF as given in (3.2) if fsm(E) is not in-
dependent of E.]

The conservation law of angular momentum is thus
violated within the electron system when the electron
spins couple to the motion of the nuclei. This we inter-
pret in the following way: In the nonadiabatic system, the
nuclei are permanently accelerated in various directions.
This includes the possibility that Hyg+ H¢§ may have a
ground state in which even the average positions of the
nuclei move. Such a motion actually occurs when, ac-
cording to (3.32), the electron system must give off angu-
lar momentum to the periodic array of the nuclei. In the
next section we will show that the average positions of the
nuclei are moved in such a way that phonons are excited
or absorbed. i

IV. SPIN-PHONON INTERACTION
IN A NARROW o BAND

In this section the operator of spin-phonon interaction
H'%, will be derived from (3.32). We will give its matrix
elements in terms of the nonadiabatic localized functions
and of phonon functions in order to show that H('7, is
uniquely given. In Secs. V and VI, however, we will not
need the equations determining H;'7,. The only property
of this operator which is used in the following sections is
the commutation rule (4.27) and the fact that it does not
vanish in a narrow ¢ band.

Let

4.1)

(where BZ is the Brillouin zone) be the boson operators
annihilating phonons in the localized phonon states | R,1)
being represented by localized functions of the form
{G41,qz ..., dsn|R,1), which may depend on the g
coordinate of each of the M nuclei (in the § representa-
tion). The operators L’Ti , are constructed from the acous-

tic phonons of Bloch form, QT{ (K is the reduced wave

vector and p labels the three acoustic branches), in the
same manner as generalized Wannier functions'? are con-
structed from Bloch functions. Thus the K-dependent un-
itary matrix g;,(k) may be chosen such that'? the local-
ized states are optimally localized and that they transform
according to :

Q(a)éi»lgf(a)=;D,»,(a),lz_ai.l, for a€G,, (4.2)

where the matrices Dy;(a) belong to I'is in every cubic
crystal.!® The localized phonon states are assumed to be
orthogonal to each other and to the electron states.

HJf as given by (3.16) may give rise to an electron-
phonon coupling since matrix elements of the form
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— — — — - - ,
(R1,11,R5,1;R,m 3Ry, my | HE ' Rlymll,RZym2>
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2
e B — — = — — B =, = o AP -
:_2—2 f(<RI’11'qu-quM)(Rz’IZ,ql’ .o, ) (Rymy,n |r,t,qil>(R2,m2,n |T,¢,q T’:z)
'

X(?’,t’ﬁ"i»z ; l—iz,m'z,n)(f’,t,?]’il [Ry,m{,n)/| =7 |)dTdT'dqy, ..., dGudq ), . . ., dgy

will generally not vanish if (..., ds |R1,/;) and
(qp--->dm | R51,) depends on G and G , respec-
1 2

tively (where ?]’i» denotes the acceleration of the nucleus

on the lattice point R). The conservation law of angular
momentum for such an electron-phonon interaction is still
expressed by (3.30) in which M(a) acts on the boson
operators bii ] according to

M(a)gﬁ,z\_ff(a)zg,Dm(a)gi,, fora€G,, (4.4)

with Dy;(a) belonging to I'js. Though the nonadiabatic
localized functions are not explicitly known, some proper-
ties of the matrix elements (4.3) may be derived from the
conservation law of angular momentum.

Under the action of M(a) the fermion operators g”ﬁm
transform according to Eq. (3.29) in which the matrices
dpm(a) belong to Ty, Ty, T, or T'7 in any o band
(still since we only consider cubic metals). The fermion

(4.3)

—

form, for fixed ﬁl and _liz, a basis of the representation
XTI XT; XTI with i =64, 6—, 7+, or 7—. In each
of the four cases we have

I XTI X XT;=2T 1+ T+ 55435 . (4.5)
Let
MRRy)= 3 hiMmimyumi,m;)
ml,. m2
nt nt n n
Xgﬁlmlgizngizmﬁgilmi 4.6

represent the 16 unitarily transformed vectors belonging
to the reduced representation where k labels the row of the
jth representation (j=1,12,15',25') and A distinguishes
the two and three different sets belonging to I'; and I'is,
respectively.

HZf (3.16) can be written as the sum

o.peratonro products in the nonadiabatic Coulomb interac- HIg = > Ff;k(ﬁl,ﬁz)dl(ﬁbﬁz) , @.7)
tion HEf (3.16), =TS
Ak, R, R,
nt nt n n
Qilmlgﬁzngﬁzmag-ﬁlm; ’ where
]
FMRLB)= 3 h¥mympmim) ) RymyRymy | HE | Ryym'5Romy ) “.8)
my,my,miy,m}
I
The basis vectors g’,?‘(ﬁl,Rz) of the jth representation are and
transformed unitarily once more, fm s
. . hIMR,Ryymy,my;my,my)
el (Ry,Ry)= 3, dl Ry, R)EMR,Ry) g CEUPTRTLTBTLTE
A= B i .,
« = die(R, R (my,mymy,my) . (4.12)
in order to make F{;k(ﬁ,,ﬁz) independent of k. Such a “
transformation is possible since the basis of an irreducible The two terms of HE (4.10) with j =1,
representation may be rotated such that the components no s 2 LS 3
of a given vector are equal. The coefficients dx(R,R,), Hi’= _’2_’ [F7(Ry,RyE (Ry,Ry)
however, will depend on R; and R,. Now H{ has the Ry Ry
form PR R R R, @)
o NB B AE B
Heg= g . FHR,RJEC(R,Ry) (4.10 conserve the angular momentum according to
AL LR,
with [H}? M(a)]=0 for aE€G, . (4.14)
Fjl(ﬁl,ﬁz) The other terms of HE do not conserve the angular
ST B ., momentum since they do not belong to the identical repre-
= X hIRGRymymymim)) sentation. For j1 the operator €/MR,R,) creates a

my,...,mj
- o no ' B B
X (Ry,m;Ry,my | HE | Ry,m;Ry,m ) )

4.11)

well-defined additional electronic angular momentum

characterized by j and k. Now phonon operators will be

constructed annihilating just this angular momentum.
Consider phonon-pair operators of the form
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1 t
bk lzlb R, "’
where Q is given by (4.1). They transform according to
M a)bT Mia
( Ryl 1 2’2—'— (@)

foraeG,, (4.15)

— T, pt
=2 Dtglgzl (a)QR 7 i’ '
11

where the matrices DI",l " Iz(a) belong to the representa-
2°%1

tion I'}sXI']s. The reduction of this representation yields
the direct sum

MsXTis=T+ T+ Ths+Ts, (4.16)

which contains each representation (4.5) exactly once.
Let

BUR,Ry)= 3 ully, )bty | b!

L (4.17)
i Rz’z
be the nine unitarily transformed basis vectors of the ir-
reducible representations I'; (with j=1,12,25,15").
I'; XT; contains the identical representation I'; exactly
once, whereas I'; XT';» does not contam I‘1 if j#j'. Thus
there ex1sts a umtary matrix gKK (R1,R2) so that, for a
given R, and R2,
S gl (R, R)eMR,Ry)BLR 1R )
H,x'

(4.18)

is a basis vector of I'y. The most general basis vector of

I'; has the form

sz;k(ﬁlaﬁz)f}’f}(ﬁbﬁz) (4.19)
with
E{;k(ﬁhﬁz)= > C%(ﬁbﬁz;ﬁhﬁi)
R ',,K 5K

X gl (R, R)BLR |, R}),
(4.20)
where the coefficients c’ (RI,RZ,R I,R 5) are arbitrary ex-
cept for
S RLEGRLRGMRRSRERS)
K{,X)
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in order for the transformation (4.20) to be unitary.
Thus if we replace in Eq. (4.10) the electronic operator

eMR,Ry)
by
eMR,R, )B{ck(ﬁbﬁz) , (4.22)

we obtain an interaction

Hepv= Fj}'(ﬁbﬁz)iil(ﬁbﬁz)éf;}‘(ﬁhﬁz) )

Ak R ;N b 2
(4.23)
conserving the angular momentum
[HspnM(a)]=0 for aEG, . (4.24)

The summation over j in (4.23) is restricted to j =12, 15,
and 25'. We may say that the phonon operator
,3 JMR,,R,) annihilates the angular momentum created by
€ A(RI,RZ) Thus from the conservation law of angular
momentum we conclude that g{()‘(RI,RZ) creates a charge
distribution which accelerates the nuclei in such a way
that the phonon pair Bj (ﬁl,l—iz) arises. Therefore, we re-
place the operator HZf (3.16) by

HE=H +H!', (4.25)
with
sm;h = —Hs -pht 3 H s-ph » (4.26)

where H1? and H;.,p, is given by (4.13) and (4.23), respec-
tively.

_Now the complete nonadiabatic Coulomb interaction
H {7 conserves the angular momentum since relation
(4.14) holds for the Coulomb repulsion H}? and, accord-
ing to (4.24), it is

hM(a)]=0 for aEG, .

[_sn-ph’ (427)

The interaction H;'%; may be called a spin-phonon in-
teraction since it is caused by coupling of the electron
spins to the motion of the nuclei. It is an exchange in-
teraction since the spins couple to the motion of nuclei by
exchange interaction.

=83 R {'Bfizii y “.21) The operator H/'9, can be written as
|
no T nt nt n n
£I5.ph = 2 (erlerZ:IZ»RbmlyRZrmZ 'HCb lemlyRZ’mZ)b Ti CT{’ cﬁzngizmigilm; +H.c ’
R ,m,l
(4.28)

where the matrix elements of this operator are, in principle, given by (4.3). From (4.23) it follows [with (4.6), (4.17),

(4.20), and (4.21)] that
(ii:ll;ﬁé’ll;ﬁl9ml;ﬁ2’m2 | }_Ig'g I I—ibm’l ;l_iZ’mIZ )

-

=1 3 RMR,Rymy,mymi,mb)gih(R, Ry)e (R, Ry R, R)ud (1, L) FMRLR,) , (4.29)

A,k j#1
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with F/* (ﬁl,ﬁz) given by (4.11). All coefficients in this
equation are determmed by group theory except for the
coefficients ¢t (R,,RZ,RI,RZ) depending on the form of
the nonadiabatic localized electron and phonon functions.
This uncertainty is meaningless since in the following we
only need Eq. (4.27).

One problem cannot be solved by group theory: It is
possible that a part of H?1 also depends on phonon opera-
tors since both € \M(R,,R,) and €| (R,,RZ)BI (R, R,) [cf.
(4.22)] belong to I'y. In this case this part of H}’ would
also belong to H{'%;. This question, however, is meaning-
less in the following.

V. SPIN-PHONON INTERACTION
AT ZERO TEMPERATURE

Let

H"=Hyp+H1 +H 3 +Hp, (5.1)

represent the Hamiltonian operator in a narrow o band
where H7° is the Coulomb repulsion (4.13), H/'3; the
spin-phonon interaction (4.28), and

Hpyp= zEQ (t_>k b + +3)

(5.2)
is the operator of phonon energy. The spin-independent
electron-phonon interaction H,._yy, (5.25) and the contribu-
tion of the electrons of the other conduction bands are
disregarded. Assume that H['$; +H, may be approxi-
mated by an electron-electron interaction W by a canoni-
cal transformation in analogy to the well-known pro-
cedure first discussed by Frohlich.! Now the Hamiltonian

Hy’ =Huyp+HI"+W (5.3)

does not depend on boson operators and hence represents
the electron-phonon system at zero temperature. Since
H'3; conserves the angular momentum (4.27) we have

[W,M(a)]=0 for aEG,, (5.4)
and thus (in the simplest case)
M(a)|G3%)=|G3°) fora€EGy, (5.5)

where | G3?) denotes the ground state of H3°. Within
| G§° ), real phonons are not excited since H3° does not
depend on phonon operators. The phonon system does
not store angular momentum but only can mediate (via
virtual phonons) a coupling between the electron spins. In
the system represented by H{° the electron spin is hence a
conserved quantity, yielding

[W,S(a)]=0 for a€0O(3)
and

S(a)| Gy )= |Gp°) fora€0(3).

(5.6)

(5.7

Within this new system, the localized electron states are
represented by adiabatic functions, i.e., by the spin-
dependent localized functions (3.2) in the case of the con-
sidered o band. This is because the nonadiabatic fermion
operators ¢ ’gm and g’fﬁm (as defined in Sec. III) are not
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labeled by the spin quantum number s and hence any state
in the space A7 being spanned by wave functions of the
form (3.25) does not satisfy (5.7). In fact, the electron sys-
tem becomes adiabatic when H/'%, +H, is (approximate-
ly) replaced by W though the electron spins still couple to
the motion of nuclei at zero temperature. This coupling,
however, mediates (via virtual phonons) an electron-
electron interaction which now is represented by W.

The interaction W is just as an exchange interaction as
is H"%,. Though W is not explicitly known at this state,
we may derive from (5.5) and (5.7) that under the action
of W the electron spins are coupled in such a way that
Cooper pairs arise.

At a first step we show that any given state generally

does not satisfy both conditions (5.5) and (5.7). Consider
the state

- t ot
I¢>—§d(ml’m2:-",m1v)gklm .Q'R'zmz Q?NleO> ’

(5.8
with N being the number of electrons and
(- 1 —iX-R .t
e, T 2 Se Re Em (5.9)
K

where g%m still creates an electron in the state ll_i,m)
represented by the SLF (3.2). The coefficients
d(m,m,, ..., my) are assumed to be chosen in such a
way that

M) |¢)=|¢) . (5.10)
Using

ein= 2Ky, , (5.11)

which follows from (3.2) [cf. (3.6)], we may transform
| #) into the s representation,

|#)= zd(fl,sl,ﬁz,sz, oo Kyysy)
s
xel b ek, 10), (5.12)
with
d(El,sl;Ez,sz, ce, ENSN)
= §d<m1,mz, e g (KD fom ()
(5.13)

Assume that, for given values of E‘,EQ, ey EN, we have
Sla)|¢)= |¢) for @ €0(3). Assume further that one k
vector, e.g., k,, is shghtly changed That means that the
coefﬁc1ents d(ks, k2s2 -k NSy ) are also modified since
fsm(k) is not independent of K in a o band, and thus the
relation S(a)|¢)=|¢) for aE0(3) in general will not
hold when E,- is changed.
As a second step we show that states of the form

=pL. gt - gl .
|67 By Bx, By, 10 (5.14)
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fulfill both (5.5) and (5.7) where the new operators
Btl: = t [+ f —>’ —C t [4 t

— —
k,—m——k,m

(5.15)

create symmetrized Cooper pairs. In this context we as-
sume that the electron system is invariant under time in-
version, i.e., we assume (3.5) to be true (the validity of this
relationship has been proven in Ref. 13). Obviously, we
have

[BL..M(a)]=0 for aEG, . (5.16)
With (5.11) we obtain

By= S Um0} m(~Bocl o o

—famBffm(—Kele L 1 617
leading to
_ .t T _ AT T

B =R % s TR, R (5.18)
since

fam(—K)=2f% _n(K), (5.19)

which follows from (3.5). - The plus sign in Eq. (5.19)
holds for m =s and the minus sign for m = —s. In fact,
(5.18) gives

[BL..8(a)]=0 for a€O(3). (5.20)

Because of (5.16) and (5.20) the states |$p) (5.14) fulfill
both conditions (5.5) and (5.7).

In contrast to any given state, the paired state conserves
the spin angular momentum and the exchange interaction
W, hence effects such as a paired state [or another partic-
ular state fulfilling both conditions (5.5) and (5.7)]. An
essential property of W can be derived from (5.4) and
(5.6). Assume that W may be represented by a two-
electron interaction,

W= (kps;;ko,s | W ki,s1;k5,8)
K,s

xel. (5.21)

As shown above, the only fermion operator combinations

of the form
Sdsissislel ol
s kys;

which commute with both S(a) [for a €0O(3)] and M(a)
(for a € Gy) are given by

T
BBy,
[cf. (5.15)], and hence W has the form

w= 3 (K|w|k)BLB;. . (5.22)
e

Thus the interaction W is strongly K and spin dependent
since

-

— — —
(kpsi;Kp8, | W ki,871;K5,55)=0

for Kjs=—K,, K176 —K5, 512 —55 , (5.23)
or sy~ —s5 .

The validity of Eq. (5.23) is the main feature which dis-
tinguishes W from the electron-electron interaction

V= ; (kpk, | V| EI"E'2>£%1sICL c
k,s

which can be derived’
electron-phonon interaction

I_{e-ph= 2 (E,EI lﬂe-ph] EII)Q%Q% [

]
s 5k
k,s

from the spin-independent

+H.c. (5.25)

by a canonical transformation of H, pz+Hy,. The non-
vanishing matrix elements of W, on the other hand,
should be able to calculate to sufficient accuracy when
H'?; is replaced by a spin-independent electron-phonon
interaction of the form (5.25). It is true that HJ'7; (4.28)
describes a two-electron two-phonon process. This, how-
ever, does not mean that the two phonons become excited
(or absorbed) simultaneously since H('3; does not depend
on time. The special form of H'}; should be interpreted
by stating that, after a certain one-electron one-phonon
process, the probability for another correlated one-
electron one-phonon process rises. Thus for the calcula-
tion of the energy gap and other expectation values of the
superconducting state it should be sufficient to replace
HJ'?; by a one-electron, one-phonon interaction. Further-
more, since in an unpaired state the conservation of spin
angular momentum is violated, W is necessarily effecting
a state in which the electrons form Cooper pairs, and
hence W will necessarily have a form required by theory
for the onset of superconductivity. The accurate (two-
electron, two-phonon) form of H{'7; serves only to show
the validity of (4.27) and hence to derive Eq. (5.23).

One may ask whether spin-phonon exchange interaction
is necessary for superconductivity. A strong indication
for such a necessity is the finding!® that those metals
(such as Li, Na, K, Rb, Cs, Ca, Cu, Ag, and Au) which do
not have a narrow, partly filled o band do not become su-
perconducting (at atmospheric pressure) down to the
lowest temperatures investigated so far.

The assumption that spin-phonon exchange interaction
is necessary for the Hamiltonian to have eigenstates in
which the electrons form Cooper pairs would not contra-
dict the theory of superconductivity which is based on the
Eliashberg theory. As is well known, this theory is a per-
turbation theory in which the superconducting ground
state is used as the zero approximation,'’ i.e., this pertur-
bation theory is applicable only to a Hamiltonian which
has eigenstates in which the electrons form Cooper pairs.
In the following we argue that as a matter of principle it
is only W that can have paired eigenstates.

Two electrons forming a Cooper pair (5.15) are
described by two quantum numbers K and s, whereas two
unpaired electrons are characterized by four quantum
numbers El, 51, Ez, and s,. Accordingly, the number of
degrees of freedom of the electronic motion (within a
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small energy range A about the Fermi level) in a state of
Cooper pairs is one-half that in an unpaired state. Ac-
cording to Eq. (5.22), the number of electronic coordinates
on which W depends also is one-half of those on which ¥
(5.24) depends. That is, only W belongs to an N-electron
system in which the electrons have one-half of the number
of degrees of freedom of an unpaired state. In a classical
system, the number of degrees of freedom of any state of
motion of N particles is given by the number of indepen-
dent coordinates on which the Hamiltonian function de-
pends, i.e., it is prescribed. If this is also true in a quan-
tum system, then J has only unpaired eigenstates and it is
the exchange interaction W that has eigenstates in which
the electrons form Cooper pairs.

Equation (5.23) is an equation of constraint. The effect
of (5.23) may be described in terms of a quantity which in
classical physics is called a constraining force that forces
the electrons to form a state in which they have less de-
grees of freedom than in the normal state. If in a quan-
tum system such constraining forces have a similar mean-
ing as in a classical system, the Eliashberg theory would
be applicable to the spin-phonon interaction only. As
stated above, this would mean only a small extension of
existing theories, though W and ¥V have quite different
physical interpretations. This new aspect might help to
predict which materials become superconducting and
which do not.

VI. CONDITION FOR SUPERCONDUCTIVITY

Assuming relationship (3.13) to hold in a narrow o
band, nonadiabatic localized functions satisfying (3.20) to
exist, and (5.23) to be necessary for superconductivity, we
formulate the following conditions for the occurrence of
superconductivity.

(i) A metal is a superconductor only if one of its nar-
rowest partly filled bands is a o band.

The well-known BCS formula

T,=1.140¢ "oV 6.1)
must then be replaced by
T,=1.140¢ V8" 6.2)

where N is the density of states at the Fermi level of the
electrons belonging to the o band and W is a mean value
of the matrix elements of W.

The exchange interaction W also depends on N§. We
remember that the electron spins couple to the motion of
the nuclei in order to suppress transitions represented by
the matrix elements of Hg (3.9) with {R;,R,)
#{R{,R5}. Thus W will be large if there exists a great
number of both occupied and unoccupied localized states
in the o band, i.e., if the o band is nearly half-filled.

Therefore, the condition for high 7, in metals with
comparable band structure (and comparable Debye tem-
perature ®) reads as follows. ‘

(i) T, is higher the more closely the o band is half-
filled.

The first condition (i) proved indeed to be true for the
18 cubic-symmetry (superconducting and nonsupercon-
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ducting) metals investigated recently.!® Comparing the
four metals Nb, Ta, Mo, and W we found that, in accor-
dance with Eq. (6.2) and the second condition (ii), the
transition temperature T, of these metals is higher as N§
increases in size (cf. Fig. 1 of Ref. 16). Furthermore,
band-structure calculations on a number of organic super-
conductors show that high T, is connected with nearly
half-filled narrow bands.'®

To a first approximation, Eq. (6.2) does not depend on
the spin-independent electron-phonon interaction or on
the density of states at the Fermi level of the electrons
which do not belong to the o band. The influence of these
quantities on the value of 7, will indeed be small since
the interaction ¥V (5.24) does not follow Eq. (5.23), and
hence superconductivity is, in the framework of our
theory, a o-band phenomenon. From (6.2), however, it
cannot be concluded that only the o-band electrons form
Cooper pairs at zero temperature since o-band electrons
and non-o-band electrons are coupled to each other by
Coulomb interaction. The behavior of the non-o-band
electrons at zero temperature cannot yet be treated in this
paper.

VII. SUMMARY

Since the conduction bands of metals are degenerate in
several symmetry points of the Brillouin zone we general-
ly cannot construct, from the conduction bands alone,
Wannier functions which are both optimally localized and
belong to a representation of the point group. Rather, we
must combine several bands to a band group in order to
construct “generalized” Wannier functions. Such a band
group in general also contains completely filled and com-
pletely empty bands, and is energetically broader then the
conduction bands alone.

The atomic or Heisenberg model is useful for metals
with energetically narrow conduction bands. Therefore, if
we want to apply this model to the conduction electrons
of a given metal, we must assign the corresponding local-
ized functions to (partly filled) bands or band groups
which should be as narrow as possible. This can be
achieved in a natural way if the existence of the electron
spin is taken into account and the localized functions are
then allowed to belong to a double-valued representation
of the point group. The existence of such localized func-
tions which are called spin-dependent localized functions
is established by group theory. There are even metals
which possess a single (but nonisolated) conduction band
within their band structure which can be represented by
optimally localized functions belonging to a two-
dimensional, double-valued representation of the point
group. Such single bands are called o bands.

In this paper those cubic metals (such as Nb, V, Ta,
Mo, W, and Al) have been considered which exhibit a nar-
row o conduction band. By narrow we mean that the o
band is one of the narrowest, partly filled bands of these
metals. We argue that, in the framework of the Heisen-
berg model, relationship (3.13) holds in sufficiently nar-
row conduction bands. This relationship is essential for
our considerations. Since we cannot prove that the real
metallic conduction bands are sufficiently narrow for
(3.13) to apply, we postulate (3.13) to be true for the nar-
rowest, partly filled bands which exist in the band struc-
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ture of a given metal.

A second basic assumption is that there exist nonadia-
batic localized functions satisfying Eq. (3.20), belonging to
a representation of the point group [cf. (3.22)], and being
orthogonal [cf. (3.19)]. From the properties of the local-
ized functions and the conservation law of angular
momentum we conclude that (a) the electron spins are
coupled to phonons by exchange interaction in a narrow o
conduction band, and that (b) at zero temperature the
electrons are coupled to each other via spin-phonon in-
teraction in such a way that the electrons necessarily form
Cooper pairs. The interaction W effecting this electron-
electron coupling at zero temperature is strongly momen-
tum and spin dependent. Therefore, it resembles, with
respect to this spin-dependence, the familiar Heisenberg
interaction which couples the spins in a magnetic ordered
state. The interaction W, however, does not effect a state
ordered in real space. The paired state may be called “or-
dered in K space” in the sense that the momenta and spins
of the electrons couple by exchange interaction in such a
way that two electrons forming a Cooper pair have van-
ishing total momentum and total spin.

Since the interaction W is mediated by virtual phonons,
the transition from the unpaired state to the paired state is
described in the familiar way by the BCS theory and its
extensions. The question, however, of which materials are
superconductors and which are not is treated in an unusu-
al way in this paper.

The spin-phonon interaction does not act between
single-electron spins and phonons. Rather, it couples the
total electron system to the phonons in the sense that the
electrons are coupled o each other and to phonons by ex-
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change interaction. The phonons enter since the initial
spin-spin exchange interaction does not conserve spin an-
gular momentum within the electron system alone.

The spin-phonon interaction exists below and above the
superconducting transition temperature 7,. We are not
yet able to give the temperature T at which this interac-
tion disappears. We believe that T, is of the order of
magnitude of Curie temperatures, and hence the spin-
phonon interaction, or some effective spin-spin interac-
tion, might be experimentally established in some super-
conductors even at room temperature. Such experiments
might allow one to distinguish a superconductor from a
nonsuperconductor at temperatures far above T,.

In the framework of our considerations, the electronic
behavior within the normal state below the superconduct-
ing transition temperature 7, (forced by a magnetic field)
is still an open problem. At zero temperature, the electron
spin must be a conserved quantity [cf. (5.6)] also in this
“forced normal state.” Since the electrons cannot pair,
this state must have a different interesting feature distin-
guishing it from the normal state above T,. One possible
feature being compatible with the present theory would be
the existence of a magnetic order within this forced nor-
mal state.!”
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