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I. INTRODUCTION

Tlic gcIlcI'ally accepted theory of supclconductlvlty of
metals is based upon an interaction between conduction
electrons and phonons in the crystaL On the other
hand, it has been argued by Matthias that superconduc-
tivity in transition metals is due to an electron-electron in-
teraction. Schmidt et al. found that superexchange in-
teractions possibly mediate pair formation in 8 great num-
ber of metals. In a more chemical approach to supercon-
dUCtkVI(7 bg KFCbSI, 86d MOrC reCCD437 bg JohDSOA 86d
Messrner, 6 correlations were found between the occurrence
of superconductivity and the existence of certain molecu-
lar orbitals at the Fermi energy, where Johnson and Mess-
met call superconductivity "delocalized conduction-
electron antiferromagnetism. " An experimental hint that
tllcl'c ts R correlation bctwcctl supci'conductivity RIld cx-
chsBgc iQCczRc410Q j.A A$5 sQpcrcoGdQctors &8s givcQ bp
Ekbote et a/. These authors argue for the possibiHty
that the electrons responsible for superconductivity are
"bound through exchange interactions of antiferromagnet-
4C kppc»

In discussions of this problem, exchaBge interactions
and electron-phonon interaction are usually treated Rs al-
ternative phenomena bclllg responsible for superconduc-
tivity. In the present paper, it is argued that both types of
interaction are necessary for a pairing of the electrons:
On the one hand, the pairing is effected by an electron-
elcctron exchange mteraction 8 which ls strongly spm-
dependent whereas, on the other hand, this interaction 8'
is mediated by spin-phonon exchange interaction. In the
framework of our considerations, the superconducting
state can therefore be described in terms of spin-
dcpcndcnt (ol' Inagllctic ) cxcllRngc Inter actions Rs weil
as by the Bardeen-Cooper-Schrieffer (BCS) theory and its
cxtcnsioils. T11c spin dcpclldcIlcc of W ls I'cqlllf cd to
answer the question of which materials are superconduc-
tors RIld Which Rfc Dot.

Thc spBl-phoAOG cxchRQgc iQCcx'a, cd.oQ cRGA04 bc hRQ-

died in the framework of the adiabatic or Born-
OppcAhciMcr gppxo&1M84IDQ. T$ &AH bc desc&bcd kB

terms of nonadiabatic localized functions depending on
(bc ck~fFOQ cooÃiQ84cs 88 wc' Rs OB cooxdLQskcs ch&rsc-
terizing the motion of the nucleus. The electrons of the

considered conduction band wiH be assumed to move in
the potential of nuclei which are connected by springs
realized by the core electrons and by the conduction elec-
trons of the other partly filled bands. This, however, does
Bot Incan tllat tllc fllfthcI' iiiflucncc of tllcsc I'cnlnniilg
clcctfons is dlslcgafdcd: Tllc symmetry pfopcftlcs Rlld tllc
spin dependence of the locahzed functions belonging to
the OOQMdcrcd OOQdQcfkoA b80d Rrc IRxg87 dcfcrMMcd bg
the fact that the localized states must be orthogonal to
each other, to the core states, and to the states of the
remaining conduction electrons. Thus the spin-phonon
interaction which will be derived from these properties in
the framework of a generalized Heisenberg model is due
40 direct cxchSQgc 88 &cD 88 40 sQpcrexchRQge 1ACcMctK)A.

In Sec. II a hypothetical narrow, partly filled isolated s
bRlld ls collsldcfcd. It is shown thRt lllldcf ccftRi11 colldi-
tions the electron systetn may lower its Coulomb energy
by coupHng to the motion of the nuclei. This coupling
has no further consequences within an isolated s band
&hkChp 88 48 Mell kDO&Dp ACVCf dOCS CXj.SC 1Q rCR1 MCt818»

In Sec. III the band structure of niobium is considered
as an example for a metallic band structure. Niobium ap-
pcRfs ilot to possess 8 conductloil llaild whlcll llas thc
same symmetry as the considered s band. The situation,
however, is drastically changed when the existence of the
clcctfon spill is tRkcil 11lto Rccollilt RIld thc locRlizcd fUnc-
tions are thus allowed to belong to 8 doub/e Ua/ued repre--
sentation of the point group. In fact, niobium has a nar-
row, single (but degenerate) conduction band from which
we may construct optitnally localized functions belonging
to a two-dimensional double-valued representation of the
polit groop. This b80d, Which &Hi bc c lcd the
band, " is (with respect to its symmetry type) a generalized
s band. Also, in a narrow o. conduction band the elec-
trons may lower their Coulomb energy (under the condi-
tions given in Sec. Il) by coupling to the motion of the nu-
clei. Within a o band, however, the spins of the electrons
Rlso cQUplc to' the Mokj, QA Gf the DQclei bp exch&Age iD-

fera, CAN.
From this we conclude in Sec. IV that the electron spina

cooplc fo phoDGQs sQ@h fh84 the RBSQla.r M0McDCQM is
coesc~ed M the ADQRdiRbkkkc clectxoQ-p40AOA spsfcM.
The matrix elements of the resulting operator of spin-
phollon interaction, H» ph, Ric given 111 tcflns of ilolladla"
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II. COULOMB INTERACTION
IN A NARROW s CONDUCTION BAND

We first consider a metal with an isolated narrow, part-
ly filled s band. The Bloch functions P (r) belonging to

this band can be transformed into Wannier functions,

band

w(r —R)= g e '"' P„(r),
M

(2.1)

having s symmetry,

P(a)w(r —R)=w(r —aR) for a&GO . (2.2)

P(a) denotes an operator of the point group Go acting on
a space function f ( r ) according to

P(a)f(r)=f(a 'r), (2.3)

and o, is a point-group operation. For simplicity, only
cubic-symmetry metals with symmorphic space group are
considered. For these metals, the operators P(a) are by
themselves space-group operators.

Let

batic localized electron and phonon functions. Though
we are not able to give H,"~b explicitly (since these nonadi-
abatic functions are not available) we may derive one
essential property of the electron-phonon system: In Sec.
V we conclude from the conservation law of angular
momentum that, at zero temperature, the electrons neces-
sarily form Cooper pairs in a narrow o band. From the
comparison of the N-electron system with a classical sys-
tem of N particles we give an argument indicating that
spin-phonon coupling is necessary for superconductivity.
On the basis of this assumption we present in Sec. VI cri-
teria for superconductivity. A summary of our considera-
tions has been published recently.

He X &R1 R2
I HCb

I
R1~R2)C C C C

R lsl R 2s2 R 2s2 R lsl
Rs

(2.8)

containing the matrix elements with R~ ——R
&

and

R2 ——R2,

Hex g &R1 R2 I Hgb I R2~R1)c c c
R lsl R 2s2 R ls2

—R 2slR,s

(2.9)

containing the matrix elements with R& ——R 2 and

R2 ——R) and

I IH, = g (R„R2
I Hcb

I
R1,R2)c- c- c-, c-,

lsl 2s2 2s2 lsl
R,s

(2.10)

comprising the remaining matrix elements with

I R1 R2I&IR1 R2J where IR1,R2I = IR1,Rz] means

R~ ——R ~ and R2 ——R2 or R~ ——R2 and R2 ——R ~.

H, is the operator of the Coulomb repulsion between

the charge distribution of the localized states
I
R,s ). H,„

and H, originate from the motion of single electrons
which "see" their instantaneous positions within their lo-
calized states. Both H,„and H, are short-ranged interac-
tions which would vanish if Hcb were constant or if the
Wannier functions would not overlap. H,„ is the familiar
Heisenberg exchange operator acting on the electron spins.
Since H„and H, are similar with respect to their physi-
cal origin, H, also may . be expected to be the origin of an
exchange interaction.

We show that under certain conditions H, may be the
origin of an interaction coupling the electronic motion to
the motion of the nuclei. In the following the operator
H,„ is suppressed and the simplified operator

H =HHF +Hgb —Hd (2.4) H =HHF+H, +H, (2.11)

HHF= Q (R
I HHF I

R')c "R c (2.5)

denoting the Hartree-Fock operator and

be the Hamiltonian operator of the valence-electron sys-

tem with

is considered.
As a first step we make some general remarks on the

(exact) ground state
I

G') of the operator

H'=HHF+H, (2.12)

containing only the Hartree-Fock operator and the
Coulomb repulsion.

I

G') may be written in the form
Hcb —y (R1FR2 IHcb I

R1 R2)c
1sl 2s2 2s2 1 1

Rs
G )=Ed' Iy & (2.13)

as the operator of the Coulomb interaction. The operators
c- and c create and annihilate, respectively, electrons

Rs Rs
in the localized states

I
R,s ) represented by the Wannier

functions. Hd subtracts that part of Hcb which is already
included in HHF, it does not matter in the following and
will be suppressed for brevity.

H~b may be split into three parts,

where

I/I)=c c~~' ' ' c~ IO)R lsl R2s2 R~s
(2.14)

with N being the number of electrons belonging to the
band and i labeling the (z ) possible distributions of N
electrons on 2M localized states.

If the Hartree-Pock energy is small compared to the
Coulomb repulsion,

Hcb =Hc+H x+Hz (2.7) &G'IH.
I
G')»&G'IHHF

I

G'& (2.15)

with the electron system may be described in the framework of
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(2.20)the tight-binding approximation. The Coulomb repulsion
of two electrons with different spin directions occupying
localized states on the same lattice point R is larger than
the Coulomb repulsion of two electrons occupying adja-
cent localized states. Therefore, in (2.13) those numbers
d will dominate which belong to nearly homogeneous
electron distributions

I P; & (2.14) as it is the case in the
atomic or Heisenberg model.

If, on the other hand, the Hartree-Fock energy is much
larger than the Coulomb repulsion,

in sufficiently narrow bands. Summarizing, we may state
that the relationship

& G
I

H
I

G & ) (G'
I

(2.21)

probably holds in sufficiently narrow energy bands.
Relation (2.21) is essential for our considerations.

Below (in the next section) (2.21) will be postulated for the
narrowest bands which exist in the band structure of the
metals. Here we continue to consider a hypothetical s
band sufficiently narrow for (2.21) to apply.

Relation (2.21) means that the ground-state energy
should increase when H, is activated. This, however, will
not happen in reality. We remember that the short-ranged
interaction H, emerged (besides the Coulomb repulsion
H, ) since an electron sees the momentary motion of the
electrons which occupy adjacent localized states. The re-
lation (2.21) was gained assuming that, within the local-
ized states

I
R,s&, the electrons move on rigid orbitals

given by the Wannier functions (2.1). By this assumption,
any change of the electronic motion generated by H, can
only be realized by virtual transitions to adjacent localized
states. In reality, however, the electrons may also change
their orbitals within their localized states. If (2.21) is true,
the electrons will suppress (at least partly) their virtual
transitions to adjacent states by changing their orbitals
within their localized states.

A localized electron now moves in a potential depend-
ing on which of the adjacent localized states is occupied
and on the momentary motion of the electrons within
these states. Such an electronic motion, however, cannot
be described within the framework of the adiabatic (or
Born-Oppenheimer) approximation since such a motion
yields, at a given moment, an electronic charge distribu-
tion within the localized states which is not symmetric
with respect to the positions of the nuclei. Thus the nu-
clei become (for a time) accelerated in certain directions.
The nonadiabatic localized states

I
R, n & must therefore

be represented by localized functions ( r, q I
R, n & depend-

ing also on the acceleration q of the nucleus on the lattice
point R. The number n labels different states of motion
of the nucleus.

In terms of nonadiabatic localized functions the above
statement reads as the following: If (2.21) holds, the con-
duction electrons lower their energy by coupling to the
motion of the nuclei so that the modulus of the matrix
elements

& G'IH„„
I
G»~(G'IH,

I

G'&, (2.16)

the electrons exhibit a more random occupation often re-
ferred to as bandlike behavior.

For the real Hamiltonian neither (2.15) nor (2.16) is
true. The system finds a compromise between atomiclike
and bandlike behavior. As is well known, the conduction
electrons tend to a more atorniclike behavior with decreas-
ing bandwidth and to a more bandlike behavior with in-
creasing bandwidth.

As a second step we consider the infiuence of H, on the
electron system. From its definition (2.10) follows that
H, generates virtual transitions between adjacent localized
states. We assume therefore that (i) the ground state

I
G &

of H=H'+H, tends more toward random occupation
than does

I

G' &. Thus, due to H„ the balance bandlike
and atomiclike behavior is shifted toward bandlike
behavior and hence the Coulomb repulsion increases.
This increase of the Coulomb repulsion will be small if

I

G'& already exhibits random occupation; it will be the
larger increase as

I

G'& tends to have more homogeneous
occupation. The (positive) energy difference

aE =(G IH'I G& —(G IH I
G & (2.17)

will hence increase with decreasing bandwidth.
The expectation value

nE=(G IH, IG& (2.18)

will also increase with decreasing bandwidth since, ac-
cording to the above assumption (i), oE will decrease if
the balance between random and homogeneous occupation
in

I
G & is shifted toward random occupation. Thus the

energy difference

& G
I

H
I
G &

—
&

G'
I

H'
I

G'& =~&+ SZ (2.19)

will increase with decreasing bandwidth.
Further, we assume that (ii) H, is a small operator in

the sense that 5E+AE =0 for a certain bandwidth. We
hen m exec tht

(2.22)

ce ay p t a

dr dr 'dqdq',
2

I

r —r'I

becomes minimized for I R&,R2I&IR &,R& I. For simpli-
city we set

&Ri~Rz IHcb I
Ri~Rz&=0 for IR»RzIAIR'&, RpJ,

(2.23)

and for nonadiabatic functions labeled by a distinct quan-

f

turn number n.
The nonadiabatic operator of the Coulomb interaction

is then given by

Hcb g (R1 R2
I Hcb I R),R2&c"- c"- c"- c"-

R,s

(2.24)
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(where the exchange term H,"„ is still suppressed). The
opciatofs c Rfld c cfcatc Rnd annihilate, I'cspcctlvc-

Rs Rg

ly, an dectron with spin s in the locahzed state
~
R, II ).

They obey (for fixed n) the well-known commutation
flllcs of fcfllllon opcfatoi's,

O' NT

L.—@ & ~~~a+ & s. @ & @~~a+

ls Independent of q Rnd hcncc wc have

[Hcb „P(a)]=0 for a &Go,

which appcRls to contradict tile relation (2.30). The
opera«r Hcb as given ln (2.2&), however, must be
&cdescBked bp

Hcb —p Hcbp

[Hcs,P(a)Q(a) ]=0 for a EGo . (2.27)

Thus the localized functions ( r, q ~
R, B ) belong to a rep-

resentation of the pomt group (smce Hcs ls diagonal)
which is, in the case of the considered s band, the identi-
cRl x'epf cscG48iioB

P(a)Q(a)(f, q ~R,n) =(r, q ~aR, n) for aCGo,

[P",P(o.)Q(Iz)]=0 for aEGO .

Thc opcx'Qkof

Q(tt)f (q) =f(a 'q) .

As stRfcd 8bove, 8 AQclcvs bccoMes 8ccelcfRied 8t 8
given moment when the electronic charge distribution
within the locahzed state is unsymmetric (with respect to
this nucleus) at this moment. It is essential, therefore,
that Eq. (2.28) does not hold when P(u)Q(a) is replaced
by P(a) alone. Under the action of P(a) we obtain local-
ized states in which the nucleus is (generaBy) Bot ac-
celerated in the direction of the center of charge. Neither
does Eq. (2.27) hold when Q(a) is suppressed,

[Hcb,P(~)]&0 for some aEGo (2.30)

[(2.27) ls false lf thc commutator docs Bot vanish for Rt

least one a&6&]. This again demonstrates that the elec-
tron system has gained new possibihties to move by cou-
pling to the motion of the nuclei since the adiabatic
Coulomb interaction (2.6) must commute with P(a) (for
a& Go). In this context the ratio m„lm, i of the mass of
the QUdcQ8 RDd the cjccIFGD 48 Qok fclcvRD4~ MAcc the Rm-

plltudc of tllc Rccclcfa'tlon q ls meaningless. From tllc
largeness of this ratio we conclude as usual that the nuclei

do not move far from the lattice points R.
The nature of the interaction between the electronic

motion and the motion of the nuclei characterized by
(2.30) can be elaborated. The operator of the Coulomb in-
teraction of the electrons,

Hcb (2.31)
I
f —f. I

pe%

[P",P(u)]&0 for some a&GO .

Relation (2.30) is then true in spite of the vahdity of Eq.
(2.32). In other words, the assumption that the electron
system lowcfs its own Coulomb cncfgy by coupling to tllc
motion of the nuclei does not violate physical principles
since the Pauh principle is valid. In this sense the interac-
tion coupling the electrons to the motion of the nuclei is
due to the Pauli principle and may therefore be caBed an
cxch&Bgc EQkerRcfj. 06. Howcvcx', 4l 08QQ04 bc dwcAb& j.Q

the familiar way in terms of an exchange integral.
The electronic charge distribution within the nonadia-

batic localized states differs from that within the adiabat-
ic states represented by the Wannier functions (2.1). To a
first approximation we shaB assume that the Coulomb
repuisioil is Bot crucially affected by this modification of
the charge distribution, i.e., we replace Hcs by H, (2.8).
The eonmd4ba6@ Hemiktomme
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III. COULOMB INTERACTION
IN A NARROW o CONDUCTION BAND

The description of the nonadiabatic system as given in
the preceding section is incomplete inasmuch as the nona-
diabatic fermion operators c"- (2.25) are still labeled byRs
one purely electronic quantity, namely by the electron-
spin quantum number s. For the conduction band, how-

ever, which will be considered in this section we must in-
troduce fermion operators c"- which no longer depend

Rm
on s.

Consider, e.g., the band structure of Nb (Ref. 10) de-

picted in Fig. I, in particular the band denoted by the
heavy line. It is characterized by the representations

1 25, Hz5, X2, and P4

which belong to the band in the points I, 0, X, and P (in
the notation of Bouckaert, Smoluchowski, and Wigner").
As shown in detail in Ref. 12 we cannot assign to this sin-
gle band familiar Wannier functions which both are op-
timally localized and belong to a representation of the
point group since 1"25, H25, and P4 are three-dimensional.

The construction of optimally localized functions be-
longing to a representation of the point group, however,
becomes possible in a natural way if we account for the
existence of the electron spin. For the double valued rep--

resentations one has

D$/2 Q I 25 —I 7 + l 8 Di/2 QH25 —H7 +H8+ + + +

(3.1)

+1/2 X+2 + D1/2 +P4 7+PS

with D&/2 denoting the two-dimensional double-valued
representation of the three-dimensional rotation group
O(3). It is easily seen that there exists a subset of double-
valued representations, namely

From this group-theoretical result it follows' that we
can assign to the considered single band "spin-dependent
localized functions" (SLF) of the form

band

a~(r R—,t)= g f, (k)u, (t)(t (r)e
k, s

transforming according to

P(a)S(a)a (r R, t—)

(3.2)

= gd ~ (a)a (r aR—, t) for aCGO .
m'

(3.3)

S(a)u, (t)= QD, , (a)u, (t) for a&O(3), (3.4)

with D, ,(a) belonging to the representation D, &2 The.
index m labels the rows of the two-dimensional represen-
tation I 7+. It is convenient to set I

&
——+ —,

' and

mz ————,'. In addition to (3.3) the SLF transform accord-
ing to

Ka (r R, t) =+a—~(r —R, t), (3.5)

by application of the time-inversion operator K. We de-
fine the upper sign to belong to m =+—,

' and the lower
sign to I

The matrix f, (k) may be chosen such that (a) Eqs.
(3.3) and (3.5) are true and (b)

Here f, (k) is a k-dependent unitary two-dimensional
matrix and u, (t) are Pauli's spin functions. The matrices
d~ ~ (a) belong to I 7+. S(a) acts on the spin coordinate t
according to

I 7+,H7+,X+, and P7, (r, t)= g f, (k)u, (t)P (r) (3.6)

being compatible in the sense that H7+, X+, and P7 are
subduced by I 7+.

H N I P N P H

FIG. 1. Band structure of Nb after Mattheiss (Ref. 10). The
heavy line denotes the o band.

varies smoothly (for fixed r and t) in k space' though
there exist several symmetry degeneracies. Such a choice
of f,~(k) yields the optimally localized' SLF on the con-
sidered band. It is essential in the following that the ma-
trix f,~(k) which belongs to the optimally localized SLF
of the considered Nb band must necessarily depend on k.
This follows from the very fact that the considered band
cannot be represented by Wannier functions belonging to
a one-dimensional (single-valued) representation of the
point group [the SLF (3.2) are identical with such Wan-
nier functions if f,~(k) is independent of k].

We define a o. band as a band to which we can assign
SLF belonging to a (two-dimensional) double-valued rep-
resentation of the point group and cannot assign %'annier
functions belonging to a (one-dimensional) single-valued
representation of the point group. Thus the matrix
f, (k) which belongs to the optimally localized SLF (3.2)
of a o band is not independent of k.

If f, (k) depends on k the symmetry relation (3.3)
does not hold when P(a)S(a) is replaced by S(a) alone.
S(a)a~( r R, t) is rather a linea—r combination of SLF,
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Hc& —g (Rl, m1, R&,mz j Hcs
~

R'I, m'I, Rz, mz )c- c - c-„, , c-„,
Rn

(Rl, m1', Rl, m2
~
Hcb

~
R l, m'1,'R'p, mj )

a* (r —Rl, t)a (r ' —Rl, t')a, (r —R l, t)a, (r ' —Rz, t')
e' 1 2 M2

2 g. ]I

H —HHF +Hg +Hg

H, = g (R1,ml, Rl, ml ~Hcs
~
Rl, m'I,'R2, ml )c- c-

contalnlng tllc matrix clclncnts with R1 ——R I Rlld Rl
=R2 and H, the matrix elements with [R1,R2j&
f R'„Rz J (where the term H,„is still suppressed).

We now apply the arguments discussed in Sec. II for
thC hgPOthCfiC81 5 bBDd ]to t4C mOI'C re811SLIC N bBAdS. LCf

i 6) and
i
6' ) be the ground state of H and H' (3.11),

rCSPCCCIVdp. &C POSEU184C fh84

(6 JH [ 6)~( '6fH' /6' )

holds if the considered o band is one of the narrowest
bands within the band structure of the considered metal,
and that the energy difference (6

~

H
~
6)

—(6' ~H'
~

6" ) is at least of the order of the ciectron-
IC the~81 CBCEgg Ri 4CmPCTgfUrCS &CD RbOVC &C SUPCr-

COBdUCCmg 4I BHSKCK)Q CCmPCFBCUZC F&. &8 glVC AlreC BE-

gUMCDLS CQfIOb0184mg fhIS POStUj.AC.
(1) Experimentally, it is found that the d electrons of

transition metals exhibit behavior characteristic of the
840mIC mOdCi SmCes BS S484Cd BbOVey Hg rCSI~C48 ~hC

vahdity of an atomic or Heisenberg model, it may be ex-
pected that there exists a mechanism making H, ineffec-
tive least for the narrowest bands. Such R mechanism will
be derived from (3.13).

(2) Because of (3.7} the operator H, (3.12) does not
commute with S(a),

[H, ,S(n})~0 for some aFO(3),

MBCC Hcb dOCS 604 dCpeQd OD thC SpIQ COOId1ARTCS. COQ-

sequently, the interaction H, restores the conservation of
SPm BQgU181 mOmCAtUm. SUCh BQ mtCrBC410Q m8$ bC CX-

PCCted 40 be QCithCI' PUrelg &f1'RCCIVC HOI' PUFCjg ICPUIMVe,
which raises the probability that the two basic assump-
tions labeled by (i) and (ii) in the preceding section are
v&4,d.

(3) H, has the same order of magnitude as the ex-
chRngc tcrnl Hcz of Hcs slllcc the matrix clclllcnts of
both operators have the same form. Since the interaction
H,„generates exchange effects as, e.g., ferromagnetisrn,
CVCB Bt rOOm tCMPCTRCUICS, It IS COACCIVBMC th84 CXChBQNC

effects can be derived also from a sufficiently large energy
difference

(6 ~H [6&—(6"[H"[6"»0.
From (3.13) we again conclude [cf. (2.37) and (2.38)t

that H, (3.12) is an approximation for the nonadiabatic
COULOmb mf CrBCCIOD
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Hcj g (RlymliRQpmg i Hctp i Rlym I )RI iml }c~ c ~ c~ i 'c +

R

in a narrow o band. The matrix elements of Hcg,

( Rl, m I,Rg, m2 i Hcf i Rl, m I ', Rl, m I

(RI,P?ll, n
i rj, t, q}(RI,mz, n

i l, t, q }(l,t, q i
R I,ml, n }'(I', , q ) z, ml, n }

dr r q

& rt, q, i k,m, n }, (3.18)

and c" and c"- create and annihilate, respectively,
R w R

clcc'trolls ln locallzcd states rcpI'cscntcd by 'tllc localized
functions (3.18). The fermion operators c'-f and c"-

led

R~
satisfy the commutation rules (2.25) and hence the local-
Izcd functions Rrc ortllogonal accoldlng to

g f &R', I', m
I r, ~ I)&r, i q I

R mn )&rdlt

The quantum number n labels again those functions for
which

—
RIIMI R2mZ RNmÃ

Because of relation (3.24) the operators

S(a)c'-~ St(a)—Rm—

(3.25)

i (RI nl I'Rg, nip
i Hcp R i, m I 'R g, my }i

&Rl m, ;R,,m, iHcP k'„m', ;k,',m,'}=0

CRnllot bc cxprcsscd, for soInc a CO(3), as a llncRI' conl-
bination of the fermion operators c". .. The rnomentari-

Ip QBsgmmcCAc8I ch8I'gc &sfAbQkioA

ic localized state, characterized by a distinct value of the
acceleration q of the nucleus, hence depends on the spin
direction (that is, on the spin coordinate t) The lo.calized
functions satisfying Eq. {3.20) are not products of a space
function and a spin function rand Eq. (3.22} does not hold
if one of the operators P(a), Q(u), or S(a}is suppressed].

The Bonadiabatic Coulomb mteractlon Hct, (3.16) does
not conserve the electronic spin angular momentum. The
conservation law of angular momentum, however, should
hold also within the nonadiabatic system. Thus relation
(3.15),

f Hcb, S(a)J=Q for aCO(3),

= gd~'g~(a)( P, t, q i Ra, ,m}nfor a EGO,

where still P(a), Q(a), and S(a) act on r, q, and t,
fMpcctIvcI7~

It is essential that, according to (3.14), the interaction
H, (3.12) does not conserve the electron spin. Since H,
is the adi. abatic approximation of the nonadiabatic
Coulomb Interaction Hcb we cannot expect that Hcf, con-

M(a)(r, t, q i
R, m, n }
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translation from the origin Ro (with aRO=Ro) to R. The
operators M(a) commute with the operators c" in the

Rm
same way as the S(a) commute with the c,where e—Rs' Rs
still annihilates an electron with spin s in a state

represented by the Wannier function lc (r —R) (2.1):

S(a)c-„St(a)=QD, ,(a)c-, for a&0(3)
S'

[cf. (3.4)] and

M(a)c"„Mt(a)= g tg (a)c"-, for a EGo, (3.29)

[cf. (3.27)]. Thus M(a) must be identified as an operator
turning the total spin angular momentum of the nonadia-
bRfiC 1OCR4Zed 8II;AC~ 3,Qd

[H",M(a)]=0 for aEGO

as the conservation law of angular momentum in the
DOQRdIBbRti(I SQSLCI. H dCDOCCS the COIPICf C H0 MiI"
tonian of the cr band electrons which will be given in {5.1).

According to (3.26) it is

M(a)(r, t, q iR, m, n)(r, t, q iR', m', n)

=[T-P(a)g(a)S(a)T (r, t, q i R,m, n)][7*-,P(a)Q(a)S(a)T „',(r, t, q i
R',m', n)] (3 31)

whcll M(a) ac'ts on a product of two locallzcd functions

belonging to different lattice points R and R'. This rela-
tion (3.31) shows that, in this case, the operators M(a) are
not space-group operators since the M(a) effect a rotation

of the coordinates r, t, q around centers R and R', respec-
tively, which are different for the two locahzed states.
Thus (3.30) does not follow from the symmetry behavior
{3.21) of the Hanliltonian Hcb; it is rather an additional
COQdi]I EOQ a

The nonadiabatic oper'ator of the Coulomb interaction
Hcb (3.16) docs Bot consclvc thc allgular Blonlcfltllnl,

[Hcf„M(a)]&0 for some aEGo . (3.32)

This follows f'rom the very fact that Hg has matrix ele-
ments wl'th I nil, ml I Q I m l,nil I. Firstly, such Blatrlx
elements vanish if the localized functions are products of
a space function and a spin function as was the case for
the narrow s band considered in the preceding section, or
secondly if the operator Hcs (2.31) commutes with opera-

tors turning r& and r around different centers R and R',
respectively. Since both conditions are not fulfilled, (3.32)
is true. [The adiabatic approximation H~~ (3.12) of Hg
also does not commute with any of the operators M(a)
since it has matrix elements (3.10) with

I m l, ml I [m 'l, m 1 I. This follows simply from the

properties of the SLF as given in (3.2) if f,~(k ) is not in-

dependent of k.]
The conservation law of angular momentum is thus

ViOI84ed &icbm thC CICCkrOQ 8$84CI &hCQ ihC CICC]I,IOD

SPIS C(MPIC 40 the IOtiOD Of II;hC QUCIC1. TbiS WC H14CI'-

pret in the following way: In the nonadiabatic system, the
AQCICl RrC PC~SACAH7 8CCCICI84& iQ VSAOQS der'CCfiOBS.

ThiS 1QCIQdCS the pOSSibilitg kh8t HHF +Hcb m8$ ha, VC 8
grOQAd 84RCC iQ W4iCh CVCQ fhC QV8Mge POSitiOQS Of AC
QQCICi IOVC. SQCh 8 IOtioQ 8CCURIIQ OCCURS WhCQ, RC-

cording to (3.32), the electron system must give off angu-
lar momentum to the periodic array of the nuclei. In the
next section we will show that the average positions of the
QUCICi MC IOVCd iD SUCh 8 &kg khRII; PhOQOQS RI'e CXCiked

or ebs''bed.

In this section the operator of spin-phonon interaction

H,"~~h will be derived from (3.32). We wiD give its matrix
elements in terms of the Bonadiabatic localized functions
and of pllonoll fUflctlons 111 ordcl to sllow tllat Hs ph ls

QQlqQClg giVCD. IA SCCS. V RDd VI, ho&CVCI", WC &N 004
QCCd thC eqUStioQS detCfmiQiQg Rs pg. ThC OQ17 PrOPCNQ

of this operator which is Used in the following sections is
the commutation rule (4.27) and the fact that it does not
vsQ][sh I 8 A8rfow K bRDd

Let

(where BZ is the Brillouin zone) be the boson operators

annihilating phonons in the locahzed phonon states
~
R, l )

being represented by localized functions of the form

(ql, ql, . . . , q1t ~
R, /), which may depend on the q

coordinate of each of the M nuclei (in the q representa-
tloll). Thc opclRtols 5 ~ al'c constl'Uctcd f loni thc aeons"

RE

tic phonons of Bloch form, b- (k is the reduced wave

vector and p labels the three acoustic branches), in the
same manner as generalized Wannier functions'1 are con-
structed from Bloch functions. Thus the k-dependent un-

itary matrix gtz(k) may be chosen such that' the local-
ized states are optimaliy localized and that they transform
RCCQÃdiQg tO

where the matrices Dt*t(a) bdong to I ls in every cubic
CI7858I. ThC IOC84Zed PhOQOD Stat, W B.rC 3,88VICd II;0 be
0%hONOA8I II;0 CRCh OfhCI 8Qd II;0 AC CICCtI'OA St84CS.

Hcb as given by (3.16) may give rise to an electron-
phonon coupling since matrix elements of the form
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( R libel &R 2 IziR1&m1iR2&mz I Hcb
I
Rl~m 1 R2 m2

2e=
2 2 («'1 i1lq1 . . qM&«2izlq1 . qM&&R1m1n Ir I q- &&R„m„n lr', I', q' )

tt' Ri R2

X &r ', t'q'-
I
Rz, m,', n&&r, t, q-

I
R1,m1, n &il r —r'I )d«r'"q1 dqMdq'1 dies

(4.3)

will generally not vanish if (q1, . . . , qM I

R'„I, ) and

(q1, . . . , qM IRz, lz) depends on q and q-, respec-
Ri R2'

tively (where q- denotes the acceleration of the nucleus
R

on the lattice point R). The conservation law of angular
momentum for such an electron-phonon interaction is still
expressed by (3.30) in which M(a) acts on the boson
operators b-, according to

R1

M(a)b- M (a)= QDt t(a,)b, for aCGO, (4.4)
1'

with D1 t(a) belonging to I 15. Though the nonadiabatic
localized functions are not explicitly known, some proper-
ties of the matrix elements (4.3) may be derived from the
conservation law of angular momentum.

Under the action of M(a) the fermion operators c"
Rm

transform according to Eq. (3.29) in which the matrices
d ~ (a) belong to I 6+, 16, I"7+, or 17 in any 0. band
(still since we only consider cubic metals). The fermion
operator products in the nonadiabatic Coulomb interac-
tion Hpb (3.16),

&gal

rgb n n

R &m& R2m& R2m2 R &m&

t

form, for fixed R1 and Rz, a basis of the representation
I*;XI*;XI;XI;with i =6+, 6—,7+, or 7—.In each
of the four cases we have

I; XI ' XI 'XI '=2I 1+I 12+I 25+3I (4.5)

«e~ (R1R2)=
I

Psi, . ~ ~, 162

h„(m„m„m, ,m', )
JA, ~ I I

Xc-+ Q —+ Q —+
nf nf n n

R &~& R2m2 R2~2 R1~1
(4.6)

Hcb ——

where

A.,jK, Ri, R2

F„(R1,R2)~d (R,,R2), (4.7)

represent the 16 unitarily transformed vectors belonging
to the reduced representation where x labels the row of the
jth representation (j =1,12, 15',25') and A, distinguishes
the two and three different sets belonging to I 1 and I"»,
respectively.

Hcb (3.16) can be written as the sum

FJ (R1,R2) =
I Im], m2, m], m2

AJAR,h„(m1,mz', m1, m2)(R1, m1,'Rz, mz
I Hcb I R1,m'1 ', Rz, mz ) . (4.g)

The basis vectors ei (R1,Rz) of the jth representation are
transformed unitarily once more,

and

e~ (R1,R2) = g d„„(R1,R2)~e (R1,R2)
K

(4.9)
h „(R1,R2', m1, mz, m1, mz)

= gd„, (R1,R2)h„"(m1,mz', m1, mz) . (4.12)

in order to make FJ (R1,Rz) independent of a. Such a
transformation is possible since the basis of an irreducible
representation may be rotated such that the components
of a given vector are equal. The coefficients dJ„(R1,Rz),
however, will depend on R& and R2. Now H~b has the
orm

The two terms of HPb (4.10) with j= 1,

H1 —— y [F"(R1,R2)e1'(R1,R2)
Ri, R2

+F' (R1,R2)e1 (R1,R2)],
~Cb

with

FI (R1,R2)

FJ (R1,R2)e J„(R1,R2)
A, ,Kj, R&, R2

conserve the angular momentum according to4.10

[H1,M(a)]=0 for a&Go . (4.14)

h *„(R1,Rz,'m1, mz,'m 1,m z )

X (R1,m1', Rz, mz I HK
I
R1 m1,'Rz, mz )

(4.11)

The other terms of Hcb do not conserve the angular
momentum since they do not belong to the identical repre-
sentation. For j&1 the operator e„(R1,Rz) creates a
well-defined additional electronic angular momentum
characterized by j and ~. Now phonon operators will be
constructed annihilating just this angular momentum.

Consider phonon-pair operators of the form
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where b-, is given by (4.1). They transform according toRl

= g D', I, I (a)bt-, bt, for aCGO, (4.15)
I Ip

C» (RI,RI)p»„"(RI,RI),

[H, ph, M(a)] =0 for a C Go .

be the nine unitarily transformed basis vectors of the ir-
reducible representations I

»
(with j= 1,12,25', 15').

COAt81QS thC idCQt1C81 ICpf CSCDt8tIOD P I CX8CItlp

once, wllcrcas I
» Q I y docs not coIlta111 I ) lf JQJ . Thus

there exists a unitary matrix g»„(RI,R2) so that, for a
giVCQ R) 8Dd R2,

g g»„(RI,RI)e» (RI,R2)P„'(R'),R2)
B',x"

The summation over j in (4.23) is restricted to j=12, 15',
8Ad 25 &C m8$ 88$ th8t fhC PhoAOQ OPCr8II, OI'

p» (RI,R2) annihilates the angular momentum created by
e» (RI,RI). Thus from the conservation law of angular
BloIIlclltunl wc conclude thRt 6'& (RI,R2) cl'cRtcs R charge
diS(AbQtiQA WhlCh 8CCCICr8fCS ihC QQCICi I SUE 8 &8@
that the phonon pair p» (RI,RI) arises. Therefore, we re-
place the operator Hc», (3.16) by

Xg'."„(R,,R,)g (R '„R,'),
(4.20)

where the coefficients c» (RI,R2, R ~, R q) are arbitrary ex-
cept fol'

c» (R RIRIRI) Ic~(»R', IR','2R, IR)I

Tile lntclRctlo11 H~ ph B1Ry bc called R splrl-pho11011 111-

teraction since it is caused by coupling of the electron
SPiAS t6 thC IOILiOQ Of khC AUCICi. B, 18 8D CXC48QgC iQ-
teraction since the spins couple to the motion of nuclei by
CXCh8QIC MtCr8CgiOD.

ThC OPCI840r H& ph CRIl bC &AII:II;CQ 88

H,"ps ——g (R'I, II', R2, l2, RI,mI, R2, mg
~
Hcf j Rl, ml, RI,m2 )b, b, &- c c,c-, +H.c. ,Pfg Pfg 8 Pf

R IWI7

(R'I, II„'Rq, lq, RI, ml', Rq, m2
~
Hcb

~
Rl, m'I,'R2, m'I )

II» {RI,R2', m), m2,'ml, m'I )g»„„(RI,RI)c», (RI,RI,'R I,R2)II»„(l1,12)F»"(RI,RI), {429)
XI,KIK Ij+I
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with FJ (RI,RI) given by (4.11). Ail coefficients in this

equation are determined by group theory except for the

cocfflcicllts e~ (RI~RI,R I,R I } dcPcndiIlg oil thc form of
the nonadiabatic localized electron and phonon functions.
This uncertainty is meaningless since in the following we

only' need Eq. (4.27).
One problem cannot be solved by group theory: It is

possible that a part of H i also depends on phonon opera-

tors since both el"(R„R2) and e 1 (RI,RI)pl (R„Rz) [cf.
(4.22)] belong to I i. In this case this part of H", ~ would

also bclollg to Hg ph. This question~ however, is meaning-
less in the following.

labeled by the spin quantum number s and hence any state
in the space A being spanned by wave functions of the
form (3.25) does not satisfy (5.7). In fact, the electron sys-
tem becomes adiabatic when H,"ph+H~h is (approximate-
ly) replaced by W though the electron spins still couple to
the motion of nuclei at zero temperature. This coupling,
however, mediates (via virtual phonons) an electron
electroII interaction which now is represented by 8'.

Thc IDTCI'RctloQ & 18 )Usf 88 8D cxchRQgc IA'II;CI'RctloQ 88
IS HS"Ph. Though K iS QO4 CXPI][giddy kQOWQ RII; tkIS Slake,
we may derive from (5.5) and (5.7) that under the action
of 8' the electron spins are coupled in such a way that
CoopcI' pMfs 8Asc.

At a first step we show that any given state generally
does not satisfy both conditions (5.5) and (5.7). Consider
II;1M sCMC

where c- still creates an electron in the state
~
R,m )

represented by the SI.F (3.2). The coefficients
d(mi, ml, . . . , m~} are assumed to be chosen in such a
way that

M(a) ~P)= ~P) .

which follows from (3.2) [cf. (3.6)], we may transform

i p ) into thc s Icpicsclltstloll,

~ p) = g d (kl,si, kl, sp, . . . , k~,s~)

M(&)
I 60 ) =

~
60 ) for IICGo,

where
~

Go ) denotes the ground state of Ho . Within

( Go ), real pllolions Rre Bot cxcltcd slncc Ho docs Bo't

depend on phonon operators. The phonon system does
not store angular momentum but only can mediate (via
virtual phonons) a coupling between the electron spins. In
the system represented by Ho the electron spin is hence a
coQscM& qURQ'tiffs 7ICIdIQg

[8',S(a)]=0 for a&O(3)

S(a)
i
6" ) =

i

6" ) for CHICO(3) .

&I'M th]Is Qcw 8$8fcm~ II;he I~ghzed clcctx'0Q &II;RIcs RI'c

represented by adiabatic functions, i.e., by the spin-
dependent locahzed functions (3.2) in the case of the con-
sidered o' bRnd. This is because tllc llolladlRbRtic fcrnllon
opel'ators c"- and c"- (as defined in Sec. III) are Bot

R w R

(5.13)

Assume that, for given values of ki, k@. . . , k~, we have
S(II) ~p)= ~p) for ~&O(3). Assume further that one k
VMtof'~ C.g., kI, Is 8IIghfI7 Ch8Qged. Th84 ICRQS fh84 thC

coCfflclellts d ( k is 1 kzsp ' ' ' kivs~) Rl'C RlSO InodlflCd SIBCC

f,~ (k) is not independent of k in a o band, and thus the
relation S(a)

~ P) =
j P) for a&O(3) in general will not

hoId &kcQ k& Is chBQgcd.
As a second step we show that states of the form

(5.14)
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f, ( —k)=+f', (k),
which follows from (3.5). The plus sign in Eq. (5.19)
holds for m =s and the minus sign for m = —s. In fact,
(5.18) gives

[Pt-„,S(a)]=0 for aEO(3) . (5.2())

Because of (5.16) and (5.20) the states
~ Pp) (5.14) f'ulfill

both conditions (5.5) and (5.7).
IQ COAflt II;0 RDQ g][VCQ SII;SIC, khC PMf& Sf84C CODSCfVCS

thC SPI RQIQIM momCD/Um RGd IhC CXCh@QgC ICCfRCt][OQ

8; hence effects such as 8 paired state [or another partic-
ular state fulfilhng both conditions (5.5) and (5.7)]. An
essential property of W can be derived from (5.4) and
(5.6). Assume that 8' may be represented by a two-
CICCkroQ IDtCrRCf IOQ~

(5.21)

which commute with both S(a) [for a&O(3)] and M(a)
(for a E Gs) are given by

[cf. (5.15)],and hence 8'has the form

W= g (k[LI (k')P', P„, . (5.22)
k, k '

ThQS AC jIBCCTSCCIOB K IS SkfOAgIP k SQd SPI dCPCGdCQf

SIACC

The validity of Eq. (5.23) is the main feature which dis-
tinguishes 8' from the electron-electron interaction

&= g (kl, kl
~

V( k lk, l)ct
k IsI k 2s2 k 2z2 k I~I

'

(5.24)

which can bc dcrlvcd from the spin-independent,
CIMCFOQ-PhOQOQ mtCMCtLOQ

H, .ph
——g (k, k) ~H, ph~ kI )b~-„ct c, +H.c. (5.25)

k, s

by R callonlcR1 transformation of H~ ph+Hph. Tllc Boll-
vanishing matrix elements of 8; on the other hand,
sllould bc able to calclllatc to sufficient Rccul'Rcy when

H& ph ls rcplaccd by 8 spill-llldcpcndcllt clcctron"phonoll
interaction of the form (5.25). It is true that H,"ph (4.28)
dCSCAbCS 8 4&0-ClCCtfOD 4&0-PhGQOQ ProCCSS. ThIS, ho&-
cvcr, docs llot mean tllat t11c two phonons become cxcltcd
(or absorbed) simultaneously since H,".

ph does not depend
on time. The special form of H,".

ph should be interpreted
by stating that„after a certain QBC-electron one-phonon
process, the probability for another correlated one-
electron one-phon. on process rises. Thus for the calcula-
tion of the energy gap and other expectation values of the
superconducting state it should be sufficient to replace
HN

ph by 8 one-electron, one-phonon interaction. Fu~her-
more, since in Rn unpaired state the conservation of spin
angular momentum is violated, 8' is necessarily effecting
a state in which the electrons fol'm Cooper pairs, and
hence W' will necessarily have a form required by theory
for the onset of superconductivity. The accurate (two-
electron, two-phonon) form of H,"~~h serves only to show
the validity of (4.27) and hence to derive Eq. (5.23).

One may ask whether spin-phonon exchange lnteractlon
is necessary for superconductivity. A strong indication
for such a necessity is the finding that those metals
(such as Li, Na, K, Rb, Cs, Ca, Cu, Ag, and Au) which do
not have a narrow, partly filled 0' band do not become su-
perconducting (at atmospheric pressure) down to the
lowest temperatures investigated so far.

The assumption that spin-phonon exchange interaction
is necessary for the Hamiltonian to have eigenstates in
which the electrons form Cooper pairs would not contra-
dict the theory of supe~conductivity which is based on the
Eliashberg theory. As is well known, this theory is a per-
4UI b84IOQ ihCQI P M &hICh khC SUPCrCOQdUCXmg grOUAd

St8IIC IS OSCd RS fhC ZOO SPPZOXIIKIIOHq I.C.s 4hIS PCQGr-
bR'II, IQD khCO~ IS gPPIICSbIC OBIS II,O 8 HBIINOI8Q &hICh
118S clgcnstR'tcs 111 wlllch 'thc clcctrolls form Coopcl pMrs.
In the following we argue that as a rnatter of principle it
IS OBI7 & fh84 CRA hSVC PMfCd CIICAS43,PCS.

Two clcctl'011$ forming 8 Cooper pMl' (5.15) 81'c

CSCnbCd bg 1&0 qVSBtQI DgmbCfS k RQd 5& &hCZCSS 4&0
UnpRlicd electrons Ric characterized by four quRntuB1

numbers kl, sl, kz, and sz. Accordingly, the number of
degrees of freedom of tllc elcctx'onlc 1110tlon (wltlllll 8
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small energy Iange 6 about the Fermi level) in a state of
Cooper pairs is one-half that in an unpaired state. Ac-
cording to Eq. (5.22), the number of electronic coordinates
on which W depends also is one-half of those on which V
(5.24) depends. That is, only 8' belongs to an N-electron
system in which the electrons have one-half of the number
of dcgrccs of flccdolli of Rll Unpaired stRtc. In R elasstcal
system, the number of degrees of freedom of any state of
motion of N particles is given by the number of indepen-
dent coordinates on which the Hamlltoruan. function de-

pcIlds, I.c., It Is prcscrlbcd. If this ls also tlllc ln R quan-
tum system, then V has only unpaired eigenstates and it is
II,hC CXChRDIC IAtCFRCTIOA & the hRS CIICAS484CS lA &hICh
'thc clcctrolls form CoopcI' pRlrs.

Equation (5.23) is an equation of constraint. The effect
of (5.23) may be described in terms of a quantity which in
classical physics is called a constraining force that forces
the electrons to form a state in which they have less de
grees of freedom than in the normal state. If in a quan-
CQI 8$84CI SQCh COD841RIIAg foFCCS hRVC R SimiIRf IC@A"
IDg RS ID R CIRSSICRI SQStCI), AC Ell88hbCFg ghCOFQ &OQId

bC RPPIICRbIC II;0 fhC SPIQ-PhODOA IDCCFRCIIOA ODIQ. AS
stated above, this would mean only a small extension of
existing theories, though IV and V have quite different
physical interpretations. This new aspect might help to
PFMIC4 &high IRCCFIR1S bCCOIC SQPCFCOAdQCtIDg RQd

WhICh do Aof.

Assuming relationship (3.13) to hold in a narrow cr

band, nonadiabatic locahzed functions satisfying (3.20) to
exist, and (5.23) to be necessary for superconductivity, we
f'ormulate the following conditions for the occurrence of
SQPCFCODdQ@IIVI47.

(i) A metal is a superconductor only if one of its nar-
rowest partly filled bands is a o band.

The well-known BCS formula

T, =1.148e

where No is the density of states at the Fermi level of the
CICCffQQS bCIOQgiAg tO khC & bRAd ~d & IS 8 ICRA VRIQC

of the matrix dements of W;
The exchange interaction 8' also depends on No. We

remember that the electron spins couple to the motion of
thC AQCICI I OfdCF to SUPPFCSS fFKDSItIODS FCPFCSCACCd bg
the matrix elements of Hcb (3.9) with I Rl, RI j
&IRI,RIj. Thus 8'will be large if there exists a great
DQmbCF Of bOfh OCCQPICd RQd QAOCCQPICd IOCRIIZCd SCR'jI;CS

in the o band, i.e., if the o band is nearly half-filled.
Therefore, the condition for high T, in metals with

comparable band structure (and comparable Debye tem-
pcl'Rturc 0) Icads Rs follows.

(ii) T, is higher the more closely the o band is half-
filled.

The first condition (i) proved indeed to be true for the
18 cubic-symmetry (supcl conducting RIld llonsupclcoll-

ducting) metals investigated recently. Comparing the
four metals Nb, Ta, Mo, and W we found that, in accor-
dance with Eq. (6.2) and the second condition (ii), the
transition temperature T, of these metals is higher as No
increases in size (cf. Fig. 1 of Ref. 16). Furthermore,
band-strllcturc calculations on R B111nbcl Gf GI'gallic sUpci'"
conductors show that high T, is connected with nearly
half-filled narrow bands. 's

To a first approximation, Eq. (6.2) does not depend on
the spin-independent electron-phonon interaction or on
the density of states at, the Fermi level of the electrons
which do not belong to the o band. The influence of these
quantities on the value of T, will indeed be small since
the interaction V (5.24) does not follow Eq. (5.23), and
llcncc sUpcl conductivity is, ill thc fl'RIBcwol k of our
theory, a o-band phenomenon. From (6.2), however, it
cannot be concluded that only the o-band electrons form
COOPCF PRIM Rf ZCFO fCIPCFRCQFC SIQCC O-bRQd CICIj II,fOAS

and non-o-band dectrons are coupled to each other by
Coulomb interaction. The behavior of the non-o-band
ClCC'II;FOAS Rt ZCFO iCIPCFRtVFC CRDQO4 QCt bC kfCRtCd ID thIS
PRPCF.

Since the conduction bands of metals are degenerate in
several symmetry points of the Brillouin zone we general-
ly cannot construct, from the conduction bands alone,
Wannier functions which ate both optimally localized and
belong to a representation of the point group. Rather, we
IQSf CombIAC SCVCFRI bRDdS tO R bRDd gfOUP IA OFdCF to
construct "generalized" Wannier functions. Such a band
group in gcncrR1 Rlso cotitallls cGBlplctcly filled RIld conl-
PICII;CI7 CIPCP bRAdS, RAd IS CACFgCfICRII7 bfoRdCF khCA thC
COQdQCIIIOD bRDdS AOAC.

The atomic or Heisenberg model is useful for metals
with energetically narrow conduction bands. Therefore, if
&C &RA4 40 RPPlg khIS IOdCI 40 khC CODdQCCIOD CICCII,FODS

of a given metal, we must assign the corresponding local-
ized functions to (partly filled) bands or band groups
&high Sh001d bC aS GQPPOK QS PMSEMe. ThIS CRA bC
achieved in a natural way if the existence of the electron
spin is taken into account and the localized functions are
thCA RIIO&Cd 40 bCIOAg II;6 8 doQbI8-UQIQ8d FCPFCSCDIRfiOD

of the point group. The existence of such localized func-
tions whlcll Rrc called spin-dcpcndcnt localized functlofls
IS CStRbIIShCd bg gFOGP khCO~. ThCX'C RfC CVCA ICCRIS
which possess a single (but nonisolated) conduction band
&I'II;hIA fhClf bRHd StfUCtUFC &hlCh CRA bC FCPFCSCD(Cd bg
optimally locahzed functions belonging to a two-
dimensional, double-valued representation of the point
gFOQP. SQCh SIDgIC bRAdS RFC CRIlCd K bRDdS.

In this paper those cubic metals (such as Nb, V„TR,
Mo, W, and Al) have been considered which exhibit a nar-
F'O~ N CODdUCCIOD b~d. 8$ DRFFO& WC MCRA fbi AC K
band is one of the narrowest, partly filled bands of these
metals. We argue that, in the framework of the Heisen-
berg model, relationship (3.13) holds in sufficiently nar-
FOIE CODdQCtIOD bRDdS. ThIS I'CIRtIOQShIP 18 CSSCACIRl fOF
OUF CODSIdCFRfIOQS. SIDCC WC CRDDQt PFOVC 'thRX thC FCRI

metallic conduction bands are sufficiently narrow for
(3.13) to apply, we postulate (3.13) to be true for the nar-
FO&CSjt, PRAISE f1IICd b80dS WhiCh CXISt IA fhC bRDd St~C-
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tul'c of R glvc11 BMtaL
A second basic Rssunlptlon ls 'tllRt thclc exist Bonadla-

batic localized functions satisfying Eq. (3.20), belonging to
R rcprcscntatloIl of tllc point grollp tcf. (3.22)], Rnd being
orthogonal [cf. (3.19)]. From the properties of the local-
Izcd fullctlons Rlld tlM conservation 1RW of Rllglllal

rnornentum we conclude that (a) the electron spins are
coupled to phonons by exchange interaction in a narrow o.

conduction band, and that (b) at zero temperature the
electrons are coupled to each other via spin-phonon m-
teraction in such a way that the electrons necessarily form
Cooper pairs. The interaction 8' effecting this electron-
electron coupling at zero temperature is strongly momen-
tum and spin dependent. Therefore, it resembles, with
respect to this spin-dependence, the familiar Heisenberg
interaction which couples the spins in a magnetic ordered
state. The interaction fV, however, does not effect a state
OFdCFCd ID FBI SPSCC. ThC PMFCd St&tC m8$ bC CRIiCd OF-

dCFM lD k SP&CC I thC SCDSC fh84 thC IGICGII;8 ~d SPIDS

of the electrons couple by exchange interaction in such a
way that two electrons forming a Cooper pair have van-

ishing total momentum and total spin,
Since the interaction 8' is mediated by virtual phonons,

the transition from the unpaired state to the paired state is
described in the familiar way by the BCS theory and its
extensions. The question, however, of which materials are
SUPCFCGDdgC'IIGFS &Ad WhICh 8FC DOII; ]IS fFCRKCd ID 8A VDUSV-

Rl way in tllls paper.
T1M spin-phonQII lntcf Rctlon docs Bot Rct bctwccll

SISIC CIMCFOA SPIDS &Ad PhGDODS» RRfhCFp j.f, COQPICS thC

4048I ClMIFOD SQS(CI 'I;6 &C PhOAODS 1A khC SCDSC the. ThC

electrons are coupled to each other and to phonons by ex-

Ch8DgC MCCFRCIIOA. ThC, PhODODS CAtCF SIACC fhC EAIIIA

SPID SPI CXChaAgC 1AfCFRCIIOA dOW AO4 COASCMC SPjA RD

SUIRF IOICDIUI &][II;hID fhC CI~CFOD SQS4CI RISC.
ThC SPIA-PhGDGA IAtCF&CCIGA CXISIt;S bCLO& 8Ad gbOVC thC

SQPCFCOAdQCLIAS CFRASIIIGA TCMPCFRCQFC X~. &C SFC AO4

AC( gbIC II;O giVC fhC KCIPCF84QFC Ts ai &hj.Ch fhIS IA'II;CFRC-

tion disappears. We believe that T, is of the order of
Blagllltudc of Curlc tcInpclRtulcs, Rnd IMllcc thc spln-
phonon interaction, or some effective spin-spin interac-
tion, might be experimentally established in some super-
CODdVCfGFS CVCD 84 FOGI tCIPCF8fQFC. SUCh CXPCAICAtS
might allow one to distinguish a superconductor from a
Bonsuperconductor at temperatures far above T, ,

ln the framework of our considerations, the electronic
behavior within the normal state below the superconduct-
ing transition temperature T, (forced by a magnetic field)
IS Sfj.II RA OPCD PFObICI. A4 XCFG II;CMPCFgfUFC), khC CICCfF

spin must be a conserved quantity fcf. (5.6)] also in this
"forced normal state. " Since the electrons cannot pair,
this state must have a different interesting feature distin-
guishing it from the normal state above T, . One possible
feature being compatible with the present theory would be
thc cxlstcIlcc of R Blagllctlc order within this forced nor-
m&I StRCC.
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