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Simulation of quantum many-body systems by path-integral methods
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Computational techniques allowing path-integral calculations of quantum many-body systems are
introduced and applied to liquid and solid helium. Thc coIIlputatlons plcscntcd ln this papcI' do not
include exchange effects. The range and limitations of the method are demonstrated by presenting
thermodynamic properties, radial distribution functions, and, for the solid phase, the single-particle
dlstrIbutIon and 1ntcrmedlatc scattcIzng fUQctlon for Imaginary times.

I. INTRODUCTION

All static properties of a many-body system in thermal
equilibrium are obtainable from the density matrix

p(R, R', P) = g e '%,(R}%',*(R'), (1.1)

a sum over the energy eigenstates of the system Hamil-
tonian, weighted by the Gibbs factor. R refers to the 3N
particle coordinates. As seen by direct substitution the
density matrix satisfies the identity

p(R, R';13)= f p(R, R";13 P')p(R", R—';P')dR", (1.2)

which may be iterated an arbitrary number of times (here
M —1) to give

p{R,R',P)= f . . . f p(R, Rl, w)p(Rl, Rz, z)

Xp(RM l,R', w)dRl. . . dRM

where l'—p/M. Equation (1.3) has been proposed many
times as the basis for computation of the density matrix
(see Ref. 1 for a partial list of references) since each densi-
ty matrix in the integral corresponds to the system at a
high temperature (here, I/~). At sufficiently high tem-
perature, accurate approximations are known for the den-
sity matrix, and so the calculation reduces to a multidi-
mensional integral, amcnablc, presumably, to standard
Monte Carlo techniques. Computations based on Eq. (1.3)
and a high-temperature approximation for the density
matrix have been performed, primarily, for low-
dimensional models {e.g., one-dimensional harmonic oscil-
lator, particles in square wells). Although encouraging
Rnd instructive, these computations leave unanswered the
question of the practicality of this approach for many-

body systems.
In this paper R computational algorithm based partly,

on Eq. (1.3) is developed and applied to the Lennard-Jones
system, with parameters appropriate to He (e/@=10.22
K, alt ——2.556 A, and A=A' /meal& ——0.1816), whose
high-temperature, classIcal, ' Rnd gI'ound-state plopcr-
ties have been extensively studied by other methods. Al-
though more accurate pair potentials for helium are
known, we are primarily inteI'ested in developing the

lllethodology fol' R typlcRl llltelactloll, llot ill colllparlllg
with experiment. In Sec. II we introduce a Monte Carlo
method for efficiently evaluating integrals with the struc-
ture of Eq. (1.3).

The density matrix can be formally symmetrized (an-
tisymmetrized) for Bose (Fermi) statistics by summing
over permutations (P),

pp(R, R', 13)=- g {+1}p(R,I'R';P), (1.4)

II. COMPUTATIONAL ALGORITHM

A. High-temperature density matrix

In order to use the convolution equation (1.3) it is first
ncccssary to find Rn accurate Rpproxlmatlon to thc hlgh-
temperature density matrices appearing in the integral.
For this we assume a pair-product form, '

where (+1} is + 1 for bosons and the signature of the
permutation for fermions. This procedure projects out
eigenstates of the appropriate symmetry in Eq. (1.1). The
method introduced in Sec. II does allow permutations to
bc sampled, which would be impossible without using
some variant of the method presented there, although in
this paper we do not use this feature. Fermion calcula-
tions based directly on Eq. (1.4) are not practical due to
the almost complete cancellation between positive and
negative terms at low temperature. Results of applying
the method to fluid and solid phases are shown in Sec. DI.
The convergence of various averages as ~ is reduced is of
primary interest. The chief conclusion discussed in Sec.
IV is that the method presented is capable of calculating
static properties for the Lennard-Jones system studied, ig-
noring exchange effects, over the entire temperature range
from the ground state to the classical regime. Further-
more„ the computational demands on present computers
are probably less than the demands made by the first
molecular-dynamics studies of this system on the then
available hardware. In Appendix A we review the calcu-
lation of the pair density matrix, an essential ingredient in
these calculations, and tabulate some values of it. In Ap-
pendix B we give an alternative derivation for some for-
mulas of Sec. III, and in Appendix C we derive and dis-
cuss kinetic-energy estimators.
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p(R, R', r) = g p, (r;,r;r) P2("ij ~rij i+)

(2.1)

Here, X is the number of atoms, r is the atomic position,

and p~ is the single-particle ideal-gas density matrix,

1
pi ("i~ri ~

&)— exp
(2~Ax)

(r; r—)~

and p2 is the two-body density matrix divided by the
ideal-gas terms. For a system with a pairwise additive po-
tential the classical limit of the density matrix, of course,
is of this form. Further justification comes from the
Wigner-Kirkwood corrections to this classical limit
where the term of order r is also of the pairwise form.
Three-body terms first enter at order r . At small pair
separations the Wigner-Kirkwood expansion will converge
only at high temperatures due to the rapid increase of the
Lennard-Jones potential. Stated differently, for any tem-
perature the pair-product approximation, Eq. (2.1), will
break down for a triplet of particles having all three pair
distances less than some distance r~ which decreases as ~
decreases. The approximation represented by Eq. (2.1)

becomes sufficiently accurate at high temperature once r~
becomes sufficiently small that such configurations are
extremely improbable.

For convenience we also make the further "end-point"
approximation,

p(r, r';r) =expt —,
' [P(r;~)+P—(r';r))I, (2.3)

for the high-temperature pair term since the one-body fac-
tors ensure that

~

r r'
~

-(Ar)'~—and therefore only the
near-diagonal region is actually needed. Calculation of
the pair density matrix is discussed in Appendix A where
a tabulation of P(r;r) for several values of r is presented.
The approximation in Eq. (2.3) also becomes exact in the
limit of r~O, but the use of P(r;r) rather than its high-
temperature (classical) limiting form rV(r) gives much
quicker convergence with r for any strongly interacting
system. The dependence of the accuracy of the pair-
product approximation, Eq. (2.1), on the particular con-
figurations (R and R') is reflected in the slower conver-

gence of the radial distribution function g(r) at small r
where the effect of small three-particle clusters can be im-

portant. Our final test for the validity of this approxima-
tion is empirical: the convergence of various expectation
values as ~ is decreased.

B. Metropolis Monte Carlo method

When Eq. (2.1) is substituted into Eq. (1.3) we have a
multidimensional integral to evaluate. The structure of
this integrand resembles that of a system of classical poly-
mers: the discretized paths of the individual particles in
what becomes a path integral as ~~0. When Eq. (2.3) is
used, the intrapolymer interaction corresponds to "spring
bonds" and the interpolymer interaction is through

P(r;r). Note that for the diagonal case of primary in-
terest, R =R', these are either ring or cross-linked poly-
mers if other than the identity permutation in Eq. (1.4) is
sampled. For present purposes this polymer analogy is
merely a useful intuitive way of visualizing the structure
of the integrand; the analogy has been pursued further
elsewhere. Once the high-temperature density matrix is
specified it might be expected that the remaining multidi-
mensional integral could be evaluated by the usual Monte
Carlo methods. As discussed in detail below, this method
is not practical without extensive modification due to the
structure of the integrand.

The Metropolis Monte Carlo procedure for sampling
from any distribution —in the present case, the normalized
density matrix —consists in generating a Markov process
such that the desired distribution is stationary under this
process. Let II, represent the probability distribution for
some state s [state in the present context refers to sorrie
configuration of the coordinates in Eq. (1.3)]. Then, by
definition, the desired Markov process has transition
probabilities P, , satisfying

+ II,P, , =II, . (2.4)

The common choice, due to Metropolis et al. (Ref. 8) is

(2.5)

where P* is an arbitrary a priori transition matrix and the
second factor is an acceptance probability. Typically, for
classical condensed-matter systems where the probability
distribution to be sampled is the Gibbs distribution, the
a priori transition consists in giving a randomly selected
particle a displacement sampled from a uniform distribu-

tion.
For the integrand of Eq. (1.3) this choice of a priori

transition matrix would be very inefficient for at least two
reasons. The first reason has to do with the polymerlike
nature of the integrand. The intrapolymer interaction,
which becomes stronger at high temperature, and the in-

teraction between polymers, prevent sizeable displace-
ments of a single particle's coordinates. Moving one
"bead" of a polymer is very inefficient since the rest of
the polymer will, with high probability, pull it back into
place on the succeeding move. In fact, for polymers it is
known that the relaxation rate is approximately propor-
tional to the polymer length squared, and thus configura-
tion space would be sampled very slowly. What is needed
is a way of generating collective displacements of a large
segment of "polymer" which will be accepted by the
Metropolis algorithm, Eq. (2.5). A second difficulty is the
impossibility of generating the permutation moves needed
to simulate Bose systems, Eq. (1.4), without simultaneous-

ly altering many of the "polymer" positions. This is be-
cause each term in Eq. (1.3) corresponds to a temperature
of 1/r which must be sufficiently high that Eq. (2.1) or
(2.3) is an accurate approximation. This temperature is
usually orders of magnitude above the lambda transition
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temperature for the system (roughly the temperature
where the thermal de Broglie wavelength equals the inter-
particle spacing, and thus exchanges are common). Con-
sequently, generating an acceptable permutation move
also entails altering many coordinates. The method we
now describe largely overcomes the first difficulty and
partially overcomes the second. Acceptable permutation
moves can be generated with this method, but this is still
rather time consuming; these boson calculations are in
progress.

C. Generating a priori transitions

It is seen from Eq. (2.5) that with the choice P,', = ll,
the acceptance probability is one. This choice would be
optimal, but is, of course, not feasible since any realistic
II, [corresponding in our case to the normalized integrand
of Eq. (1.3)] will be too complicated to sample directly.
We therefore will try to approximate it as closely as possi-
ble by a form that can be directly sampled —namely a
Gaussian. For this purpose the integrand of Eq. (1.3) is
rewritten as

X 0 0 ~

p(R, R i', r)p(R „R',13 r) —p(R i,R2,r)p(R2, R';13 2r)—
p(R, R';P) p(R i,R';P—r)

p(RM 2,RM i,r)p(RM i,R';r)
~ ~ ~

p(RM 2,R';2r) (2.6)

3X/2
p( R,R i,r )p(R i,R ',P r)—

p(R, R';P)
1

27TO

Xexp
(Ri —R, )

20'
+O(r),

(2.7)

where
T

Ri ——(P—r)R +rR' P—r+ rS,

g(R,R';P) =AV lnp(R, R';P),

noting that the added terms cancel. The terms in large
parentheses are conditional probabilities for picking the
next point based on the present point and the final point,
R'. They are correctly normalized as is seen from Eq.
(1.2). The single-particle, or ideal-gas, terms in these ex-
pressions are already Gaussians which combine to give the
usual conditional probabilities' for a Brownian-motion
path constrained to end at R'. To arrive at a useful ap-
proximation the remaining terms are expanded about the
present point and the result exponentiated. To lowest or-
der these interaction terms modify the means of the
Gaussians. For example, after some algebra, the first
term in large parentheses becomes

r

I

field by using a trial density matrix whose choice is dis-
cussed below.

In the actual implementation of this procedure the
paths for all particles are not simultaneously altered as
such a large move would very rarely be accepted by the
Metropolis algorithm. Instead, all or part of the path of a
selected particle is altered between fixed end points. In
summary, our algorithm consists in snipping out a section
of the path and then threading in a new section with the
same end points using the drifting random-walk pro-
cedure of Eq. (2.7). This new path is then accepted or re-
jected according to Eq. (2.5). When this is extended to bo-
sons at least two paths must be snipped and allowed to
change end points. Such a procedure moves through con-
figuration space much more rapidly than a procedure
altering only a single point on the existing path. For the
fluid-phase simulations discussed in Sec. III, new paths of
20 steps with r=0.05 had an acceptance ratio of about
50% for both T*=O.S and 0.2. When r was doubled to
0.1, the acceptance ratio for 20 step modifications fell to
about 20%. Of course, the choice of a priori transition
matrix affects only the efficiency, not the final averages.
The only systematic error in the calculation is the approx-
imation in Eq. (2.1) which can be improved and checked
by decreasing r. The results of this are discussed in Sec.
III after first describing the particular choice of velocity
field used in the calculation.

and p again indicates that the free-particle part has been
factored out. Similar expressions hold for the other con-
ditional probabilities. An alternative derivation of these
results is given in Appendix B. In Eq. (2.7) all interaction
effects are contained in S, referred to as the velocity field,
which prevents particle overlap when the -next point is
sampled. As written, calculating the velocity field re-
quires the (unknown) exact density matrix for the times P,
P—r, P—2r, etc. To proceed we approximate the velocity

D. Choice of velocity field

The choice of a trial density matrix used in calculating
the velocity field in Eq. (2.7) is presented here. No claim
for optimality is made since other choices give almost as
high an acceptance ratio. In principle, it should be possi-
ble to improve any initial choice by modifying it to in-
crease the acceptance ratio of Eq. (2.5). However, setting
the velocity field to zero reduces the acceptance ratio by
more than half when one particle's path is altered, and al-
most completely eliminates the two- and three-particle
path-alteration moves needed if permutations are includ-
ed.
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Prandharipande and Bethe presented a method for cal-
culating Jastrow factors in approximate ground-state
wave functions for quantum fluids. " We use a generati-
zation to calculate trial density matrices of the form of
Eq. (2.3). When a pair-product form for the density ma-

trix is inserted into the Bloch equation, three-body corre-
lations are generated, which in an iterative procedure
would lead to higher-body correlations. ' To stay within
a pair-product form, the three-body term can be replaced
by a constant effective field chosen so that the correlation
factor is unity beyond some "healing length. " Specifical-
ly, we solve the equation

(r;P) = &'f (r;P) —,
' [&—(r}—A, ]f(r;P), (2.8)

8 2m

with the conditions

1.0—

0.6

0.4—

0
0.6 1.0

I

1.4
I

1.8
I

2.2 2.6

f(&;0)=1, f(r;P)=1 (t &d), (d;P) =0

which determines A, . The healing length d is arbitrarily
taken as twice the particle-sphere radius: d =2ro,
ro (3/4~p——)' . The result is rather insensitive to small
changes about this value. Then the velocity field is deter-
mined from

FIG. 1. Comparison of radial distribution functions g (r) for
Lennard- Jones system at k T/e= 5.0, po. =0.365, and
A=0. 1816. The most accurate results for the quantum system,
using v.=0.0125, are indicated by the solid line; the classical sys-
tem values are indicated by the dashed line. The dots are for
~=0.2, which is equivalent to a classical system with a pair po-
tential taken from the two-particle density matrix.

S =AY'lnf,

or explicitly inserting particle indices,

(2.9)

S;=A g 7;1nf(rJ;t),
j (&i)

(2.10)

where t =p, p —r, etc. Equation (2.8) was solved numeri-
cally by the Crank-Nicholson method.

Experience using other forms for the velocity field sug-
gests that the only feature which affects the acceptance
ratio is short-range repulsion. We stress again that the
choice of velocity field does not alter the final results.
The final distribution of configurations is determined
solely by the high-temperature density matrix, the calcula-
tion of which is reviewed in Appendix A.

III. SIMULATION RESULTS

A. Fluid phase

The convergence of this algorithm as ~ is reduced has
been examined at the temperatures T'=5.0, 0.5, and 0.2
for the fluid density po =0.365. This is the experimental
equilibrium density at low temperatures; ground-state
computations are available for comparison. In all of the
fluid-phase calculations the number of particles in the
periodic cell was 64. The finite-system-size effects are
small and should be roughly the same as for the ground
state.

The highest temperature investigated, T"=5.0 (p=0.2),
is over 20 times the lambda temperature for this system,
so quantum effects might be expected to be small. Com-
putations were done with ~=0.2, 0.1, 0.05, 0.025, and
0.0125 corresponding to paths of 1, 2, 4, 8, and 16 steps.
The results for the radial distribution function g (r) listed
in Table I show rapid convergence except possibly at
small r Figure 1 com. pares the g(r) for r=0.0125 with

that for the classical system and that from the r=0.2 cal-
culation, which is equivalent to a classical system with the
Lennard-Jones potential replaced by an effective potential
obtained from the two-particle density matrix. Even at
this temperature the quantum effects in g(r) are seen to
be significant. Use of the effective potential yields a ma-

jor improvement, although errors persist inside the first
peak in g(r). Convergence of the kinetic-energy values

given in Table II is less rapid and extrapolation to ~—+0 is
necessary.

For the temperature T*=0.5 (P=2.0), still over twice
the lambda temperature, computations with ~=0.2, 0.1,
0.05, and 0.025 corresponding to paths of 10, 20, 40, and
80 steps were done. The g(r)'s are listed in Table III.
Convergence is slowest at small r, presumably due to the
already mentioned neglect of three-body effects in the
high-temperature density matrix. At this temperature use
of the effective potential from the two-body solution (i.e.,
~=2.0) is not an accurate approximation, ' as is seen in
Fig. 2. The g(r) for the classical system has a first peak
height greater than 5.0 at this density and temperature.

At the lowest temperature, T =0.2, computations with
&=0.1 and 0.05 corresponding to paths of 50 and 100
steps were performed. The g (r) values listed in Table IV
again show their slowest convergence at small r. Experi-
mentally, the effect of Bose statistics (ignored here) is to
increase the height of the first peak in g(r) by about 2%
for temperatures just above the lambda temperature. '

Below this temperature g (r) rapidly settles to its ground-
state value, so it is relevant to compare our results to the
ground-state computations of Whitlock et al. in Fig. 3.
As expected from this comparison the potential energy
computed here is in good agreement with the ground-state
potential energy (Ref. 4, Table V).
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TABLE I. Convergence of g(r) at kT/s=5. O and pcr3=0 36.5 as the number of steps iP/v) in the

path integral is increased. The numbers in parentheses indicate the uncertainty in the last digit.

0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98
1.02
1.06
1.10
1.14
1.18
1.22
1.26
1.30
1.34
1.38
1.42
1.46
1.50
1.54
1.58
1.62
1.66
1.70
1.74
1.78
1.82
1.86
1.90
1.94
1.98
2.02
2.06
2.10
2.14
2.18
2.22
2.26
2.30
2.34
2.38
2.42
2.46
2.50
2.54
2.58
2.62
2.66
2.70
2.74
2.78

&=0.2

3.5 y 10-4
0.0032
0.0215
0.0791
0.2061
0.400
0.636
0.880
1.090
1.219
1.311
1.333
1.318
1.296
1.250
1.211
1.166
1.114
1.075
1.049
1.027
0.997
0.984
0.968
0.963
0.951
0.949
0.949
0.951
0.954
0.958
0.96S
0.975
0.982
0.989
0.992
1.000
1.004
1.003
1.007
1.009
1.008
1.003
1.005
1.004
0.999
1.001
0.998
0.996
0.998
0.993
0.994
0.994

1.24X 10
0.0014
0.0118
0.0539
0.160
0.345
0.592
0.843
1.060
1.213
1.298
1.325(2)
1.329
1.301
1.266
1.222
1.173
1.135
1.093
1.060
1.031
1.009
0.987
0.973
0.961
0.953
0.947
0.946
0.948(8)
0.952
0.956
0.963
0.972
0.979
0.984
0.992
0.998
1.002
1.006
1.007
1.009
1.009
1.009
1.006
1.007
1.004
1.001
0.999
0.997
0.994
0.994
0.992
0.991

&=0.5

6.9g10-'
0.0012
0.0101
0.0498
0.152
0.334
0.573
0.819
1.035
1.193
1.288
1.331(4)
1.332
1.308
1.267
1.221
1.176
1.131
1.092
1.059
1.033
1.007
0.986
0.973
0.960
0.952
0.947
0.944(3)
0.947
0.950
0.956
0.963
0.970
0.977
0.987
0.992
0.997
1.002
1.005
1.007
1.009
1.008
1.008
1.006
1.005
1.001
0.999
0.996
0.995
0.994
0.994
0.993
0.992

%=0.025

6.3 &&
10-'

0.0014
0.0123
0.0557
0.161
0.340
0.570
0.814
1.030
1.190
1.286
1.329(7)
1.327
1.299
1.258
1.213
1.168
1.127
1.090
1.057
1.031
1.007
0.989
0.973
0.962
0.954
0.949(8)
0.949
0.950
0.955
0.960
0.966
0.972
0.979
0.986
0.992
0.998
1.001
1.004
1.005
1.006
1.006
1.005
1.003
1.002
1.000
0.998
0.996
0.995
0.994
0.993
0.994
0.994

~=0.0125

1.21' 10-4
0.0021
0.0148
0.0611
0.168
0.347
0.578
0.822
1.037
1.194
1.289
1.329(8)
1.327
1.299
1.2S8
1.212
1.166
1.125
1.086
1.052
1.023
0.999
0.980
0.963
0.953
0.945
0.940
0.939(3}
0.942
0.947
0.954
0.962
0.972
0.981
0.989
0.997
1.003
1.007
1.010
1.011
1.011
1.010
1.008
1.005
1.003
1.001
0.998
0.997
0.995
0.995
0.995
0.994
0.994

Our kinetic-energy estimates, extrapolated to ~=0, are
(X)/He=1. 76+0.05 at T*=0.5, and (K)/Re=1. 50
+0.05 at T =0.2. The ground-state estimate from Ref.
4 is (K)/No=1. 33+0.01 at this density. This is in good

agreement with a linear extrapolation of our T =0.5 and
0.2 values to zero temperature.

The radial distribution functions for a classical system
when the Lennard-Jones potential is replaced by a poten-
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TABLE II. Convergence of potential and kinetic-energy estimates with ~. In the solid phase
(per =0.589) some moments of the sphericalized density about a lattice site are given.

( U/NE) (K/Ne)

0.365 5.0
5.0
5.0
5.0

0.1

0.05
0.025
0.0125

—1.648(6)
—1.680(3)
—1.643(3)
—1.604(4)

8.51(1}
8.33(1)
8.27(2)
8.22(2)

0.365 0.5
0.5
0.5
0.5

0.2
0.1

0.05
0.025

—2.081(5)
—2.068(2)
—2.045(1)
—2.025(2}

1.88(2)
1.84(2)
1.77(5)

0.365 0.2
0.2

0.1

0.05
—2.053(2)
—2.035(2)

1.61(1)
1.56(5)

0.589 0.2
0.4

0.1

0.1

—3.644(4)
—3.635(2)

0.093(1)
0.094(1)

0.0147(4)
0.0151(4)

0.0033(1)
0.0035(2)

tial taken from the two-body density matrix have already
been shown in Figs. 1 and 2 for T*=5.0 and 0.5. At high
temperature or low density this procedure would repro-
duce the exact quantum-mechanical result. To further
study this many-body effect we now define U(r, T,p) as
that classical potential which would yield (for example,
via simulation) the calculated quantum g(r, T,p). This ef-
fective potential can be calculated by the same methods
used to invert experimentally determined structure factors
to obtain a molecular interaction. We used a combination
of additional Monte Carlo calculations with a trial effec-
tive potential and perturbation hypernetted-chain calcula-
tions [which calculate the change in U(r) needed to pro-

1.2—

08—
0.6—
04—

duce a given change in g(r)]j. This is exactly the pro-
cedure described in Ref. 15. After two iterations we find
an effective potential which produces the g(r) to within
the statistical error (-1%). The solution, however, con-
tains considerable noise. Slowly varying functions ean be
added to U(r), leaving g(r) almost unchanged. The ef-
fective potentials (times P) are shown in Fig. 4 at
po. =0.365 and T =5.0, 1.0, 0.5, and 0.2. At high tern-

perature (T & 5), U(r) becomes proportional to P(r) (see
Fig. 1 and discussion). The difference between the PU(r)
at T*=5.0 plotted in Fig. 4 and the two-body values
given in Appendix A is indicative of the difficulty of in-

verting g(r) data to obtain an effective potential. Both
potentials have similar structure and give quite similar

g (r)'s, but they clearly differ by a slowly varying function
of r. At low temperature we expect pU(r) to be a zero-
temperature Jastrow pseudopotential. The effective po-
tential at zero temperature has already been calculated by
Reatto, ' whose results are similar to ours. At all tern-

peratures the effective potential has a pronounced
minimum which moves to larger r at lower temperatures,
remaining always about 0.2o. beyond the maximum in

g (r). In addition, at lower temperatures there is a small
maximum in U(r) near the minimum in g (r). Reatto has
interpreted this as being due to roton excitations, but since
our results are for Maxwell-Boltzmann rather than Bose
statistics, there must be a more general explanation.

0.6 1.0 1.4
l i l l l

2.2 2.6 B. Solid phase

FIG. 2. Radial distribution functions at kT/@=0.5,
po'=0. 356, and A=0. 1816. Results from discretized —path-
integral computation of 80 steps (~=0.025) (solid line) are com-
pared with those obtained with v =2.0, one step (dashed line),
equivalent to a classical system with the Lennard-Jones poten-
tial replaced by an effective potential obtained from the two-
particle density matrix.

The path-integral algorithm presented here was also ap-
plied in the solid phase at po =0.589, where ground-state
calculations have been done. Exchange effects are unim-
portant for the properties we calculate. These computa-
tions were for an fcc crystal of 108 particles, rather than
the experimentally found hcp phase, since ground-state
calculations have shown the difference in the thermo-
dynamic properties to be less than the statistical resolu-
tion. ' The structure factors calculated here at T*=0.2
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TABLE III. Same as Table I but for kT/@=0.5.

0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98
1.02
1.06
1.10
1.14
1.18
1.22
1.26
1.30
1.34
1.38
1.42
1.46
1.50
1.54
1.58
1.62
1.66
1.70
1.74
1.78
1.82
1.86
1.90
1.94
1.98
2.02
2.06
2.10
2.14
2.18
2.22
2.26
2.30
2.34
2.38
2.42
2.46
2.50
2.54
2.58
2.62
2.66
2.70
2.74
2.78

2.5X10-'
3.7X10-4
0.00206
0.009 69(5)
0.0369
0.0925(7)
0.193
0.339
0.511
0.695
0.879
1.038
1.165
1.251
1.311
1.341
1.361(5)
1.356
1.332
1.307
1.265
1.224
1.178
1.130
1.086
1.042
1.004
0.970
0.944
0.922
0.904
0.894
0.886
0.886
0.887
0.897
0.906
0.921
0.934
0.951
0.968
0.985
0.999
1.010
1.019
1.023
1.030
1.036
1.043
1.040
1.035
1.032
1.031

1.4X 10-'
2.2X 10
0.00186
0.0105
0.0378
0.0993
0.204
0.348
0.522
0.696
0.864
1.013
1.137
1.237
1.307
1.350
1.365(5)
1.367
1.347
1.320
1.277
1.230
1.184
1.135
1.087
1.043
1.004
0.969
0.941
0.916
0.899
0.888
0.881
0.881
0.885
0.895
0.905
0.920
0.935
0.952
0.968
0.985
0.999
1.013
1.026
1.034
1.040
1.042
1.044
1.044
1.043
1.036
1.032

&=0.05

1.2X10-'
2.2 X10-4
0.00230
0.0126
0.0435
0.1094
0.215
0.357
0.521
0.694
0.862
1.011
1.140
1.241
1.311
1.355
1.374(5)
1.371
1.353
1.319
1.280
1.232
1.183
1.134
1.086
1.042
1.002
0.967
0.938
0.915
0.898
0.886
0.880
0.880
0.884
0.893
0.904
0.919
0.935
0.953
0.970
0.985
1.001
1.014
1.024
1.033
1.039
1.043
1,043
1.043
1.040
1.036
1.031

&=0.025

3.3 X10-'
4.58 X 10-4

0.0033
0.016
0.0504
0.1181
0.225
0.366
0.529
0.703
0.869
1.018
1.145
1.243
1.310
1.352
1.369(7)
1.363
1.344
1.311
1.270
1.223
1.175
1.126
1.080
1.038
0.999
0.966
0.938
0.915
0.900
0.888
0.882
0.883
0.888
0.896
0.907
0.921
0.937
0.954
0.972
0.988
1.003
1.017
1.027
1.035
1.040
1.044
1.044
1.044
1.041
1.036
1.031

and 0.4, using ~=0.1, are given in Table V and agree with
the ground-state result to within the statistical error.
The single-particle density p(r) about a lattice site is com-
pared with the published ground-state result in Fig. 5.
The reason for the discrepancy at small r is unclear but

amounts to less than 1% of the integrated norm due to
the volume factor. The crystal is localized differently in
the two calculations. It has not been possible in ground-
state calculations to satisfactorily localize the particles
into a solid phase using a pair-product wave function
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v=0. 1

TABLE IV. Same as Table I but for kT/a=0. 2.

r=0.05 v=0. 1 v=0.05

0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98
1.02
1.06
1.10
1.14
1.18
1.22
1.26
1.30
1.34
1.38
1.42
1.46
1.50
1.54
1.58
1.62
1.66
1.70
1.74

1.7x 10
1.5x10-'
0.0019
0.00972
0.0349
0.0910
0.187
0.325
0.485
0.654
0.813
0.962
1.088
1.188
1.268
1.313
1.348
1.356
1.347
1.332
1.298
1.261
1.213
1.170
1.127
1.080
1.036

1.1x 10-'
2.4X10-'

0.0022
0.0121
0.0412
0.103
0.202
0.334
0.488
0.650
0.809
0.956
1.086
1.188
1.268
1.322
1.348
1.359
1.349
1.329
l.296
1.257
1.217
1.171
1.122
1.079
1.036

1.78
1.82
1.86
1.90
1.94
1.98
2.02
2.06
2.10
2.14
2.18
2.22
2.26
2.30
2.34
2.38
2.42
2.46
2.50
2.54
2.58
2.62
2.66
2.70
2.74
2.78

1.000
0.964
0.939
0.914
0.898
0.884
0.874
0.874
0.878
0.885
0.896
0.910
0.927
0.942
0.962
0.977
0.994
1.009
1.021
1.032
1.037
1.047
1.049
1.050
1.051
1.049

0.9985
0.964
0.937
0.914
0.896
0.884
0.876
0.876
0.879
0.885
0.897
0.912
0.926
0.943
0.961
0.977
0.993
1.009
1.021
1.031
1.039
1.047
1.050
1.051
1.051
1.048

alone. Additional single-particle factors —generally
Gaussians about the lattice sites—are also included. A
trial wave function of this latter type was used as input to
the ground-state computations and defines the lattice
sites, In the path-integral calculations reported here the
high-temperature density matrix is translationally invari-
ant. No information about the lattice sites is input other
than the initial configuration. At lower density, e.g.,
po' =0.365, the system rapidly melts from this starting

I1.4—

2.5—

2.0— 1.0

lattice configuration, as it should. The center of mass
wanders during the course of the calculation exactly as in
Monte Carlo studies on classical solids. For calculating
p(r) we keep the center of mass fixed by occasionally
shifting the particles uniformly.

1.2—
1.0—
0.8—

1.5—

1.0—

0.6—
0.5—

0.2—
0
0.6 1.0 1.4 1.8

I ( l

2.2 2.6
1.0

I

1.4
l

1.8
l

2.2

FIG. 3. Comparison of g(r) for the ground-state system (0)
(Ref. 4, Appendix D) with the kT/@=0.2, per =0.365 result
(solid line) calculated with a path integral of 100 steps (~=0.05).

FIG. 4. Effective potentials needed in a classical system to
reproduce the quantum-mechanical g (r) at per =0.365 and indi-
cated temperatures T*.
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100
110
111
200
210
211
220
221
222
300
310
311
320
321
322
330
331
332
400
410
411
420
421
422
430
500

S{k) (T*=0.2)

0.0485(6)
0.0584(6)
0.0689
0.0924
0.105
0.118
0.163
0.172
0.214
0.158
0.187
0.212
0.278
0.302
0.419
0.439
0.495
0.808
0.307
0.373
0.423
0.539
0.600
0.868
0.651
0.699

S(k) (T'=0.4)

0.0469(6)
0.0590
0.0699
0.0910(5)
0.106
0.116
0.158
0.170
0.222
0.161(2)
0.188
0.211
0.279
0.307
0.419
0.442
0.497
0.804
0.299(5)
0.375
0.431
0.522
0.598
0.876
0.655
0.677(18)

TABLE V. Structure factors in fcc solid phase at po'=0. 589
for kT je=0.2 and 0.4. The wave vectors are in units of
k„=2m(p/N)' = 1.106o

(3.1)

where z =Tr e ~, and the spectral density

J(co)=—g ge *5(co+(E,—E, )/A')
( (s

~

A ~s')
(

S S

(3.2)

has the property

J(—co) =e ~J(co) .

For imaginary times Y

=it�/A

the relations become

C(Y)=—Tr(e '~ 'A e A)
1

Z

(3.3)

C. Time correlation functions

It is straightforward to calculate imaginary-time corre-
lation functions with the path-integral algorithm. In prin-

ciple, these can be analytically continued to give the real-

time correlation functions of experimental interest. This
wi11 be illustrated, along with its limitations, using the in-

termediate scattering function in the solid as an example.
In general, for some dynamical variable A, the time-

dependent autocorrelation function is defined as

C(t) = (A (t)A (0) ) = T—r(e- t'"e'"""Ae -'"""A)1

=—Tr[p(P —Y)Ap(Y)A], 0(Y(P1

z
(3.4)

12

10

(3.6)

which is easily calculated in the path-integral algorithm,
if A is a function of the system coordinates, by averaging
the value of A at any point along the path multiplied by
its value at the point Y/r steps further along the path.
The symmetry C(Y) =C(p —Y) is evident from Eq. (3.4).
The problem is now to continue C ( Y) from imaginary to
real times, or, equivalently, to invert

C(Y)= f e " J(co)de

J co e- ~+e- '~-~' (3.5)
0

for the spectral density J (co). In addition to the comput-
ed C(Y), a few of the initial time derivatives

C'"'(t =0)= f ( iso)"J(co—)den

=(i/ri)"([H, . [H, [H, A]] . . ]A )

0'
0 0.1 0.2 0.3

r/a

0.4 0.5 0.6

(n factors of H) may be known.
This is equivalent to the problem of analytically con-

tinuing the thermal Green's function, ' and a formal in-
version of Eq. (3.5) can be obtained. Writing

FIG. 5. Cxround-state sphericalized density p(r) about lattice
site (0) and path-integral result (O) at kT/a=0. 2 using 50 steps
(v =0.1}. Both computations are for an fcc lattice at
per =0.589. The result at kT/a=0. 4 is almost identical to the
kT/@=0.2 result (see Table II).

OO

C(Y)= g e " I „, Z„=2nn/P. (3.7)

satisfies the condition C(0)=C(p) where the Fourier
coefficients
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I „=—f e " C(Y)dY
~ iz„v

0

f J(co)de
lZ~ —N

2
COJ CO CO,

(iZ„) —ro
(3.8)

1.0

0.80

0.6
LI

04

0.2

I~ / =23
4.8
6.3

using Eq. (3.5).

I (Z)=—1
Defining the function

f e-~—l J(ro)
Z —co

e-P"—l
2

COJN CO,
0 Z —N

(3.9)

the asymptotic behavior of which is related to the initial
time derivatives

)
2 (, [H, A)A) (1 4)

Z2

gives an inversion formula'

(3.10)

J(ro) = 1

2mi e
—~

X lim [I (Z =ro i e) —I (Z —=co+i e)] .
@~0+

F(k,Y)=—(pk(Y)p k(0)), pk= g e
j=1

(3.12)

was calculated in the solid phase. The value at the origin,
F(k,O) =S(k), and the initial time derivative,

dF(k, O) A

d (Ye) 2

(in reduced units), determines a single 5-function approxi-
mation to J(to) corresponding physically to an excitation

(3.11)

The function I (Z)=t „when Z=iZ„and it is the
unique analytic function also satisfying the asymptotic
condition (3.11).

To use this inversion formula on numerical data, an an-
alytic function with the correct asymptotic property and
satisfying I (Z) = I „at as many Z =iZ„as possible must
be constructed. ' A Pade approximant in Z, where the
numerator is a polynomial of degree N —1 and the
denominator is of degree N, can satisfy the asymptotic
behavior, Eq. (3.10), which reduces the number of un-

known coefficients by one. If more initial time deriva-
tives are known, the number of coefficients to be deter-
mined is further reduced. The remaining 2N —1 coeffi-
cients are determined by equating the Pade approximant
to I „at Z =iz„ for n Oy&p 2N' 2. The resulting
spectral density function obtained from Eq. (3.11) consists
of 2N 5 functions at ro=+roJ where the roI (j =1, . . . , N)
are the poles of the Pade approximant.

This formalism is of very limited use in the present
computations. To determine more than one or two poles
requires a precision in C(Y) not possible in Monte Carlo
computations. By way of illustration the intermediate
scattering function

0
0 0.5 1.0 2.0

T
FIG. 6. Imaginary-time intermediate scattering funtion, Eq.

(3.12), in the fcc solid phase at po =0.589 and kT/@=0.2. The
solid lines are the undamped phonon approximation, the fre-
quencies of which are listed beside the k vectors {all in [100]
direction). These frequencies give a rough estimate of the longi-
tudinal sound velocity along [100] as 720—750 m/sec.

with no damping. In Fig. 6 this approximation is seen to
match the computed C(Y) almost within the error bars.
It is possible to use the method presented above to deter-
mine a few additional 5 functions, but these give no fur-
ther insight into the actual J(co) or any indication, for ex-
ample, of excitation lifetimes.

In Ref. 19 a method of calculating J(co) directly, rather
than by inversion of C(Y) data, was suggested. Although
the particular method suggested there appears very diffi-
cult to apply to this system, the idea should be pursued.

IV. CONCLUSIONS
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It has been demonstrated that the path-integral method
can be used to compute the static properties of quantum
systems, ignoring statistics, over a wide range of condi-
tions. For the Lennard-Jones system studied here this
range extends from the classical regime to the ground-
state limit. One drawback of our path-integral computa-
tions is the necessary investigation of path-discretization
errors (r&0) which requires several computations with
varying g. In principle, this can be eliminated with the
use of a Green's-function Monte Carlo procedure. A
more serious question is whether these methods can be ex-
tended to include Bose and Fermi statistics.

Bosons have been treated by an extension of the method
presented here, although the introduction of new permuta-
tions occurs so rarely that convergence of the algorithm
has not been demonstrated. More physical insight is
needed into the selection of new permutations and config-
urations to increase the acceptance ratio and adequately
sample permutation space. Treating fermions is difficult,
even in ground-state calculations, and we are trying to ex-
tend some of the approximations used there to finite tem-
peratures. It appears that path-integral computations will
yield only limited information about real-time dynamics.
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APPENDIX A: CALCULATION OF THE PAIR
DENSITY MATRIX

1. Monte Carlo method

The pair density matrix for the Lennard-Jones system
can be written, in reduced units, as

p(r„rz, r &, r z';P}=p, (R,R', P)p„&(r, r ';P),

where the center-of-mass term is

(A 1)

&
—(R —R') /AP(R,R';8) =Pc Ill. & %

( AP)zyz

with 8 =(r&+ rz)I2 and A=A /11lEcTzl T'he .density ma-
trix for the relative coordinate satisfies the equation

" (r, r ';P)=[AV —V(r)]p„~(r, r ',P}, (A2)

In the path-integral algorithm described above all input
about the system is contained in the high-temperature
density matrix. For systems with pair interactions the
density matrix reduces to a product of pair density ma-
trices at sufficiently high temperature. This appendix re-
views three methods of calculating this essential in-

gredient.
The Monte Carlo method, discussed first, is not the

most efficient method for a two-body problem, but is
presented because it can be applied, essentially unmodi-
fied, to few-body problems where there are no alterna-
tives, and it is the easiest of the three methods to pro-
grarn. The "matrix squaring method" of Klemm and
Storer ' is then reviewed and a tabulation of results ob-
tained with this method is given. Finally, the eigenfunc-
tion expansion of the pair density matrix is discussed.

B(r,rf, p t)—= 1

pz (r, rf, p t)—

X +AV —V(r) pz (r, rf,'p t—) .8

Note that the birth rate would be zero if pT were the exact
density matrix. Formally, the solution to Eq. (A4} may be
written, also using (A3), as

p(r„rf, p) =pz(r„rf,'p)

exp B r' rf', —t' dt'
0 DRW

(A5)

G(rz', tz
~

r~', t&, rf,'p)=

where ( )DRw denotes an average over all drifting random
walks, i.e., those generated by ignoring the birth-rate term
in Eq. (A4). Equation (A5) is derived heuristically by
considering sufficiently small time steps so that the birth
rate acts independently of the diffusion and drift terms.
Considering the full solution as a product of these small
time steps leads to this path-integral solution. If pz were
taken as merely the free-particle density matrix, then Eq.
(A5) would become the familiar Feynman-Kac formula, z

which is not suitable as a computational algorithm for
systems with rapidly varying potentials. A well-chosen

pT, in addition to guaranteeing that the paths reach rf at
"time" p, should produce a smooth birth rate.

The drifting random walks needed to evaluate Eq. (A5)
can be generated from the short-time limit of the Green's
function of Eq. (A4), neglecting the birth-rate term,

exp[ (rz ——r*) /2o ]
(A6)(2~~z)'"

where r = r
&

—r 2, with initial condition

p„,(r, r ';0)=5(r r') .—
p tz-
p ti—Tr~+ rf+ws—tz

In the following we drop the subscript "rel" and the
vector arrows and introduce the function

s =2AV lnpz (r&,rf P tz),

f(r;t
~
r„rfp)=p(r, r, ;t)pr(r, rf, p t), —

where pz. (r„rf,p t) is an inpu—t trial density matrix satis-
fying

pT(r, rf, O) =5(r —rf ),
and r, and rf are the original and final relative coordi-
nates. From the above definition it follows that

and pT is the nonideal part of the trial density matrix.
This procedure has been used to calculate pair density

matrices for the Lennard-Jones system. The trial density
matrix used had the form

f(rf p~1 1f p)p(r„rf,p) =pT(r. ,rf, p) f(r.;O I r. ,rf,.P)

Using Eq. (A2), f satisfies the equation

Bt
=AV f V(fs) +Bf, —

where the "velocity field" is given by

s (r lf,p —t)=2AV lnpT(r, lf p f)

and the "birth rate" is given by

(A4)

pT(r, rf, p t)=exp—Pz (r;p t) +PT(rf, p t)— —
2

5 Ar r'
PT(r;p t)=1—

4 4(p —t)

which reduces to 4(p t)/r' when p —t +0 (high tem--—
peratures) and to the WKB approximation to the ground-
state form when p —t~ao. The paths were generated
from (A6) using a predictor-corrector approach: s is
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TABLE VI. Values of the diagonal part of the two-body density matrix [P(r;r) defined in Eq. (2.3)]
calculated using the matrix squaring method of Appendix A. Beyond the r values listed the semiclassi-

cal approximation, P(r;r)=rV(r)+(r A/12)V V(r), where r= 1./T*, is sufficiently accurate.

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250
1.275
1.300
1.325
1.350
1.375
1.400
1.425
1.450
1.475
1.500
1.525
1.550
1.575
1.600

T*=5.0

14.19(2)
11.41(2)
9.20
7.36
5.93
4.71
3.75
2.956(5)
2.31
1.79
1 ~ 351
1.00
0.72
0.50
0.326(4)
0.188
0.0833
0.007

—0.053
—0.089
—0.114
—0.131(3)
—0.138
—0.139
—0.137
—0.133
—0.127
—0.119
—0.111
—0.1028
—0.0944
—0.0868
—0.0803
—0.0735
—0.0673
—0.0617
—0.0568
—0.0517
—0.0474

T*= 10.0

13.14(5)
10.36
8.16
6.39
4.99
3.86
2.94
2.23
1.66(1)
1.21
0.8S6(5}
0.59
0.385
0.236
0.126(5)
0.047

—0.006
—0.0396
—0.063
—0.076
—0.081
—0.084
—0.082
—0.079
—0.075
—0.071
—0.066
—0.061
—0.056
—0.051
—0.047
—0.043
—0.0393
—0.036
—0.0329(7)

T*=20.0

11.5(1}
8.78
6.68
5.03
3.75
2.76
2.00
1.42
0.99
0.67
0.44
0.28
0.16
0.088
0.034
0.004

—0.022
—0.035
—0.042
—0.045
—0.046
—0.045
—0.043
—0.041
—0.038
—0.036
—0.033
—0.030
—0.028
—0.026
—0.023
—0.021
—0.019
—0.018
—0.0162(6)

T*=40.0

9.174(4}
6.70
4.83
3.44
2.41
1.67
1.14
0.76
0.50
0.32
0.20
0.121
0.067
0.031
0.008

—0.006
—0.015
—0.020
—0.023
—0.024
—0.024
—0.023
—0.022
—0.021
—0.019
—0.018
—0.0164
—0.0151
—0.0139
—0.0127
—0.0116

T =80.0

6.375
4.378
2.97
1.995
1.325
0.887
0.572
0.371
0.243
0.151
0.0922
0.0539
0.0289
0.0129
0.002

—0.0045
—0.0087
—0.0108
—0.0119
—0.0122
—0.0121
—0.0116
—0.0111
—0.0104
—0.0096
—0.0089
—0.0082

calculated at rI and a predicted rz chosen where s is
reevaluated. The average s is then used for the final drift
step. The birth-rate integral in Eq. (A5) was evaluated by
the trapezoidal rule.

In addition to the statistical uncertainties due to the fi-
nite number of paths generated, there is a systematic error
due to the finite-time step ~. As in the many-body case
this is estimated by repeating the calculation for various ~
values (here, typically, ~=0.01, 0.005, and 0.001). Since
the total number of time steps is p/~, this procedure is
more time consuming at lower temperatures. Using
20000 paths, values for the diagonal density matrix accu-
rate to better than 10 for the temperatures of Table VI
were obtained. The finite-time-step error could be elim-
inated by using the Green's-function Monte Carlo
method, which is, however, much more complicated.

2. Matrix squaring method

Originally used by Klemm and Storer and since
rediscovered many times, the matrix squaring method is
based on Eq. (1.2),

p(r&, r2', P)= I dr3)o(r~, r3,P/2)p(r3, r2,P/2), (A7)

together with the observation that if the density matrix
can be stored for all values of r~ and r2, then each itera-
tion results in a factor-of-2 reduction in the starting tem-

perature. This is only practical for low-dimensional sys-

tems. As written, Eq. (A7) is a three-dimensional integral;
however, a partial-wave expansion,

21 +1
p(r $, r2,'p) = y pl(r), r2,'p)p/(cose]p),

, o 4~r, r,
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gives a one-dimensional integral for each partial wave,

pt(~ ~, r2', P) = f «3p~(r &,r 3',P&2)p~(r3, rz, P&2) . (A8)

If the integral is evaluated by the trapezoidal rule the
iteration reduces to matrix squaring. The starting tem-
perature is taken sufficiently high that the density ma-
trices are accurately given by their semiclassical values.
To correct for the truncation of the integral at the upper
limit the matrix of stored values of p~ is surrounded by a
strip within which the p~ are replaced by their semiclassi-
cal values scaled by the ratio of calculated to semiclassical
values at the nearest inside boundary. This boundary
correction is necessary to obtain accurate results. At high
temperatures the density matrix is increasingly diagonal,
This has two effects: a sufficiently fine grid must be used
so that the starting high-temperature density matrix is
well approximated, and an increasing number of partial
waves are required. Partial waves beyond some maximum
are approximated by their semiclassical values.

%ith sensible values of the starting temperature, max-
imum number of partial waves, grid size, and integration
cutoff, this method gives accurate results as verified both
by internal consistency and comparison with other
methods. Computationally, it is considerably less time
consuming than the other two methods. The pair density
matrices used in this paper were computed by this method
and are given in Table VI. Forty partial waves were corn-
puted, the starting temperature was 2 times the final tem-
perature, and a grid was chosen so that
(4A/T, „)'i )3b,r.

3. Expansion in eigenfunctions

x f d«-""Rk, (r)Rkt(r'),

where the radial wave functions satisfy

A
d 1(1+1) Rk~(r)+V(r)Rk~(r)=Ak Rkt(r) .

This method was used in the first accurate calculations of
Lennard- Jones pair density matrices at low tempera-
tures. At higher temperatures it is less convenient, both
because more partial waves must be calculated and
higher-energy eigenstates contribute to the integral. Con-
sequently, the same accuracy was more easily obtained
with the matrix squaring method for the temperatures
shown in Table VI.

For the case of the Coulomb potential where the full
density matrix can be obtained from the I =0 term, ' and
efficient packages to calculate Coulombic wave functions
are available, this method is quite convenient.

The solution to Eq. (A2) may be written as a sum over
energy eigenstates weighted with the Gibbs factor. For
the A values for helium (A=0.1816) the Lennard-Jones
system has no bound states, and this sum is an integral
over continuum states

21+1 Pt cos8

o 2m

APPENDIX B: DERIVATION OF DRIFTING
RANDOM-WALK METHOD

This appendix contains a different derivation of the
drifting random-walk method of sampling new configura-
tions. I.et the conditional probability to be sampled from
Eq. (2.7) be denoted as

p(RO, R; t)p(R, Rg,'P t)—
p(R„Ry, P)

Here, R, and R~ are the original and final points of the
walk. As argued in the text we expect f to be Gaussian-
like for all t; hence it is characterized by a mean and vari-
ance:

R (t)= f dRRf(R;t),

o 'p(t) = f .dR [R —R*(t)] [R R '(t))—pf(R ;t), (B3)

1

p(R„Rg,P)

R R —p R,Ry,' —t Hp R„R;t

+p(R„R;t)Hp(R, R&,13 t)], —
(B4)

where H is the system Hamiltonian. Using the explicit
form for H and applying Green's theorem we are left with

dR*(t)
dt

A f dR p(R„R;t)V'p(R, Rg', P t) . —
p(R„Ry P',

Evaluating this for t =0 gives

dR" (t)
dt

=AV lnp(R„Ry, P) .

(B5)

Continuing in the same manner we arrive at the exact
power series:

t2
R'(t) =R, +tAV 1np(R„R&,13)+A VV(R, )+O(t—'),

2
(B7)

o'&(t)=tA5 z+t'A'V Vt3lnp(R„R&, P)+O(t') .

Substituting the pair-product form, Eq. (2.1), into this ex-
pression gives Eq. (2.7) to order t.

APPENDIX C: KINETIC-ENERGY ESTIMATION

In this appendix we collect formulas and remarks about
estimating the kinetic energy. From Eq. (1.1) the kinetic
energy can be calculated as

f lim g V;p(R, R',P)dR
2 R~R';

p RR; dR
(C 1)

where a and P refer to Cartesian components. R*(t) and
o (t) can be developed in a power-series expansion in t
about zero as we illustrate here for the first term. Taking
the t derivative of Eq. (B2) and using the Bloch equation
gives

dR'(t)
dt
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Xe 2z

((R' R—' )'l ((R' R—' ) V;P(R;7-))

2Ar 2

If the density matrix is calculated from Eqs. (1.3) and

(2.3), this becomes
in the integral. Expanding in 5 and using the high-
temperature density matrix of Eq. (2.3), the new estimator
for the kinetic energy is then

where 8 and R1 are separated by one step along the path.
For the ideal gas (P =0) this estimator does not give the

exact result of 3/2P for the Maxwell-Boltzmann case for
every configuration, since the average squared displace-

rnent term varies. It has been noted that for solvable

models such as the ideal gas or harmonic oscillator the

variance of this estimator increases as the path discretiza-

tion is reduced (i.e., smaller r).
An alternative estimator which does give the exact

answer with zero variance for the ideal-gas case can be de-

rived as follows. We note that the kinetic energy is ob-
tainable from the 5 term in the expansion of

I(5)= f p(R)+M5, R)',P)dR)

= f p(R )+M5,R2,'r)p(R2, R3', r)

)&p(RM, R t,'r)dR )
. dRM, (C3)

R3 ——R3 —(M —2)5, . . . p RM ——RM —5

where the second line is from Eq. (1.3). We now make the
change of variables

R) ——Rt, R~=Rp —(M —1)5,
and

with CK —— 1—&K, 1

2
(C4)

This estimator clearly produces the exact result in the
ideal-gas case and when quantum effects are absent (i.e.,
A~O). Unfortunately, the variances of the old and the

new estimators are roughly the same for paths of only a
few steps, and for long paths the old estimator, Eq. (C2),
has a much smaller variance than the new. Accordingly,
the kinetic-energy values given in Table II were estimated
with Eq. (C2). Equations (C2) and (C4) represent the two
limits of displacing one step in the path or of spreading
the displacement over the entire path, and it is possible
that an estimator corresponding to some intermediate case
would have a smaller variance than either of these. This
was not investigated.

Finally, the pressure is equal to two-thirds the kinetic-
energy density plus the usual virial term (which can be
calculated from the radial distribution function).
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